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Abstract

We examine codes from the Paley graphs for the purpose of permutation
decoding and observe that after a certain length, PD-sets to correct errors up
to the code’s error-capability will not exist. In this paper we construct small
sets of permutations for correcting two errors by permutation decoding for
the case where the codes have prime length.

1 Introduction

An algorithm for decoding codes that have a large automorphism group was in-
troduced by MacWilliams [11], where it was applied mostly to classes of cyclic
codes, and the Golay codes. It involves choosing appropriate information sets
for the code and finding a set of automorphisms (called a PD-set) that satisfies
particular conditions.

Appropriate information sets and PD-sets for infinite classes of binary codes
defined by some regular graphs (triangular graphs, lattice graphs and graphs from
triples) with a symmetric group as an automorphism group were found in [8, 9,
7]. In [6] the p-ary codes from desarguesian planes were examined and it was
observed that for planes of sufficiently large order no PD-sets could exist. For this
a lower bound on the size of a PD-set was used: see Section 2. In that paper the
notion of ans-PD-set was introduced, to correatrrors, where is not necessarily
the full error-correction capability of the code. Sm2dPD-sets were found for
the codes from desarguesian projective and affine planes of prime order.

*This work was supported by the DoD Multidisciplinary University Research Initiative (MURI)
program administered by the Office of Naval Research under Grant N00014-00-1-0565, and NSF
grant #9730992.
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Here (and in [10]) we look at the similar problem for the codes from Paley
graphs and we prove the following, which applies to these codes:

Theorem 1 LetC = [n, k,d], be a cyclic code of prime length over the field
I, of orderg, wheren = 1 (mod8), (n,q) = 1 andd > 5. Label the coordinate
positions0,1,...,n — 1 and suppose thai, 1,...,k — 1 form the information
symbols. Let, ; : ¢ — ai + bfor a,b € [F,, anda a nonzero-square and suppose
thatr, , € Aut(C) for all sucha,b € IF,,. Then

(1) if k = 25 the set

3k k
{Tl,b | be {O,k}} U {Tk,b | be {/{7,2]{, 7, 5 — 1}}

is a2-PD-set of siz& for C;
(2) if k = 2L the set

k—1 3k—1
{7’171) | be {O, 1,k,k71,n71}}U{Tk7b | be {O,k,kfl, T, 5

H

is a2-PD-set of sizd 0 for C.

Corollaries 2, 3 in Section 4 then state this result explicitly for the codes from
Paley graphs when the length is prime. Note that a similar result holds for 3-PD-
sets, although in that case the size of the 3-PD-set depends on the length of the
code; this can be found in [10].

The organization of the paper is as follows: in Section 2 we give the general
background; in Section 3 we define the Paley graphs and their codes, giving some
of the well-known properties that we will be needing; in Section 4 we prove the
theorem; in Section 5 we give tables to show that PD-sets to decode all errors do
not exist after a certain length.

2 Background and terminology

An incidence structur® = (P, B, Z), with point setP, block set3 and incidence
Zis at-(v, k, A) design, if|P| = v, every blockB € B is incident with precisely
k points, and every distinct points are together incident with precisalplocks.
ThecodeCr of the designD over the finite fieldF is the space spanned by the
incidence vectors of the blocks ovEr

All the codes here alnear codes i.e. subspaces of the ambient vector space.
If a codeC over a field of order is of lengthn, dimensionk, and minimum
weightd, then we write[n, k, d], to show this information. Ayenerator matrix
for the code is & x n matrix made up of a basis far. Thedual or orthogonal
codeC is the orthogonal under the standard inner produgti.e. C+ = {v €
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F™(v,¢) = Oforallc € C}. A check (or parity-check) matrix for C' is a
generator matrixd for C+. If ¢ is a codeword then thgupport of ¢ is the set

of non-zero coordinate positions of The all-one vector will be denoted by

and is the vector with all entries equal to 1. Two linear codes of the same length
and over the same field aigmorphic if they can be obtained from one another
by permuting the coordinate positions. Awtomorphism of a codeC is an
isomorphism fronC' to C. The automorphism group will be denoted by AUj}.

A code of lengthn is cyclic if Aut(C') contains a cycle of length.

