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Abstract

We examine codes from the Paley graphs for the purpose of permutation
decoding and observe that after a certain length, PD-sets to correct errors up
to the code’s error-capability will not exist. In this paper we construct small
sets of permutations for correcting two errors by permutation decoding for
the case where the codes have prime length.

1 Introduction

An algorithm for decoding codes that have a large automorphism group was in-
troduced by MacWilliams [11], where it was applied mostly to classes of cyclic
codes, and the Golay codes. It involves choosing appropriate information sets
for the code and finding a set of automorphisms (called a PD-set) that satisfies
particular conditions.

Appropriate information sets and PD-sets for infinite classes of binary codes
defined by some regular graphs (triangular graphs, lattice graphs and graphs from
triples) with a symmetric group as an automorphism group were found in [8, 9,
7]. In [6] the p-ary codes from desarguesian planes were examined and it was
observed that for planes of sufficiently large order no PD-sets could exist. For this
a lower bound on the size of a PD-set was used: see Section 2. In that paper the
notion of ans-PD-set was introduced, to corrects errors, wheres is not necessarily
the full error-correction capability of the code. Small2-PD-sets were found for
the codes from desarguesian projective and affine planes of prime order.

∗This work was supported by the DoD Multidisciplinary University Research Initiative (MURI)
program administered by the Office of Naval Research under Grant N00014-00-1-0565, and NSF
grant #9730992.
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Here (and in [10]) we look at the similar problem for the codes from Paley
graphs and we prove the following, which applies to these codes:

Theorem 1 Let C = [n, k, d]q be a cyclic code of prime lengthn over the field
Fq of orderq, wheren ≡ 1 (mod8), (n, q) = 1 andd ≥ 5. Label the coordinate
positions0, 1, . . . , n − 1 and suppose that0, 1, . . . , k − 1 form the information
symbols. Letτa,b : i 7→ ai + b for a, b ∈ Fn anda a nonzero-square and suppose
that τa,b ∈ Aut(C) for all sucha, b ∈ Fn. Then

(1) if k = n−1
2 the set

{τ1,b | b ∈ {0, k}} ∪ {τk,b | b ∈ {k, 2k,
3k

2
,
k

2
− 1}}

is a2-PD-set of size6 for C;

(2) if k = n+1
2 the set

{τ1,b | b ∈ {0, 1, k, k−1, n−1}}∪{τk,b | b ∈ {0, k, k−1,
k − 1

2
,
3k − 1

2
}}

is a2-PD-set of size10 for C.

Corollaries 2, 3 in Section 4 then state this result explicitly for the codes from
Paley graphs when the length is prime. Note that a similar result holds for 3-PD-
sets, although in that case the size of the 3-PD-set depends on the length of the
code; this can be found in [10].

The organization of the paper is as follows: in Section 2 we give the general
background; in Section 3 we define the Paley graphs and their codes, giving some
of the well-known properties that we will be needing; in Section 4 we prove the
theorem; in Section 5 we give tables to show that PD-sets to decode all errors do
not exist after a certain length.

2 Background and terminology

An incidence structureD = (P,B, I), with point setP, block setB and incidence
I is at-(v, k, λ) design, if|P| = v, every blockB ∈ B is incident with precisely
k points, and everyt distinct points are together incident with preciselyλ blocks.
ThecodeCF of the designD over the finite fieldF is the space spanned by the
incidence vectors of the blocks overF .

All the codes here arelinear codes, i.e. subspaces of the ambient vector space.
If a codeC over a field of orderq is of lengthn, dimensionk, and minimum
weightd, then we write[n, k, d]q to show this information. Agenerator matrix
for the code is ak × n matrix made up of a basis forC. Thedual or orthogonal
codeC⊥ is the orthogonal under the standard inner product(, ), i.e.C⊥ = {v ∈
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Fn|(v, c) = 0 for all c ∈ C}. A check (or parity-check) matrix for C is a
generator matrixH for C⊥. If c is a codeword then thesupport of c is the set
of non-zero coordinate positions ofc. The all-one vector will be denoted by,
and is the vector with all entries equal to 1. Two linear codes of the same length
and over the same field areisomorphic if they can be obtained from one another
by permuting the coordinate positions. Anautomorphism of a codeC is an
isomorphism fromC to C. The automorphism group will be denoted by Aut(C).
A code of lengthn is cyclic if Aut(C) contains a cycle of lengthn.

