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1. Introduction

The partition function has been a subject of great interest for many number
theorists for the past several years. Although it is based on fairly simple ideas on
the surface, there are still many elementary questions unanswered. The work of
the Indian mathematician, Srinivasa Ramanujan(c.1887), has laid a basis for those
interested in the theory of partitions. In 1966, two computational number theorists,
Thomas Parkin and Daniel Shanks, wrote a paper on the parity of the partition
function and supported their results with extensive computation, using the recursive
definition for the partition function. Since then, an in-depth numerical analysis of
partitions has not provided evidence to support the many conjectures being made
in this area of mathematics. Today, especially in the past few years, great strides
have been made and new ideas have taken shape by Ken Ono, Scott Ahlgren, and
other leaders in the field. There are two main purposes of this paper. The first is
to provide the reader with an efficient O(N log2

2 N) algorithm for inverting a power
series and computing the partition function modulo a large prime. The second is
to provide data supporting conjectures concerning how the partition function is
distributed modulo M.

2. The Partition Function

A partition is a sequence of positive integers which breaks a positive integer,
n, into parts, where order does not matter. For example, the partitions of 4 are:

4
3,1
2,2

2,1,1
1,1,1,1

The partition number of 4 will be denoted as p(4) = 5 because there are five
ways to partition 4. These numbers grow fairly quickly. For example, already at
n = 18, p(n) = 385. From even just these two values, it is easy to see that it would
be convenient to have a generating function for partitions. Parkin and Shanks[5]
used the following generating function in their analysis of partitions:

∞∑
n=0

p(n)xn =

(
1 +

∞∑
n=1

(−1)n[xn(3n−1)/2 + xn(3n+1)/2]

)−1

.
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This is equivalent to Euler’s[2] generating function for partitions, given by:

(1)
∞∑

n=0

p(n)qn =
∞∏

n=1

1
1− qn

= 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + . . .

Euler’s[2] Pentagonal Number Theorem states:

(2)
∞∏

n=1

(1− qn) =
∞∑

n=−∞
(−1)nq(3n2+n)/2.

The generating function for partitions may be simplified to the following equation:

(3)
∞∑

n=0

p(n)qn =
1

∞∑
n=−∞

(−1)nq(3n2+n)/2

We will use this equation in our power series inversion algorithm.
The ratio of the number of partition numbers in residue class, r, to the total

number of partition numbers is described by Scott Ahlgren and Ken Ono[1] as
δ(r, m,X), where

(4) δ(r, m,X) =
#{0 ≤ n < X : p(n) ≡ r (mod m)}

X

Examining this ratio for all residue classes modulo m gives us a feel for the
distribution of the partition function among the residue classes of m. An important
question is what happens to δ(r, m,X) as X → +∞. More specifically, does this
limit even exist? If so, what is it?

We will investigate the following conjectures using the data collected:
Conjecture 2.1. (Parkin and Shanks[5])

lim
X→+∞

δ(0, 2, X) = lim
X→+∞

δ(1, 2, X) =
1
2

Conjecture 2.2. (Ahlgren and Ono[1])

lim
X→+∞

δ(0, 3, X) = lim
X→+∞

δ(1, 3, X) = lim
X→+∞

δ(2, 3, X) =
1
3

Conjecture 2.3. (Ahlgren and Ono[1]) For l ≥ 5 and prime,

lim
X→+∞

δ(0, l, X) >
1
l

If the previous conjecture is true, then the following question arises. Is it possible
to predict F (l) where,

(5) F (l) = lim
X→+∞

δ(0, l,X)− 1
l
?
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Conjecture 2.4. (Newman[4]) If M is a positive integer, then, for every integer
r, where 0 ≤ r < M , there are infinitely many non-negative integers, n, for which
p(n) ≡ r (mod M).

After we have established an algorithm for inverting a power series for the par-
tition function, we will address these questions and show computational evidence
for them.