Any code is isomorphic to a code with generator matrix in so-cataddard
form, i.e. the form[[}, | A]; a check matrix then is given byy- A7 | I,,_;]. The
first k coordinates are theformation symbols and the last. — k£ coordinates are
thecheck symbols

The graphsT” = (V, E) with vertex sefl” and edge seF, discussed here are
undirected with no loops. A graph regular if all the vertices have the same
valency. Theadjacency matrix A of a graph of ordef: is ann x n matrix with
entriesa;; such thata;; = 1 if verticesv; andv; are adjacent, and;; = 0
otherwise. The-rank of the matrixA, denoted byrank,(A), is the dimension
of the row space ofd over the finite field ofp elements. Astrongly regular
graph T of type (n, k, A\, p) is a regular graph of order with valencyk which is
such that any two adjacent vertices are together adjacentedices and any two
non-adjacent vertices are together adjacent wertices. The complement of the
graphl'is also a strongly regular of tyge, n—k—1,n—2k+p—2,n—2k+\).

If Aisthe adjacency matrix of the graphthenA has three distinct eigenvalues;
one of which is the valencly of A with the corresponding eigenvector the all-one
vector, and the other two eigenvaluesAfsayr ands, wherer > s, satisfy the
equation

22+ (u—Na+ (p—Fk)=0. 1)

It can be shown, see [4], that the eigenvaluesds of A are integers, unless they
have the same multiplicity. ¥ ands have the same multiplicity then the graph
T is of type(n, ”T*l, "T* -1, ”7*1) and its complement has the same typé&'as
Moreover, thep-rank of A can be computed as follows: see [2] and [4].

Result1 If A is the adjacency matrix of a strongly regular graph of type
(n, k, A, u) and the eigenvalues of that satisfy the equatiofil) have the same
multiplicity then

n it ptkpy,
ranky(A) = ¢ n—1 if plkbutptpu,
nEt il

Permutation decodingwas first developed by MacWilliams [11]. It involves
finding a set of automorphisms of a code such that the set satisfies certain con-
ditions that allow it to be used for decoding; such a set is called a PD-set. The
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method is described fully in MacWilliams and Sloane [12, Chapter 15] and Huff-
man [5, Section 8]. In [6] the definition of PD-sets was extended to thetRid-
sets fors-error-correction:

Definition 1 If C is at-error-correcting code with information sét and check
setC, then aPD-setfor C' is a setS of automorphisms aof’ which is such that
everyi-set of coordinate positions is moved by at least one memhgiirtb the
check position§.

For s < t an s-PD-setis a setS of automorphisms of’ which is such that
everys-set of coordinate positions is moved by at least one membgirad C.

That a PD-set will fully use the error-correction potential of the code follows
easily and is proved in Huffman [5, Theorem 8.1]. ThatsaPD-set will correct
s errors also follows, and we restate this result in order to uses-®D-sets for
s-error-correction, where < t:

Result 2 Let C be an[n, k, d], t-error-correcting code. SupposH is a check
matrix for C' in standard form, i.e. such thdf,_;, is in the redundancy positions.
Lety = ¢+ e be a vector, where € C ande has weights < ¢. Then the
information symbols iny are correct if and only if the weight of the syndrome
HyT ofyis < s.

The algorithm for permutation decoding is as follows: we haveearor-
correcting(n, k, d], codeC with check matrixH in standard form. Thus the
generator matrix; = [I|A] andH = [AT|I,,_;], for someA, and the firsk co-
ordinate positions correspond to the information symbols. Any vectdiength
k is encoded asGG. Supposer is sent and, is received and at mosterrors oc-
cur, wheres < t. LetS = {g1, ..., gm } be ans-PD-set. Compute the syndromes
H(yg;)T fori = 1,...,m until ani is found such that the weight of this vector is
s or less. Compute the codewardhat has the same information symbolsygs
and decodg ascg; .