Any code is isomorphic to a code with generator matrix in so-calledstandard
form , i.e. the form[Ik |A]; a check matrix then is given by[−AT | In−k]. The
first k coordinates are theinformation symbols and the lastn−k coordinates are
thecheck symbols.

The graphs,Γ = (V,E) with vertex setV and edge setE, discussed here are
undirected with no loops. A graph isregular if all the vertices have the same
valency. Theadjacency matrix A of a graph of ordern is ann × n matrix with
entriesaij such thataij = 1 if vertices vi and vj are adjacent, andaij = 0
otherwise. Thep-rank of the matrixA, denoted byrankp(A), is the dimension
of the row space ofA over the finite field ofp elements. Astrongly regular
graph Γ of type(n, k, λ, µ) is a regular graph of ordern with valencyk which is
such that any two adjacent vertices are together adjacent toλ vertices and any two
non-adjacent vertices are together adjacent toµ vertices. The complement of the
graphΓ is also a strongly regular of type(n, n−k−1, n−2k+µ−2, n−2k+λ).
If A is the adjacency matrix of the graphΓ, thenA has three distinct eigenvalues;
one of which is the valencyk of A with the corresponding eigenvector the all-one
vector, and the other two eigenvalues ofA, sayr ands, wherer > s, satisfy the
equation

x2 + (µ− λ)x + (µ− k) = 0. (1)

It can be shown, see [4], that the eigenvaluesr ands of A are integers, unless they
have the same multiplicity. Ifr ands have the same multiplicity then the graph
Γ is of type(n, n−1

2 , n−1
4 − 1, n−1

4 ) and its complement has the same type asΓ.
Moreover, thep-rank ofA can be computed as follows: see [2] and [4].

Result 1 If A is the adjacency matrix of a strongly regular graph of type
(n, k, λ, µ) and the eigenvalues ofA that satisfy the equation(1) have the same
multiplicity then

rankp(A) =

 n if p - kµ,
n− 1 if p|k butp - µ,
n−1

2 if p|µ.

Permutation decodingwas first developed by MacWilliams [11]. It involves
finding a set of automorphisms of a code such that the set satisfies certain con-
ditions that allow it to be used for decoding; such a set is called a PD-set. The
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method is described fully in MacWilliams and Sloane [12, Chapter 15] and Huff-
man [5, Section 8]. In [6] the definition of PD-sets was extended to that ofs-PD-
sets fors-error-correction:

Definition 1 If C is a t-error-correcting code with information setI and check
setC, then aPD-set for C is a setS of automorphisms ofC which is such that
everyt-set of coordinate positions is moved by at least one member ofS into the
check positionsC.

For s ≤ t an s-PD-set is a setS of automorphisms ofC which is such that
everys-set of coordinate positions is moved by at least one member ofS into C.

That a PD-set will fully use the error-correction potential of the code follows
easily and is proved in Huffman [5, Theorem 8.1]. That ans-PD-set will correct
s errors also follows, and we restate this result in order to use ours-PD-sets for
s-error-correction, wheres ≤ t:

Result 2 Let C be an[n, k, d]q t-error-correcting code. SupposeH is a check
matrix forC in standard form, i.e. such thatIn−k is in the redundancy positions.
Let y = c + e be a vector, wherec ∈ C and e has weights ≤ t. Then the
information symbols iny are correct if and only if the weight of the syndrome
HyT of y is≤ s.

