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1 Introduction

The reader familiar with “Designs and their Codes” will soon understand the
debt this chapter owes to that book — especially its Chapter 5. We have,
however, entirely reworked that material and, more importantly, added a
discussion of the group-algebra approach to the Reed-Muller and generalized
Reed-Muller codes. This enables us to include a straightforward new proof
of Berman’s theorem identifying the Reed-Muller codes with the radical
powers in the appropriate modular group algebra and to use our treatment
of the Mattson-Solomon polynomial to give a proof of the generalization
of Berman’s theorem to the p-ary case. We have also included Charpin’s
treatment [16] of the characterization of “affine-invariant” extended cyclic
codes due to Kasami, Lin and Peterson.

We have relied heavily on Charpin’s doctoral thesis [14, 16] for the new
material. The older material relies (as did Chapter 5 of our book) on the
treatment of the polynomial codes introduced by Kasami, Lin and Peterson
[29] given by Delsarte, Goethals and MacWilliams [18].

Our definition of the generalized Reed-Muller codes is the straightfor-
ward generalization of the boolean-function definition of the Reed-Muller
codes and, for us, the cyclicity of the punctured variants is simply a conse-
quence of the easily seen fact that their automorphism groups contain the
general linear groups.

We are, of course, principally interested in the geometric nature of certain
of these codes. Were one interested only in the binary case the development
would be very short and our treatment reflects that fact in that we first dis-
cuss the Reed-Muller codes giving complete proofs that differ substantially
from those given for the general case. In fact, we have here an instance in
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which the generalization to an arbitrary finite field seems far from trivial,
the biggest hurdle being the passage to fields that are not of prime order.

The peculiar nature of the definitions of the geometric codes in the
coding-theory literature was due to the interest — at the time of their in-
troduction — in majority-logic decoding of these codes; we therefore also
give a short discussion of decoding. On the other hand, we give the natu-
ral definitions of the geometric codes (as codes generated by the incidence
vectors of the geometric objects at hand) and, hence, our definitions are not
the ones found in many engineering texts.

We review the necessary geometry briefly before beginning our discussion
of the codes; our treatment is undoubtedly too brief to be useful to a reader
with no background whatsoever in finite geometry and such a reader may
wish to jump directly to Section 3 — which may even motivate a study of
the geometry involved. Much of the material will be understandable even
without a firm grip on the geometry and subsequent sections should be of
interest to professional coding theorists. We have, at least, tried to make
them so.

We assume a knowledge of coding theory and we believe the reader will
find in Chapter 1 the coding theory necessary for a study of this chapter.

We have not attempted to discuss open problems or to explore new
avenues of research. The reader interested in such matters may wish to
consult our book [2] or the articles cited in the bibliography.

2 Projective and affine geometries

Let F be a field and V a vector space over F . We denote by PG(V ) the
projective geometry of V . Its elements are the subspaces of V and its
structure is given by set-theoretic inclusion. Similarly, AG(V ) denotes the
affine geometry of V . Its elements are the cosets, x + U , of subspaces U
of V , where x is any vector in V , and again the structure is given by set-
theoretic inclusion. The “geometry” of these structures arises by viewing
inclusion as an incidence relation.

2.1 Projective geometry

If the vector space V has dimension n+ 1 over F , then PG(V ) has projec-
tive dimension n. We record this with the notation PGn(F ), realizing V
as Fn+1. In this case a “point” of the geometry is given in homogeneous co-
ordinates by (x0, x1, . . . , xn) where all xi are in F and are not all zero; each
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point has many such coordinate representations1, in fact q−1 when F is Fq,
since (x0, x1, . . . , xn) and (λx0, λx1, . . . , λxn) yield the same 1-dimensional
subspace of Fn+1 for any non-zero λ, the 1-dimensional subspaces being the
points — or objects of projective dimension 0. Similarly, the projective
dimension of any subspace is defined to be 1 less than the dimension of
the subspace (as a vector space over F ).