Such sets might not exist at all, and the property of having a PD-set might not
be invariant under isomorphism of codes, i.e. it depends on the choifend
C. Furthermore, there is a bound on the minimum size that th& seay have,
due to Gordon [3], from a formula due to Setheim [13], and quoted and proved
in [5]:

Result 3 If S is a PD-set for &-error-correcting(n, k, d], codeC, andr = n—k,

e R ===

This result can be adapted4d”D-sets fos < ¢ by replacing by s in the formula.
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3 Paley graphs

Let n be a prime power witlm = 1 (mod 4). The Paley graph, denoted by
P(n), has the finite field,, of ordern as vertex set and two verticesandy are
adjacent if and only ift — y is a non-zero square if,. Sincen = 1 (mod 4),
—1lis asquareiff,. The condition that-1 is a square iff,, is required to ensure
thatzy is an edge if and only ifz is. ThusP(n) is well-defined. The Paley graph
is a strongly regular graph of type, 5%, 25 — 1, 271) and is isomorphic to
its complement.

The Paley grapt#(n) can be viewed ask&(n, 251, 251) designD = (P, B)
with point setP = F,, and block seB = {B,. | « € F,,}, where

. = {y € F,, | y — x is anon-zero square i, }

for all x € F,,. An incidence matrix fofD with blocks B, in the same ordering
as the points, is an adjacency matrid of P(n). The codeC of the Paley
graph P(n) over[F, is the subspace df}; spanned by the rows of. Thus the
dimension ofC' is thep-rank of A and the minimum distancé of C is at most
n-1 the valency ofP(n). Result 1 implies that ip divides 5% but does not
divilde ”T—l thenC is a trivial code, so from now on we suppose thativides

n—

! Note that of course much is known about the codes here, since they are the
well-known quadratic residue codes and can be read about in many places, and
for example in [12] or [14]. Here we will summarize those properties we require
for the permutation decoding, but more detail can also be found in [10]. The dual
codes are the codes of the non-residues togetherywviibe also [1, Chapter 2].

In case ofp = 2, we first note that the parameter= "21 isoddifn =5
(mod 8) andis evenifs =1 (mod 8). Thus the dimension of the binary co@e
of P(n)isn—1if n =5 (mod 8) and is”;* if n =1 (mod 8).

Let n = ¢° for some prime;. For anyo € Aut(F,,) anda,b € F,, with a a
non-zero square, we define the map , onF,, by

Tabo @ T +— ax’ + b, (2)
forxz € F,.

Result 4 If C is thep-ary code of the Paley graph of order n = 1 (mod 4),
wherep divides"T—1 and wheren = ¢¢ for some primey, then the set

G ={mape | 0 € Aut(F,), a,b € F,,, a anon-zero squate 3)

is an automorphism group @f of order%en(n — 1), wherer, ; . is defined as in
(2).

This is well-known and can be found in any text on quadratic residue codes.
Note: The groupG in Result 4 is transitive but n@t-transitive.
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4 2-PD-sets for Paley graphs of prime order

Now we take the Paley graph3(n) of prime ordern, wheren = 1 (mod 8),
and letC be thep-ary code ofP(n), where the prime divides 2. ThusC
is cyclic and a[n, 251], code by Result 1. Let = 251. Since the codes are
guadratic residue codes, the minimum weiglof the code”' satisfies the square-
root bound, i.ed? > n, so thaty/n < d < k: see [1, Chapter 2], for example.
Note also that since = 1 (mod 8), 2 is a square iff,,.

We order the coordinate positions of the cyclic cadas0,1,2,--- ,n — 1,
and take the set

7={0,1,...,k—1} (4)

for the information set and the set
C={k,k+1,...,n—1} (5)

for the check set of’.
Sincen is a prime the only automorphism Bf, is the identity, so we write

Tap T ax + b, (6)

wherea, b € F,, with ¢ a nonzero-square, and we denatg by 7, for all non-
zero squares € IF,,.

Also note that sinc@ andn — 1 are squares ifff,,, it follows that if & = "7*1
then2k = n — 1 which implies that is a square ifF,,. Also, if & = ”T“ then
2k =n+1=1 (mod n) which implies that: is a square ir¥,,.

We first note that 2-PD-set will exist for the cod€’ = [n, 251], of P(n)
since"T‘1 < g, and by [11] the cyclic groufi’ of S,,, generated by the cyclic
permutationz — x + 1, will form a 2-PD-set forC.