The algorithm for permutation decoding is as follows: we have at-error-
correcting[n, k, d]q codeC with check matrixH in standard form. Thus the
generator matrixG = [Ik|A] andH = [AT |In−k], for someA, and the firstk co-
ordinate positions correspond to the information symbols. Any vectorv of length
k is encoded asvG. Supposex is sent andy is received and at mosts errors oc-
cur, wheres ≤ t. LetS = {g1, . . . , gm} be ans-PD-set. Compute the syndromes
H(ygi)T for i = 1, . . . ,m until ani is found such that the weight of this vector is
s or less. Compute the codewordc that has the same information symbols asygi

and decodey ascg−1
i .

Such sets might not exist at all, and the property of having a PD-set might not
be invariant under isomorphism of codes, i.e. it depends on the choice ofI and
C. Furthermore, there is a bound on the minimum size that the setS may have,
due to Gordon [3], from a formula due to Schönheim [13], and quoted and proved
in [5]:

Result 3 If S is a PD-set for at-error-correcting[n, k, d]q codeC, andr = n−k,
then

|S| ≥
⌈

n

r

⌈
n− 1
r − 1

⌈
. . .

⌈
n− t + 1
r − t + 1

⌉
. . .

⌉⌉⌉
.

This result can be adapted tos-PD-sets fors ≤ t by replacingt bys in the formula.
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3 Paley graphs

Let n be a prime power withn ≡ 1 (mod 4). The Paley graph, denoted by
P (n), has the finite fieldFn of ordern as vertex set and two verticesx andy are
adjacent if and only ifx − y is a non-zero square inFn. Sincen ≡ 1 (mod 4),
−1 is a square inFn. The condition that−1 is a square inFn is required to ensure
thatxy is an edge if and only ifyx is. ThusP (n) is well-defined. The Paley graph
is a strongly regular graph of type(n, n−1

2 , n−1
4 − 1, n−1

4 ) and is isomorphic to
its complement.

The Paley graphP (n) can be viewed as a1-(n, n−1
2 , n−1

2 ) designD = (P,B)
with point setP = Fn and block setB = {Bx | x ∈ Fn}, where

Bx = {y ∈ Fn | y − x is a non-zero square inFn}

for all x ∈ Fn. An incidence matrix forD with blocksBx in the same ordering
as the pointsx, is an adjacency matrixA of P (n). The codeC of the Paley
graphP (n) over Fp is the subspace ofFn

p spanned by the rows ofA. Thus the
dimension ofC is thep-rank ofA and the minimum distanced of C is at most
n−1

2 , the valency ofP (n). Result 1 implies that ifp divides n−1
2 but does not

divide n−1
4 thenC is a trivial code, so from now on we suppose thatp divides

n−1
4 .

Note that of course much is known about the codes here, since they are the
well-known quadratic residue codes and can be read about in many places, and
for example in [12] or [14]. Here we will summarize those properties we require
for the permutation decoding, but more detail can also be found in [10]. The dual
codes are the codes of the non-residues together with: see also [1, Chapter 2].

In case ofp = 2, we first note that the parameterµ = n−1
4 is odd if n ≡ 5

(mod 8) and is even ifn ≡ 1 (mod 8). Thus the dimension of the binary codeC
of P (n) is n− 1 if n ≡ 5 (mod 8) and isn−1

2 if n ≡ 1 (mod 8).
Let n = qe for some primeq. For anyσ ∈ Aut(Fn) anda, b ∈ Fn with a a

non-zero square, we define the mapτa,b,σ onFn by

τa,b,σ : x 7→ axσ + b, (2)

for x ∈ Fn.

Result 4 If C is thep-ary code of the Paley graph of ordern, n ≡ 1 (mod 4),
wherep dividesn−1

4 and wheren = qe for some primeq, then the set

G = {τa,b,σ | σ ∈ Aut(Fn), a, b ∈ Fn, a a non-zero square} (3)

is an automorphism group ofC of order 1
2en(n− 1), whereτa,b,σ is defined as in

(2).

