
The Riemann Hypothesis for Function Fields

Trevor Vilardi

MthSc 952

1 Function Fields

Let F = Fq be the finite field with q elements (q is a prime power).

Definiton 1. Let K/F (x) be an extension of F . If

1. K contains at least one element, x, that is transcendental over F .

2. K/F is a finite algebraic extension.

Then we call K a function field in one variable over F , and F is called the
constant field of K.

The elements of K can be thought of as rational functions. We will
associate with K an invariant g ∈ N called the genus of K which comes from
the algebraic geometric interpretation of K as the function field of some
algebraic curve of genus g.

Definiton 2. A prime in K is a discrete valuation ring, R, with maximal
ideal P such that

1. F ⊂ R

2. Frac(R) = K.

We will usually refer to the prime R as P , and we denote the Ord function
associated with P by OrdP (∗). Also note that degP = [R/P : F ].

Example 1. Let K = F5(x), and A = F5[x]. If P ∈ A is a monic irreducible,
then the localization at P , AP = {f

g
|f, g ∈ A, g /∈ P} is a prime of K.

K contains one more prime besides those that come from monic irre-
ducible polynomials. Let A′ = F5[x

−1], and P = (x−1). Then the localization
of A′ at P ′, A′P ′ , is a prime of K, and is called the prime at infinity, and is
usually denoted ∞.

It can be shown that these are the only primes of K.
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2 Divisors

Let DK be the free abelian group generated by the primes of K. We call DK
the group of divisors of K.

For D ∈ DK

D =
∑
P

a(P ) · P

where the sum is over all primes, P , and the a(P ) ∈ Z are uniquely deter-
mined by D. If a(P ) ≥ 0 for all P we say D is an effective divisor which we
denote by D ≥ 0. We define the degree of D to be

deg(D) =
∑
P

a(P ) · degP.

Note that deg : DK → Z is a homomorphism with kernel denoted DK
0.

Definiton 3. Let a ∈ K∗. Then the divisor of a, denoted (a), is

(a) =
∑
P

OrdP (a) · P

Note that OrdP (a) = 0 for all but finitely many P , hence (a) ∈ DK.

Example 2. Let K be as in example 1. Consider a = (x+1)2(x2+3)(x2+2)3

(x2+x+1)
∈ K.

Note that all factors are irreducible and hence generate a prime of K. For
finite primes, P , OrdP (f) gives the highest power of P that divides f , and
Ord∞(f) = − deg(f). Recalling that we extend the Ord function to rational

functions by Ord
(
f
g

)
= Ord(f)−Ord(g) we get

(a) = 2 · (x+ 1) + 1 · (x2 + 3) + 3 · (x2 + 2) + (−1) · (x2 + x+ 1) + (−8) · ∞.

The degree of P is simply the degree of the irreducible which generates it,
while the degree of ∞ is 1. This gives

deg((a)) = 2 · 1 + 1 · 2 + 3 · 2− 1 · 2− 8 · 1 = 0

as we will see it must be.

We can define a homomorphism from K∗ to DK by the map a 7→ (a).
The image of this mapping is called the group of principle divisors and is
denoted PK .

If OrdP (a) = m > 0 we say that P is a zero of order m of a. Similarly, if
OrdP (a) = −n < 0 we say that P is a pole of order n of a.

We will need the following facts concerning principle divisors. For a ∈ K∗
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1. (a) = 0 if and only if a ∈ F ∗

2. deg((a)) = 0.

Definiton 4. D1, D2 ∈ DK are said to be linearly equivalent if, denoted
D1 ∼ D2, if D1 −D2 = (a) for some a ∈ K∗.

We call the quotient group ClK = DK /PK the group of divisor classes.
Since deg((a)) = 0 for all (a) ∈ PK the map deg : ClK → Z is a homomor-
phism.

Definiton 5. The kernel of deg : ClK → Z is denoted Cl0K, and |Cl0K | = hK
is called the class number of K.

Note that, analogously to classical algebraic number theory, the class
number, hK , is finite.

Now we will define the important counting functions we will need. Let

an = #{primes of degree n}
bn = #{effective divisors of degree n}.

Both an and bn are finite for all n. Also, from these definitions we get that
an ≤ bn. To see this, note that we can associate any prime P with the
divisor 1 · P . Since the divisor has the same degree as the prime this gives
an injection from the set of primes of degree n and the effective divisors of
degree n. Hence an ≤ bn.

3 Zeta functions

For A ∈ DK the norm of A is

NA = qdeg(A).

Note that N(A+B) = NANB.

Definiton 6. The zeta function of K is

ζk(s) =
∑
A≥0

NA−s.

Since NA−s = q−ns, where deg(A) = n, this is equivalent to

ζk(s) =
∞∑
n=1

bn
qns

.
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Like the classical Riemann-zeta function, ζk(s) has an Euler product

ζk(s) =
∏
P

(
1− 1

NP s

)−1
=
∞∏
n=1

(
1− 1

qns

)−an
The Riemann hypothesis for function fields states that the zeros of ζk lie

on the line Re(s) = 1
2
. Or, in more detail.

Theorem 1 (The Riemann Hypotheis for Function Fields). If K is a global
function field whose constant field, F , has q elements, then all of the zeros
of ζk(s) lie on the line Re(s) = 1

2
.

Next we want to show that ζk(s) converges. For n > 2g − 2 we have

bn = hK
qn−g+1 − 1

q − 1

hence bn = O(qn). So combined with ζk(s) =
∞∑
n=1

bnq
−ns we see that ζk(s)

converges absolutely for Re(s) > 1. To see that the Euler product converges,

we need to show that
∞∑
n=1

an|q−ns| converges. But this follows immediately

from the fact that an ≤ bn = O(qn).