For the dual cod€+ = [n, "7“]1,, we have the following result, see [6], to

ensure the existence oRaPD-set forCt.

Result5 LetC = [n, k,d], be a cyclic code of odd lengthover the fieldF, of
order ¢, wherek = ”‘2“, (n,q) = 1andd > 5. Label the coordinate positions
0,1,...,n—1and suppose thd 1,...,k—1 form the information symbols. Let
A= Aut(C) < S,,and letr : i — i+ 1 andy : i — qi, working modulan. If
T =< 7 >thenS = T U uT will form a 2-PD-set of2n elements fo”, unless

g = 1 (mod n).

Note: The lower bounds of the size @fPD-sets for the code and its dual of the
Paley graphP(n) are4 and7, respectively, as follows immediately from Result 3.
The sizes oR-PD-sets that we obtain in Theorem 1 are close to these bounds.

Proof of Theorem 1:
We need to show iril) and (2) that for every pair of coordinate positions
andj there is an element i that maps the two positions into the check positions
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C as given in (5). Itis clear that ifand; are in the check positions, i.&.< i <
j < n — 1, then the identity element will keep these irC.

To prove(1), takek = “7*. If  and; are such thah < i < j < k — 1 then
the element; ;, will map< andj intoC sincek <i+k < j+k <2k—1=n-2.

We now consider four distinct cases foandj, where0 < ¢+ < k£ — 1 and
k < j < n— 1. Note first thatk is even since: = 1 (mod 4). The elements
Th.2ks Th, 3k T k1, OF Tk will map bothi andj into the check sef depending
on whether and; are even or not. Throughout the proof(@f, leti = 2r if i is
even and = 2r + 1 otherwise for somé < r < % and letj = 2s for some
b <s<k,if jisevenand = 2s + 1 for some% < s < k — 1, otherwise.

Case 1 i andj are even. Then
iTk,2k = ki + 2k =n —r — 1 (modn)

and
JTrok = kj + 2k =n — s — 1 (modn).

Since 0 < r < 522 and £ < s < k, it follows thatk < n — & = 3kt2 <
n—T—l§n—1andn—k—1=k§n—s—1Sn—%—lz%gn—l,
which shows that these automorphisms will map the pair into the check positions.

Case 2 i is even and is odd. Then

k k
0Ty, sk :kiJr%:k(QT’)Jr% = 3—77' (mod n)
and 3k 3k 5k
ka,% :ijF?:k(?SJrl)Jr?E?fs (mod n).

Since0 < r < 222 and £ < s < k—1,itfollows that3F —£=2 = 41 < 3k
r<y<n-landk < P -(k-1) =82 <P-s<P-F=2k=n-1,
which completes this case.

Case 3 is odd andj is even. Then

k k k—2
Z.Tk7§71:ki+§—1:k(27"+1)+§—1532 —7r (mod n)
and
k k 5k
jrkg_lzkj+§—1=k(28)+§—153—s (mod n).

Since 0 < r < %2 and &
¥7r3¥§n71andk

completing this case.

s < k, it follows that 352 — k22 — | <

5k _ 3k 5k 5k k __ _
Sk =3k < Bk gk k_ogp_p_

<
< 2 2 2 72



4 2-PD-SETS FOR PALEY GRAPHS OF PRIME ORDER 8

Case 4 ¢ andj are odd. Then
itk =ki+k=FkQ2r+1)+k=2k—r (modn)

and
Ik =kj+k=k(2s+1)+k =2k — s (modn).

Since 0 <r < %32 and § < s < k—1,itfollows thatk < 2k— 252 = &2 <
2k—r <2k =n—land2k—(k—1)=k+1<2k—s<2%k—%5 =3 <n-1.
This completes the proof far = 271, i.e. the given setis 2PD-set for this value
of .

To prove(2), we takek = 241 and consider three distinct casesipivhere
0 <i < k—1, and for each case we consider the various possibilities, fwhere
i < 7 < n. Note thatk is odd.