This is well-known and can be found in any text on quadratic residue codes.

Note: The groupG in Result 4 is transitive but not2-transitive.
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4 2-PD-sets for Paley graphs of prime order

Now we take the Paley graphsP (n) of prime ordern, wheren ≡ 1 (mod 8),
and letC be thep-ary code ofP (n), where the primep divides n−1

4 . ThusC
is cyclic and a[n, n−1

2 ]p code by Result 1. Letk = n−1
2 . Since the codes are

quadratic residue codes, the minimum weightd of the codeC satisfies the square-
root bound, i.e.d2 ≥ n, so that

√
n ≤ d ≤ k: see [1, Chapter 2], for example.

Note also that sincen ≡ 1 (mod 8), 2 is a square inFn.
We order the coordinate positions of the cyclic codeC as0, 1, 2, · · · , n − 1,

and take the set
I = {0, 1, . . . , k − 1} (4)

for the information set and the set

C = {k, k + 1, . . . , n− 1} (5)

for the check set ofC.
Sincen is a prime the only automorphism ofFn is the identity, so we write

τa,b : x 7→ ax + b, (6)

wherea, b ∈ Fn with a a nonzero-square, and we denoteτa,0 by τa for all non-
zero squaresa ∈ Fn.

Also note that since2 andn− 1 are squares inFn, it follows that if k = n−1
2

then2k = n − 1 which implies thatk is a square inFn. Also, if k = n+1
2 then

2k = n + 1 ≡ 1 (mod n) which implies thatk is a square inFn.
We first note that a2-PD-set will exist for the codeC = [n, n−1

2 ]p of P (n)
since n−1

2 < n
2 , and by [11] the cyclic groupT of Sn, generated by the cyclic

permutationx 7→ x + 1, will form a 2-PD-set forC.
For the dual codeC⊥ = [n, n+1

2 ]p, we have the following result, see [6], to
ensure the existence of a2-PD-set forC⊥.

Result 5 Let C = [n, k, d]q be a cyclic code of odd lengthn over the fieldFq of
order q, wherek = n+1

2 , (n, q) = 1 andd ≥ 5. Label the coordinate positions
0, 1, . . . , n−1 and suppose that0, 1, . . . , k−1 form the information symbols. Let
A = Aut(C) ≤ Sn, and letτ : i 7→ i + 1 andµ : i 7→ qi, working modulon. If
T =< τ > thenS = T ∪ µT will form a 2-PD-set of2n elements forC, unless
q ≡ ±1 (mod n).

Note: The lower bounds of the size of2-PD-sets for the code and its dual of the
Paley graphP (n) are4 and7, respectively, as follows immediately from Result 3.
The sizes of2-PD-sets that we obtain in Theorem 1 are close to these bounds.

Proof of Theorem 1:
We need to show in(1) and(2) that for every pair of coordinate positionsi

andj there is an element inS that maps the two positions into the check positions
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C as given in (5). It is clear that ifi andj are in the check positions, i.e.k ≤ i <
j ≤ n− 1, then the identity elementτ1 will keep these inC.

To prove(1), takek = n−1
2 . If i andj are such that0 ≤ i < j ≤ k − 1 then

the elementτ1,k will map i andj intoC sincek ≤ i+k < j+k ≤ 2k−1 = n−2.
We now consider four distinct cases fori andj, where0 ≤ i ≤ k − 1 and

k ≤ j ≤ n − 1. Note first thatk is even sincen ≡ 1 (mod 4). The elements
τk,2k, τk, 3k

2
, τk, k

2−1, or τk,k will map bothi andj into the check setC depending
on whetheri andj are even or not. Throughout the proof of(i), let i = 2r if i is
even andi = 2r + 1 otherwise for some0 ≤ r ≤ k−2

2 , and letj = 2s for some
k
2 ≤ s ≤ k, if j is even andj = 2s + 1 for somek

2 ≤ s ≤ k − 1, otherwise.