3. Fast Fourier Tranforms

Before explaining our inversion algorithm, we must review some details about the
Fast Fourier Transform(FFT) multiplication algorithm found in [3], a O(N log2 N)
algorithm for multiplying polynomials of size N . Begin by recognizing three sym-
metries in the roots of unity. Note that N is the total number of roots of unity, ω
is the root of unity, and p is the prime modulus.

ωi+N/2 ≡ p− ωi for 0 ≤ i ≤ N

2
− 1

(ωi)−1 ≡ p− ω
N
2 −i for 0 ≤ i ≤ N

2
− 1

(ωi)−1 ≡ ωN−i for
N

2
≤ i ≤ N − 1

These congruences allow us to calculate only N
2 + 1 of the roots of unity rather

than N of them. Additionally, we note that as the size of FFT halves, so does the
number of roots of unity that are needed. FFT jumps through the roots appropri-
ately, depending on its size.

After the roots of unity have been calculated, FFT is performed iteratively using
bit reversal rather than recursively. To find a more in-depth discussion of Fast
Fourier Transforms, see Walker[7].

4. Power Series Algorithm

Calculating partition numbers is slightly complicated because the generating
function for partitions, (3), is an inverted power series. Therefore, we use an algo-
rithm that provides an efficient way of inverting a power series, and hence, find-
ing the partition numbers, using a Fast Fourier Transform multiplication algorithm
found in [3] for polynomial multiplications. We also use GNU’s big integer package,
GMP, to allow for large partition numbers. This program may also be parallelized.
In our case, we used the Message Passing Interface, MPI.

Given some integer, k, the algorithm will compute the partition numbers modulo
a given prime, p ≡ 1 (mod 2k+1), from 0 to 2k−1. The user also inputs the prime’s
primitive root of unity, α. The basic idea behind the algorithm is to turn inversion
into polynomial multiplications. We note the following:

Let H0(x) = h(x) be the polynomial to be inverted.
Also, Hi+1(x2) = Hi(x)Hi(−x).
Then,
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1
h(x)

= h(−x) · 1
h(x)h(−x)

= H0(−x) · 1
H1(x2)

= H0(−x) ·H1(−x2) · 1
H1(x2)H1(−x2)

= H0(−x) ·H1(−x2) ·H2(−x4) · 1
H2(−x4)H2(x4)

...

= H0(−x) ·H1(−x2) ·H2(−x4) . . .Hk−1(−x2k−1
) · 1

Hkx2k

= H0(−x) ·H1(−x2) ·H2(−x4) . . .Hk−1(−x2k−1
)(1 + O(x2k

))

Notice that the last term, O(x2k

), is an error term so that the inversion is correct
up to the 2k − 1 term, or, in our case, correct up to p(2k − 1). Therefore, to find
all partition numbers correctly up to p(2k − 1), we must calculate Hi for 0 ≤ i < k
and then multiply all the Hi’s together as mentioned above.

First of all, two main arrays of the size 2k+3 are kept. One holds the polynomials
to be multiplied together, Hi’s, and the other holds their Fast Fourier transforms,
Ĥi’s. The program uses the given primitive root, α, to find the first root of unity,
ω = α

p−1
2k+1 (mod p). This root of unity, ω, is then used to find the first 2k + 1

powers of ω, beginning with ω0 = 1. These will be stored in a third array and used
in the Fast Fourier Transforms.

Next, we find the Hi’s in the above equation. H0 is our original polynomial, or
the Pentagonal Numbers from (2). We determine how many terms of the Pentagonal
Numbers equation 2 are needed for accuracy using the bound, b.

b =

√
24 · 2k+1 + 1 + 1

6

The rest of the Hi’s are calculated in a loop beginning with Hi(x) = H0(x). The
loop begins with a Fast Fourier Transform on Hi(x) where the result is called Ĥi.
This transform is then point-wise multiplied with itself to obtain Ĥi+1(Ĥi+1(j) =
Ĥi(j) · Ĥi(j + 2k+1). Ĥi+1 is then multiplied through by the inverse of the size of
the FFT. An inverse FFT is then performed to take Ĥi+1(x) to Hi+1(x2). In order
to find this polynomial in terms of x, we collapse Hi+1(x2) by removing the odd
terms(whose values are 0) and the result is Hi+1(x). For accuracy, we only need
half of this polynomial so we also truncate it before storing. This loop continues
where the size of FFT is halved at the beginning of each round. The loop ends
when the size of the FFT is 2. At the end of this step, we have all Hi(x)’s in one
array and all Ĥi(x)’s in another.