Caseli=0.1f1<j<k—-2theningz=kFkandk+1<j+k=jmn; <
2k—2=mn—1.
If j =k—1thenir,, =k and

3k—1

ek =kj+k=k= (mod n),
andk < 321 < — 1.
If j =k then iry s =31 >k and
k—1 k—1
ka?%:ijr:gz :k2+32 = k (modn).

fhk+1<j<n-—1,wewritej =Fk+ sforsomel <s<k-—2,s0
JTip—1=j+n—-1=n+(k+s—1)=k+s—1(modn)

andk <k+s—-1<2k—3=n-2.
Thus the elements, ., 75 &, 7, aho2 OF Ty will map bothi andj into the
check set.
Case2i=k—1.Ifk <j<n-—2,wewritej = k+sforsome) < s < k-3,
o)
Z.T1,1:’L‘+1:k and jT1,1:j+1:k+S+1
wherek+1<k+s+1<n-—1.
If j =n—1then
3k—3
2

’L'Tk7k_1=k‘i—|—k’—1=k2—1zz (mod n)

and
JThk—1=kj+k—1=k(n—1)+k—1=n—1(modn).
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Note thatk < 3-8 < — 1.

ThusT 1 or 73, ,—1 Will map ¢ andj into the check set.
Case31<i<k-—2.If jissuchthai < j < k—1thenr ;_; will map both
i andjintothe checksef sincek <i+k—-1<j+k—-1<2k—2=n-1.

Suppose that < j < n — 1. Leti = 2r + 2 for some0 < r < % if 7is
even and = 2r + 1 forsomeld < r < % otherwise, and let = k + 2s + 1 for
some0 < s < 553 if jis even ang = k+2s for some0 < s < £33 otherwise.
The following show thaty, 51, Th, k=1, Ty, k-1, OF Tk will map bothi andj into
the check sef:

e 7 andj are even. Then
iTep—1=ki+k—1=k(2r+2)+k—1=k+r (modn)
and

-1
JThk—1=kj+k—1=k(k+2s+1)+k—1= 3k

+s (mod n).

Since< r < 552 and0 < £33, it follows thatk < k +r < k + 555 =

3k=5 — 9k —2<p—1land3k=l < 3k=1 4 g3kl | k3 0y g
2 — 2 — 2 — 2 2
e jiseven and is odd. Then

3k—1 3k—1 _3k+1
=k(2r+2)+ 5— = 2+

iT), a1 = ki + +7 (modn)
T2

and

k-1 k-1
3 — k(k +25) 4+ °

ka,% =kj+ = k + s (modn).

2 2

Since0 < r < 55 and0 < s < 533, it follows thatk < 3EEL <
—3k;1 +7r < —Sk;1+’f2;5 =n—1landk < k+s< k—i—% = —%2_3 <n-—1.

e jis odd andj is even. Then

-1 -1 -1
iTky%:ki—i—kT:k(Zr—i—l)—l—kTE 3k2 +r (mod n)

and
kE—1 k-1
jfk’kgl :kj+—:k(k+25+1)+Tzk+s(modn).

Since0 < r < %2 and0 < s < £33 it follows thatk < 31 <
Bhol g <8kl k8 Jandk < k+s < 3L
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e 7 andj are odd. Then
itk = ki =k(2r +1) = (2k)r + k = k +r (modn)

and e
e = kj = k(k + 2s) == ——

+s (mod n).

2
k=3 _ 3 1 3k—1 3k—1 3k—1 k=3
k’kJFT =25 Ssn-land= < 5= 4 s < S+ 550
2% —2=n—1.

Since0 < r < 52 and0 < s < 533, it follows thatk < k + r <
k;_ f—

Thus the given set is 2PD-set for this value ok. This completes the proof of
the theoremll

Corollary 2 Let P(n) be the Paley graph of prime order wheren = 1 (mod8),
andC = [n, 71], its code oveif, wherep is a prime that divides'*. If the
information set is given as ifit), wherek = 21, thenC has a2-PD-set of size
6.

Corollary 3 LetP(n) be the Paley graph of prime order wheren = 1 (mod8),
andC* = [n, 1], the dual of its cod€” overF, wherep is a prime that divides
221, If the information set foC* is given as in(4), wherek = 241, thenC+
has a2-PD-set of sizd0.