Case 1: i andj are even. Then

iτk,2k = ki + 2k ≡ n− r − 1 (modn)

and
jτk,2k = kj + 2k ≡ n− s− 1 (modn).

Since 0 ≤ r ≤ k−2
2 and k

2 ≤ s ≤ k, it follows thatk ≤ n − k
2 = 3k+2

2 ≤
n− r − 1 ≤ n− 1 andn− k − 1 = k ≤ n− s− 1 ≤ n− k

2 − 1 = 3k
2 ≤ n− 1,

which shows that these automorphisms will map the pair into the check positions.

Case 2: i is even andj is odd. Then

iτk, 3k
2

= ki +
3k

2
= k(2r) +

3k

2
≡ 3k

2
− r (mod n)

and

jτk, 3k
2

= kj +
3k

2
= k(2s + 1) +

3k

2
≡ 5k

2
− s (mod n).

Since 0 ≤ r ≤ k−2
2 and k

2 ≤ s ≤ k−1, it follows that 3k
2 −

k−2
2 = k+1 ≤ 3k

2 −
r ≤ 3k

2 ≤ n−1 andk ≤ 5k
2 −(k−1) = 3k+2

2 ≤ 5k
2 −s ≤ 5k

2 −
k
2 = 2k = n−1,

which completes this case.

Case 3: i is odd andj is even. Then

iτk, k
2−1 = ki +

k

2
− 1 = k(2r + 1) +

k

2
− 1 ≡ 3k − 2

2
− r (mod n)

and

jτk, k
2−1 = kj +

k

2
− 1 = k(2s) +

k

2
− 1 ≡ 5k

2
− s (mod n).

Since 0 ≤ r ≤ k−2
2 and k

2 ≤ s ≤ k, it follows that 3k−2
2 − k−2

2 = k ≤
3k−2

2 −r ≤ 3k−2
2 ≤ n−1 andk ≤ 5k

2 −k = 3k
2 ≤ 5k

2 −s ≤ 5k
2 −

k
2 = 2k = n−1,

completing this case.
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Case 4: i andj are odd. Then

iτk,k = ki + k = k(2r + 1) + k ≡ 2k − r (modn)

and
jτk,k = kj + k = k(2s + 1) + k ≡ 2k − s (modn).

Since 0 ≤ r ≤ k−2
2 and k

2 ≤ s ≤ k−1, it follows thatk ≤ 2k− k−2
2 = 3k+2

2 ≤
2k−r ≤ 2k = n−1 and2k−(k−1) = k+1 ≤ 2k−s ≤ 2k− k

2 = 3k
2 ≤ n−1.

This completes the proof fork = n−1
2 , i.e. the given set is a2-PD-set for this value

of k.

To prove(2), we takek = n+1
2 and consider three distinct cases ofi, where

0 ≤ i ≤ k−1, and for each case we consider the various possibilities forj, where
i < j ≤ n. Note thatk is odd.

Case 1: i = 0. If 1 ≤ j ≤ k − 2 then iτ1,k = k and k + 1 ≤ j + k = jτ1,k ≤
2k − 2 = n− 1.

If j = k − 1 then iτk,k = k and

jτk,k = kj + k = k2 ≡ 3k − 1
2

(mod n),

andk ≤ 3k−1
2 ≤ n− 1.

If j = k then iτk, 3k−1
2

= 3k−1
2 ≥ k and

jτk, 3k−1
2

= kj +
3k − 1

2
= k2 +

3k − 1
2

≡ k (modn).

If k + 1 ≤ j ≤ n− 1, we writej = k + s for some1 ≤ s ≤ k − 2, so

jτ1,n−1 = j + n− 1 = n + (k + s− 1) ≡ k + s− 1 (modn)

andk ≤ k + s− 1 ≤ 2k − 3 = n− 2.
Thus the elementsτ1,k, τk,k, τk, 3k−2

2
or τ1,n−1 will map bothi andj into the

check setC.