The next step in the inversion algorithm is to multiply all the Hi’s together so
that our final results are the partition numbers. This part of the algorithm is also
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performed in a loop, where the FFTs grow in size. Let G0(x) = Hk−1(x). Also,
Gl(x) = Hk−l−1(x)·Gl−1(−x2) for 0 ≤ l ≤ k−1. The loop begins by expanding and
negating Gi(x), resulting in Gi(−x2). Then, perform FFT to obtain Ĝi(−x2). This
polynomial is then point-wise multiplied with Ĥk−2−i(x) which is already stored in
an array. The result is Ĝi+1(x). FFT is performed on this polynomial to obtain
Gi+1(x). For accuracy, only half of this polynomial is needed so we truncate it to
conserve space. The size of the FFT then doubles and the process repeats until the
size of the FFT reaches 2k+2. The polynomial, Gk−1(x), has negative odd terms.
Gk−1(−x) is found, which holds the partition numbers modulo the given prime, p.

Because this algorithm only finds the partition numbers modulo a prime, p,
the inversion algorithm must be performed for many different primes. Then, the
Chinese Remainder Theorem must be implemented to find the actual values of
the partition numbers. Recall that the Chinese Remainder theorem says that for
(m,n) = 1 and:

u ≡ a (mod m)

u ≡ b (mod n)

there is a unique solution for u modulo m · n. More specifically, u ≡ any + bmx
(mod mn). The Chinese Remainder Theorem is used to find the partition numbers
modulo the product of all the primes used. If the product of the primes is large
enough, then the partition numbers modulo the product is equivalent to the actual
partition numbers. Finally, the process is complete and the partition numbers are
found.

To see the power series inversion program in more detail, refer to Appendix A.
To see the Chinese Remainder Program, refer to Appendix B.

5. Run-Time Analysis

Now that the algorithm has been described in detail, it is necessary to analyze
its run-time. To run through the inversion algorithm with one prime, it takes
O(N log2

2 N) multiplications, where N is 2k+2 and also the size of the largest FFT
performed. There are two main parts of the algorithm; one where the Hi’s are
calculated and the other where they are multiplied together. Both parts iterate
through a loop log2 N times. The number of multiplications in the two main parts
differ by a constant so we will only analyze one loop. Also, all the FFTs in the pro-
gram are of size N or smaller. This means that each FFT performs O(N log2 N)
multiplications(see Chiu[3]). To simplify things, we will assume all FFTs are of
size N to obtain an upper bound on the number of multiplications in the pro-
gram. Each loop contains two FFTs [each having O(N log2 N) multiplications], a
point-wise multiplication [O(N) multiplications], and multiplication by N−1[O(N)
multiplications]. When added together, we obtain the number of multiplications
for one loop. As mentioned before, there are log2 N iterations of one loop and two
main parts. The upper bound for the total number of multiplications, M(N), is:

M(N) = 2 log2 N [O(N log2 N) + O(N) + O(N)]

= O(N log2
2 N)
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M(N) is the number of multiplications used to find the partitions numbers mod-
ulo one prime. The algorithm must be repeated for enough primes so that the actual
partition number values may be calculated. To find the number of primes, we use
an upper bound of the Hardy-Ramanujan asymptotic formula, which was perfected
by Rademacher[2]:

p(n) ∼
1

4n
√

3
· eπ

√
2n
3 < eπ

√
2n
3

Assuming the primes are chosen to be of size 261, then the inversion algo-
rithm must be performed log261 eπ

√
2n
3 times. To do this, an upper bound of

log261 eπ
√

2n
3 ·M(N) multiplications is required. .