Note: In [10] 3-PD-sets for these codes are found, using similar methods. The
proofs are much longer and we do not include them here. The 3-PD-sets of the
codes of the graphs are of size for n = 1 (mod12) and6n otherwise, where

the length of the code is the prime

5 Computations

In the following tables we compare the lower bound of the size of a PD-set of
Result 3 for full error correction with the order of the automorphism grGugpf
the binary code” of the Paley grapt®(n) of ordern, wheren = 1 (mod 8).
Forn prime the cod&”’ has minimum distancé satisfying the conditiona >
v/n. The full error-correction capability of C must satisfyt > ¢, = {‘/’72’1]
The lower bound; of the size of a PD-set fa¥’ is thus greater than

R

where the redundaney= n — dim(C). Hence we hav% > 1g7- The ratio of

s0 t0 |G| is shown in Table 1. Similar results hold for the daat of the codeC.
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Forn = ¢2, wheregq is a prime power, the minimum distance @fis ¢ + 1
(see [14]) and we used this to compute the error-correcting capabdity’ and

the lower bound; of the size of a PD-set in Table 2.

These results indicate that farlarge the required lower bound of the size of
a PD-set for full error correction for the codes Bfn) is greater than the order
of the automorphism grou@’. Consequently, a PD-set for full error correction
cannot exist for these codes.

n code parameter to r s0 ﬁ
17 17, 8, 6] 2 9 4 0.02941176
41 41, 20, 10] 4 21 28 0.03414634
73 73,36, 14] 6 37 123 0.04680365
89 89, 44, 18] 8 45 531 0.13559755
97 97, 48, 16] 7 49 250 0.05369416
113 113, 56, 16] 7 57 250 0.03950695
137 137, 68, 22] 10 69 2220 0.2382997
193 193,96, > 13] 5 97 124 0.00669257
233 233, ,> 15 7 117 251 0.00928667
241 241, > 15 7 121 251 0.00867911
257 257, > 16 7 129 252 0.00766051
281 281, , > 16 7 141 252 0.00640569
313 313, > 17 8 157 507 0.01038339
337 337, , > 18 8 169 507 0.00895507
353 353, , > 18 8 177 507 0.00816057
401 401, , > 20 9 201 1018 0.01269327
409 409, > 20 9 205 1018 0.01220097
433 433, , > 20 9 217 1018 0.01088444
449 449, , > 21 10 225 2052 0.02040248
457 457, , > 21 10 229 2052 0.01969365
521 521, > 22 10 261 2041 0.01506718
569 569 , > 23 11 285 4113 0.02545236
577 577, > 24 11 289 4113 0.02475087
593 593, > 24 11 297 4114 0.02343786
601 601, , > 24 11 301 4114 0.02281753
617 617, , > 24 11 309 4114 0.02164853
641 641 , > 25 12 321 8276 0.04034711
673 673 , > 25 12 337 8276 0.03659874
761 761 , > 27 13 381 16739 0.05788436
769 769, > 27 13 385 16611 0.05625203
809 809, , > 28 13 405 16596 0.05077776
857 857,428, > 29 14 429 33649 0.09173764
881 881, 440, > 29 14 441 33586 0.08664225
929 929, 464, > 30 14 465 33305 0.07726374
937 937, 468, > 30 14 469 33305 0.07594934
953 953,476, > 30 14 477 33306 0.07342139
977 977,488, > 31 15 489 67587 0.14175839
1009 1009, 504, > 31 15 505 67578 0.13288735
1033 1033, 516, > 32 15 517 67068 0.12582453
1049 1049, 524, > 32 15 525 66817 0.12155706
1097 1097, 548, > 33 16 549 135685 0.2257068
1129 1129, 564, > 33 16 565 135660 0.21304864
1153 1153,576, > 33 16 577 134580 0.20264166
1193 1193, 596, > 34 16 597 134508 0.18917398
1201 1201, 600, > 34 16 601 134477 0.1866181
1217 1217, 608, > 34 16 609 134194 0.18135893
1249 1249, 624, > 35 17 625 272267 0.34933973
1289 1289, 644, > 35 17 645 270027 0.32528827
1297 1297, 648, > 36 17 649 270028 0.32128749
1321 1321, 660, > 36 17 661 269908 0.30957723
1361 1361, 680, > 36 17 681 269842 0.29156978
1409 1409, 704, > 37 18 705 542012 0.54641832
1433 1433, 716, > 37 18 717 541946 0.52819806
1481 1481, 740, > 38 18 729 541491 0.49408818
1489 1489, 744, > 38 18 745 541365 0.48867772
1553 1553, 776, > 39 19 T 1088771 0.90344843
1601 1601, 800, > 40 19 801 1087038 0.84871799
1609 1609, 804, > 40 19 805 1087013 0.84027733
1657 1657, 828, > 40 19 829 1086381 0.79182519
1697 1697, 848, > 41 20 849 2185245 1.5185