Case 2: i = k−1. If k ≤ j ≤ n−2, we writej = k+s for some0 ≤ s ≤ k−3,
so

iτ1,1 = i + 1 = k and jτ1,1 = j + 1 = k + s + 1

where k + 1 ≤ k + s + 1 ≤ n− 1.
If j = n− 1 then

iτk,k−1 = ki + k − 1 = k2 − 1 =≡ 3k − 3
2

(mod n)

and
jτk,k−1 = kj + k − 1 = k(n− 1) + k − 1 ≡ n− 1 (modn).
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Note thatk ≤ 3k−3
2 ≤ n− 1.

Thusτ1,1 or τk,k−1 will map i andj into the check setC.

Case 3: 1 ≤ i ≤ k− 2. If j is such thati < j ≤ k− 1 thenτ1,k−1 will map both
i andj into the check setC sincek ≤ i + k − 1 < j + k − 1 ≤ 2k − 2 = n− 1.

Suppose thatk ≤ j ≤ n − 1. Let i = 2r + 2 for some0 ≤ r ≤ k−5
2 , if i is

even andi = 2r +1 for some0 ≤ r ≤ k−3
2 , otherwise, and letj = k +2s+1 for

some0 ≤ s ≤ k−3
2 , if j is even andj = k+2s for some0 ≤ s ≤ k−3

2 , otherwise.
The following show thatτk,k−1, τk, 3k−1

2
, τk, k−1

2
, or τk will map bothi andj into

the check setC:

• i andj are even. Then

iτk,k−1 = ki + k − 1 = k(2r + 2) + k − 1 ≡ k + r (modn)

and

jτk,k−1 = kj + k− 1 = k(k + 2s + 1) + k− 1 ≡ 3k − 1
2

+ s (mod n).

Since≤ r ≤ k−5
2 and0 ≤ k−3

2 , it follows thatk ≤ k + r ≤ k + k−5
2 =

3k−5
2 = 2k − 2 ≤ n− 1 and 3k−1

2 ≤ 3k−1
2 + s ≤ 3k−1

2 + k−3
2 = n− 1.

• i is even andj is odd. Then

iτk, 3k−1
2

= ki +
3k − 1

2
= k(2r + 2) +

3k − 1
2

≡ 3k + 1
2

+ r (mod n)

and

jτk, 3k−1
2

= kj +
3k − 1

2
= k(k + 2s) +

3k − 1
2

≡ k + s (modn).

Since0 ≤ r ≤ k−5
2 and 0 ≤ s ≤ k−3

2 , it follows that k ≤ 3k+1
2 ≤

3k+1
2 +r ≤ 3k+1

2 + k−5
2 = n−1 andk ≤ k+s ≤ k+ k−3

2 = 3k−3
2 ≤ n−1.

• i is odd andj is even. Then

iτk, k−1
2

= ki +
k − 1

2
= k(2r + 1) +

k − 1
2

≡ 3k − 1
2

+ r (mod n)

and

jτk, k−1
2

= kj +
k − 1

2
= k(k + 2s + 1) +

k − 1
2

≡ k + s (modn).

Since0 ≤ r ≤ k−3
2 and 0 ≤ s ≤ k−3

2 , it follows that k ≤ 3k−1
2 ≤

3k−1
2 + r ≤ 3k−1

2 + k−3
2 = n− 1 andk ≤ k + s ≤ 3k−1

2 .
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• i andj are odd. Then

iτk = ki = k(2r + 1) = (2k)r + k ≡ k + r (modn)

and

jτk = kj = k(k + 2s) =≡ 3k − 1
2

+ s (mod n).

Since0 ≤ r ≤ k−3
2 and0 ≤ s ≤ k−3

2 , it follows that k ≤ k + r ≤
k + k−3

2 = 3k−1
2 ≤ n − 1 and 3k−1

2 ≤ 3k−1
2 + s ≤ 3k−1

2 + k−3
2 =

2k − 2 = n− 1.