6. Computational Evidence

The most exciting part of this program is the data it can produce. As mentioned
earlier in this paper, many conjectures have been made regarding partitions. Using
our program, the user can not only find the partition numbers for large integers,
but they may also find congruences within the partition function.

Consider first Conjecture 2.1 concerning the partition function modulo 2. It is
expected that about half of the partition numbers are odd and half of them are
even. We have not yet produced data on this conjecture but expect to be able to
before our final paper.

Now, recall Conjecture 2.2 concerning the distribution of the partition function
modulo 3. Data is available which allows us to test the conjecture, shown in Figure
1. All data was calculated using the first 4194304 partition numbers. The percent-
age of partition numbers that are congruent to 0 modulo 3 remains around 33.3%
with slight fluctuations depending on how many partition numbers are included in
the calculations. The percentage of partition numbers congruent to 1 and 2 behaves
similarly. This data tells us that Conjecture 2.2 is a strong one, assuming that the
limits mentioned in it exist.

Figure 1. Percentages for Residue Classes Modulo 3

The following table shows the slight variation of the percentages modulo 3 as
more partition numbers were used. The final line in the table holds the data in-
cluded in Figure 1.

# of Partition Numbers 0 mod 3 1 mod 3 2 mod 3
16 0.312500 0.250000 0.437500

507920 0.334370 0.332068 0.333562
1015824 0.333036 0.333693 0.333271
2015248 0.333069 0.333771 0.333160
3014672 0.332821 0.333943 0.333237
4194304 0.333098 0.333635 0.333267
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Similar data can be collected for other primes. We computed the residue class
percentages for all primes from 5 to 101. See Appendix B for graphs represent-
ing some of these percentages for the first 4194304 partition numbers. This data
also assists with the analysis of Conjecture 2.3, which states that the percentage
of partition numbers congruent to 0 modulo a prime, l ≥ 5, is greater than 1

l .
To see this more clearly on the included graphs, y = 1

l is also plotted. Addition-
ally, y = 1

l ±
1
l2 is plotted to see the variation from 1

l .ThisalsoallowsustoviewF(l)
graphically. Let’s consider the distribution modulo 5. The following graph shows
that δ(0, 5, 4194304) = 0.363980, but 1

5 = 0.20, a significant difference. Other
δ(r, 5, 4194304) for 0 < r < 5 appear flat and less than 1

5 .

Figure 2. Percentages for Residue Classes Modulo 5

This result is expected because of the Ramanujan[6] congruence p(5n + 4) ≡ 0
(mod 5). Similar results are also expected for 7 and 11 due to the Ramanujan
congruences p(7n + 5) ≡ 0 (mod 7) and p(11n + 6) ≡ 0 (mod 11). Therefore, the
graphs representing the percentages for the primes l = 7 and 11 have a similar
pattern to Figure 2.

Graphs for moduli greater than 11 begin to look a little different, including more
variation about 1

l among the residue classes. Because of the scaling of our pictures,
this variation is not extremely significant. However, considering Conjecture 2.3, it
is useful to look at a graph for prime l where δ(0, l, 4194304) < 1

l . Such a result
occurs at l = 73, shown in Figure 3 for the first 4194304 partition numbers. This
result occurs for primes much less than 73 but l=73 seems most interesting right
now. When we considered the first 245776 partition numbers, 1.3707% of them were

Figure 3. Percentages for Residue Classes Modulo 73

congruent to 0 (mod 73). However, 245776 is the last value of X for which our data
shows δ(0, l, X) > 1

l . Note that Conjecture 2.3 refers to a limit as X → +∞ so the
conjecture is not necessarily disproved. It is surprising, though, that the majority
of our data for a modulus of 73 does not support Conjecture 2.3. Additionally,
these results imply that F (l)(see Eq. (5)) may not be as useful to investigate.

Finally, consider Conjecture 2.4. We have not done a lot of analysis of data
produced for this conjecture, but it seems to support it.
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