Table 1: Codes of Paley graphs of prime order
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n code parameter g

T s

¢ Ie]]

9 9,4,4] 1 5 2 0.02777778
25 25,12, 6] 2 13 4 0.00666667
49 49, 24, 8] 3 25 12 0.00510204
81 81, 40, 10] 4 41 28 0.00216049
121 121, 60, 12] 5 61 60 0.00413223
169 169, 84, 14] 6 85 124 0.00436743
289 289, 144, 18] 8 145 5078 0.00609141
361 361, 180, 20] 9 181 1018 0.00783318
529 529, 264, 24] 11 265 4113 0.01472547
625 625,312, 26] 12 313 8339 0.01069103
729 729, 364, 28] 13 365 16738 0.01051292
841 841, 420, 30] 14 421 33660 0.04764736
961 961, 480, 32] 15 481 67602 0.07327653
1369 1369, 684, 38] 18 685 546989 0.29207141
1681 1681, 840, 42] 20 841 2186212 0.77413246

1849 1849, 924, 44] 21 925 4384853 1.2833

Table 2: Codes of Paley graphs of orgér

References

[1]

E. F. Assmus, Jr. and J. D. KeResigns and their Code€ambridge: Cam-
bridge University Press, 1992. Cambridge Tracts in Mathematics, Vol. 103
(Second printing with corrections, 1993).

[2] A. E. Brouwer and C. J. van Eijl. On therank of the adjacency matrices of

[3]

strongly regular graphsl. Algebraic Combin.1:329-346, 1992.

D. M. Gordon. Minimal permutation sets for decoding the binary Golay
codes.IEEE Trans. Inform. Theor28:541-543, 1982.

[4] Willem H. Haemers, RemPeeters, and Jeroen M. van Rijckevorsel. Binary

codes of strongly regular graphBes. Codes Cryptogrl7:187—-209, 1999.

[5] W. Cary Huffman. Codes and groups. In V. S. Pless and W. C. Huffman, ed-

itors,Handbook of Coding Theorpages 1345-1440. Amsterdam: Elsevier,
1998. Volume 2, Part 2, Chapter 17.

[6] J.D.Key, T. P. McDonough, and V. C. Mavron. Partial permutation decoding

of codes from finite plane€uropean J. CombinTo appear.

[7] J. D. Key, J. Moori, and B. G. Rodrigues. Permutation decoding of binary

codes from graphs on tripleérs Combin.To appear.

[8] J. D. Key, J. Moori, and B. G. Rodrigues. Permutation decoding for binary

[9]

codes from triangular graph€uropean J. Combin25:113-123, 2004.

J. D. Key and P. Seneviratne. Permutation decoding of binary codes from
lattice graphsDiscrete Math, To appear.

[10] J. Limbupasiriporn. Ph.D. thesis, Clemson University, 2004.



REFERENCES 13

[11] F. J. MacWilliams. Permutation decoding of systematic co@edl System
Tech. J, 43:485-505, 1964.

[12] F. J. MacWilliams and N. J. A. SloaneThe Theory of Error-Correcting
Codes Amsterdam: North-Holland, 1983.

[13] J. Scldnheim. On coveringsPacific J. Math, 14:1405-1411, 1964.

[14] Harold N. Ward. Quadratic residue codes and divisibility. In V. S. Pless
and W. C. Huffman, editord;landbook of Coding Theorpages 827-870.
Amsterdam: Elsevier, 1998. Volume 1, Part 1, Chapter 9.