Thus the given set is a2-PD-set for this value ofk. This completes the proof of
the theorem.�

Corollary 2 LetP (n) be the Paley graph of prime ordern, wheren ≡ 1 (mod8),
andC = [n, n−1

2 ]p its code overFp wherep is a prime that dividesn−1
4 . If the

information set is given as in(4), wherek = n−1
2 , thenC has a2-PD-set of size

6.

Corollary 3 LetP (n) be the Paley graph of prime ordern, wheren ≡ 1 (mod8),
andC⊥ = [n, n+1

2 ]p the dual of its codeC overFp wherep is a prime that divides
n−1

4 . If the information set forC⊥ is given as in(4), wherek = n+1
2 , thenC⊥

has a2-PD-set of size10.

Note: In [10] 3-PD-sets for these codes are found, using similar methods. The
proofs are much longer and we do not include them here. The 3-PD-sets of the
codes of the graphs are of size4n for n ≡ 1 (mod12) and6n otherwise, where
the length of the code is the primen.

5 Computations

In the following tables we compare the lower bound of the size of a PD-set of
Result 3 for full error correction with the order of the automorphism groupG of
the binary codeC of the Paley graphP (n) of ordern, wheren ≡ 1 (mod 8).

Forn prime the codeC has minimum distanced satisfying the conditiond ≥
√

n. The full error-correction capabilityt of C must satisfyt ≥ t0 =
⌊√

n−1
2

⌋
.

The lower bounds of the size of a PD-set forC is thus greater than

s0 =
⌈

n

r

⌈
n− 1
r − 1

⌈
· · ·

⌈
n− t0 + 1
r − t0 + 1

⌉
· · ·

⌉⌉⌉
,

where the redundancyr = n − dim(C). Hence we haves
|G| ≥

s0
|G| . The ratio of

s0 to |G| is shown in Table 1. Similar results hold for the dualC⊥ of the codeC.
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For n = q2, whereq is a prime power, the minimum distance ofC is q + 1
(see [14]) and we used this to compute the error-correcting capabilityt of C and
the lower bounds of the size of a PD-set in Table 2.

These results indicate that forn large the required lower bound of the size of
a PD-set for full error correction for the codes ofP (n) is greater than the order
of the automorphism groupG. Consequently, a PD-set for full error correction
cannot exist for these codes.

n code parameter t0 r s0
s0
|G|

17 [17, 8, 6] 2 9 4 0.02941176
41 [41, 20, 10] 4 21 28 0.03414634
73 [73, 36, 14] 6 37 123 0.04680365
89 [89, 44, 18] 8 45 531 0.13559755
97 [97, 48, 16] 7 49 250 0.05369416

113 [113, 56, 16] 7 57 250 0.03950695
137 [137, 68, 22] 10 69 2220 0.2382997
193 [193, 96,≥ 13] 5 97 124 0.00669257
233 [233, 116,≥ 15] 7 117 251 0.00928667
241 [241, 120,≥ 15] 7 121 251 0.00867911
257 [257, 128,≥ 16] 7 129 252 0.00766051
281 [281, 140,≥ 16] 7 141 252 0.00640569
313 [313, 156,≥ 17] 8 157 507 0.01038339
337 [337, 168,≥ 18] 8 169 507 0.00895507
353 [353, 176,≥ 18] 8 177 507 0.00816057
401 [401, 200,≥ 20] 9 201 1018 0.01269327
409 [409, 204,≥ 20] 9 205 1018 0.01220097
433 [433, 216,≥ 20] 9 217 1018 0.01088444
449 [449, 224,≥ 21] 10 225 2052 0.02040248
457 [457, 228,≥ 21] 10 229 2052 0.01969365
521 [521, 260,≥ 22] 10 261 2041 0.01506718
569 [569, 284,≥ 23] 11 285 4113 0.02545236
577 [577, 288,≥ 24] 11 289 4113 0.02475087
593 [593, 296,≥ 24] 11 297 4114 0.02343786
601 [601, 300,≥ 24] 11 301 4114 0.02281753
617 [617, 308,≥ 24] 11 309 4114 0.02164853
641 [641, 320,≥ 25] 12 321 8276 0.04034711
673 [673, 336,≥ 25] 12 337 8276 0.03659874
761 [761, 380,≥ 27] 13 381 16739 0.05788436
769 [769, 384,≥ 27] 13 385 16611 0.05625203
809 [809, 404,≥ 28] 13 405 16596 0.05077776
857 [857, 428,≥ 29] 14 429 33649 0.09173764
881 [881, 440,≥ 29] 14 441 33586 0.08664225
929 [929, 464,≥ 30] 14 465 33305 0.07726374
937 [937, 468,≥ 30] 14 469 33305 0.07594934
953 [953, 476,≥ 30] 14 477 33306 0.07342139
977 [977, 488,≥ 31] 15 489 67587 0.14175839