Theorem 2. Let g be the genus of K. Then there exists LK(u) ∈ Z[u] with
degLK(u) = 2g such that

ζk(s) =
LK(u)

(1− q−s)(1− q1−s)
.

This holds for all s such that Re(s) > 1, and the right hand side provides
analytic continuation of ζk(s) to all of C.

Proof. Let u = q−s. Then

ζk(s) = ZK(u) =
∞∑
n=0

bnu
n.

For n > 2g − 2 we have bn = hK
qn−g+1−1

q−1 . Substituting this yields

ZK(u) =

2g−2∑
n=0

bnu
n +

∞∑
m=2g−1

hK
qm−g+1 − 1

q − 1
um (1)

=

2g−2∑
n=0

bnu
n +

hK
q − 1

(
qg

1− qu
− 1

1− u

)
u2g−1 (2)

=
LK(u)

(1− u)(1− qu)
(3)
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Going from (1) to (2) is accomplished simply by summing the geometric
series. For the second equality all that is needed is to note that, when we
combine the terms in parentheses, q− 1 divides the numerator. Then simply
combining with the common denominator gives the result. Note that this
will also show that LK(u) has the desired degree. From (3) all that’s left is
to substitute q−s for u.

Corollary 1.

1. ζk(s) has simple poles at s = 0 and s = 1.

2. LK(0) = 1.

3. L′K(0) = a1 − 1− q.
4. LK(1) = hK .

Proof.

1. All that’s needed is to show LK(q−1) 6= 0 which we will show later.

2. Simply substitute 0.

3. We have LK(u) = (1− u)(1− qu)ZK(u). Differentiating this yields

L′K(u) = −(1− qu)ZK(u) + Z ′K(u)(1− u)(1− qu)− q(1− u)ZK(u)

so L′K(0) = −1 + b1 − q. All that’s left is to note that a1 = b1.

4. From (2) we see that lim
u→1

(u − 1)ZK(u) = hK
q−1 , and from (3) we see that

lim
u→1

(u− 1)ZK(u) = −LK(u)
1−q . So LK(1) = hK .

Since LK(0) = 1 we can factor LK(u) =
2g∏
i=1

(1 − πiu). From this we can

see that the Riemann hypothesis is equivalent to |πi| =
√
q for 1 ≤ i ≤ 2g.

Like the classical Riemann-zeta function, the zeta function of a function
field also satisfies a functional equation. Set

ξK(s) = q(g−1)s ζk(s).

Then for all s ∈ C
ξK(1− s) = ξK(s).

This implies that
LK(q−1u−1) = q−gu−2gLK(u).

Thus any zero of LK(q−1u−1) is also a zero of LK(u). So factoring LK(q−1u−1) =
2g∏
i=1

(1− πi
q
u−1) shows that q

πi
is a zero of LK(u) for all 1 ≤ i ≤ 2g. Hence the

map πi 7→ q
πi

is a permutation of the roots of LK(u).
There is also an analogue of the prime number theorem which states:

5



Theorem 3.

aN = #{P | deg(P = N)} =
qN

N
+O(

q
N
2

N
).

Like in the classical case the prime number theorem is connected to the
Riemann hypothesis. Our strategy for proving the Riemann hypothesis will
be to show that a1 = q +O(

√
q) implies |πi| =

√
q.

Before proving the Riemann hypothesis we will need some results. Let
Fn = Fqn and Kn = FnK, then Kn is called a constant field extension of K.
We have

LKn(u) =

2g∏
i=1

(1− πni u)

which implies that we can prove the theorem for any Kn′ , and it will hold
for all other n. This is important because to prove a1 = q +O(

√
q) we need

to impose some restrictions on K. But we can find n large enough that the
conditions always hold, so we can just assume they hold from the start.

Let Nn(K) =
∑
d|n
dad, then N1(K) = a1 and N1(Kn) = qn +O(q

n
2 ).

Proof of the Riemann Hypothesis. We also need these two important facts
which we will not prove

i N1(Kn) = Nn(K)

ii ZK(u) = exp

(
∞∑
n=1

Nn(K)
n

un
)

From ii we get

u
Z ′K(u)

ZK(u)
=
∞∑
n=1

N1(Kn)un.

We can also write ZK(u) as

ZK(u) =

2g∏
i=1

1− πiu
(1− u)(1− qu)

thus

u
Z ′K(u)

ZK(u)
=
∞∑
n=1

(qn + 1− πn1 − πn2 − ...− πn2g)un

=
∞∑
n=1

qn + un −
2g∑
i=1

∞∑
n=1

(πi)u
n.
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Putting these together we get

∞∑
n=1

(N1(Kn)− qn − 1)un = −
2g∑
i=1

∞∑
n=1

(πiu)n.

SinceN1(Kn) = qn + O(q
n
2 ), the left hand side has radius of convergence

R ≥ q−
1
2 .

The right hand side has radius of convergence R = min
1≤i≤2g

{|π−1i |}, so

|π−1i | ≥ q−
1
2 for all 1 ≤ i ≤ 2g, hence |π1

i | ≤ q
1
2 for all 1 ≤ i ≤ 2g.

Since the map πi 7→ q
πi

is a permutation of the πi we have for some j

|πi| =
∣∣∣∣ qπj
∣∣∣∣ ≥ q
√
q

=
√
q

for all i. Thus |πi| =
√
q for all i, which is equivalent to the Riemann

hypothesis.
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