1009 [1009, 504,≥ 31] 15 505 67578 0.13288735
1033 [1033, 516,≥ 32] 15 517 67068 0.12582453
1049 [1049, 524,≥ 32] 15 525 66817 0.12155706
1097 [1097, 548,≥ 33] 16 549 135685 0.2257068
1129 [1129, 564,≥ 33] 16 565 135660 0.21304864
1153 [1153, 576,≥ 33] 16 577 134580 0.20264166
1193 [1193, 596,≥ 34] 16 597 134508 0.18917398
1201 [1201, 600,≥ 34] 16 601 134477 0.1866181
1217 [1217, 608,≥ 34] 16 609 134194 0.18135893
1249 [1249, 624,≥ 35] 17 625 272267 0.34933973
1289 [1289, 644,≥ 35] 17 645 270027 0.32528827
1297 [1297, 648,≥ 36] 17 649 270028 0.32128749
1321 [1321, 660,≥ 36] 17 661 269908 0.30957723
1361 [1361, 680,≥ 36] 17 681 269842 0.29156978
1409 [1409, 704,≥ 37] 18 705 542012 0.54641832
1433 [1433, 716,≥ 37] 18 717 541946 0.52819806
1481 [1481, 740,≥ 38] 18 729 541491 0.49408818
1489 [1489, 744,≥ 38] 18 745 541365 0.48867772
1553 [1553, 776,≥ 39] 19 777 1088771 0.90344843
1601 [1601, 800,≥ 40] 19 801 1087038 0.84871799
1609 [1609, 804,≥ 40] 19 805 1087013 0.84027733
1657 [1657, 828,≥ 40] 19 829 1086381 0.79182519
1697 [1697, 848,≥ 41] 20 849 2185245 1.5185

Table 1: Codes of Paley graphs of prime ordern
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n code parameter t r s s
|G|

9 [9, 4, 4] 1 5 2 0.02777778
25 [25, 12, 6] 2 13 4 0.00666667
49 [49, 24, 8] 3 25 12 0.00510204
81 [81, 40, 10] 4 41 28 0.00216049

121 [121, 60, 12] 5 61 60 0.00413223
169 [169, 84, 14] 6 85 124 0.00436743
289 [289, 144, 18] 8 145 5078 0.00609141
361 [361, 180, 20] 9 181 1018 0.00783318
529 [529, 264, 24] 11 265 4113 0.01472547
625 [625, 312, 26] 12 313 8339 0.01069103
729 [729, 364, 28] 13 365 16738 0.01051292
841 [841, 420, 30] 14 421 33660 0.04764736
961 [961, 480, 32] 15 481 67602 0.07327653

1369 [1369, 684, 38] 18 685 546989 0.29207141
1681 [1681, 840, 42] 20 841 2186212 0.77413246
1849 [1849, 924, 44] 21 925 4384853 1.2833

Table 2: Codes of Paley graphs of orderq2
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