Thus the points of PG(V ) are the 1-dimensional subspaces of V , the
lines are the 2-dimensional subspaces of V , the planes the 3-dimensional
subspaces of V , and the hyperplanes the n-dimensional subspaces of V .
Neither {0} nor V play a significant role in projective geometry and they
are usually ignored. Frequently when working with projective geometry the
projective dimension is referred to simply as the dimension. The dimension
formula for subspaces of V holds for projective dimension as well, provided
it is written as follows:

dim(U) + dim(W ) = dim(U +W ) + dim(U ∩W ),

where U and W are arbitrary non-zero subspaces of V and U + W =
〈U ∪W 〉 = {u + w |u ∈ U,w ∈ W}. Note that we use 〈S〉 to denote the
subspace generated by the set S. The formula has the following important
consequence:

Suppose H is a hyperplane of PGn(F ). If U is a subspace of dimension
t > 0, then U ∩H has dimension t or t − 1, the former if and only if U is
contained in H.

If P and Q are distinct points of PG(V ), then P + Q is necessarily a
line of PG(V ), again by the above formula, and, in fact, it is the unique
line through P and Q. Thus every two distinct points lie on a unique line.
In projective dimension 2, i.e. in a projective plane, every two distinct lines
intersect in a unique point. We will, as here, use geometric terminology
whenever convenient.

If F = Fq and V is m-dimensional, one can see by counting bases that
the number of subspaces of V of dimension k, where 0 < k ≤ m, is

(qm − 1)(qm − q) . . . (qm − qk−1)
(qk − 1)(qk − q) . . . (qk − qk−1)

.

Similarly — or by using the above formula on a quotient space — if V
is of dimension m, U a subspace of dimension r, and k an integer with

1Except in the binary case; it is this uniqueness that makes the Reed-Muller codes so
much easier to analyze than the generalized Reed-Muller codes.
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0 ≤ r < k ≤ m, then the number of subspaces of V of dimension k that
contain U is

(qm − qr)(qm − qr+1) . . . (qm − qk−1)
(qk − qr)(qk − qr+1) . . . (qk − qk−1)

.

In particular, the number of points of PGn(Fq) is qn+1−1
q−1 = qn+qn−1+· · ·+1

and the number of lines in the pencil of lines containing a point is qn+1−q
q2−q

=
qn−1
q−1 = qn−1 + · · ·+ 1.

Definition 2.1 If V and W are finite-dimensional vector spaces, then
PG(V ) and PG(W ) are isomorphic if there is a bijection

ϕ : PG(V ) → PG(W )

such that, for U,U ′ ∈ PG(V ), U ⊆ U ′ if and only if Uϕ ⊆ U ′ϕ. If W = V ,
then such a map ϕ is called an automorphism or collineation of PG(V ).

Since the projective dimension of PG(V ) is equal to the length of the
longest chain, U1, U2, . . . , Uk, of elements of PG(V ) satisfying U1 ⊂ U2 ⊂
. . . ⊂ Uk, it follows that isomorphic geometries have the same projective
dimension. That is, V and W must be of the same dimension and, provided
they are vector spaces over the same field, they must be isomorphic as vector
spaces. Any invertible linear transformation from V to W will induce an
isomorphism of the geometries, but something slightly more general will
also, a so-called semilinear transformation:

Definition 2.2 Let F be a field and let V and W be vector spaces over F .
A semilinear transformation of V into W is given by a map

T : V →W

together with an associated automorphism, α(T ), of the field F . The map T
is additive, i.e. (v+u)T = vT+uT for all v,u ∈ V , and (av)T = aα(T )(vT )
for all a ∈ F and v ∈ V .

A semilinear transformation carries subspaces into subspaces, preserv-
ing inclusion, and thus induces an incidence-preserving map on the projec-
tive geometries. It is an isomorphism of the projective spaces whenever
T is an isomorphism of the additive structures, the inverse being given by
T−1, with the associated automorphism of F being α(T )−1. Notice that



2 PROJECTIVE AND AFFINE GEOMETRIES 6

the composition of semilinear transformations is again semilinear and, in
fact, α(ST ) = α(S)α(T ). It follows that when V = W the semilinear iso-
morphisms form a group and that the map sending T to α(T ) defines a
homomorphism into the Galois group of F (here the automorphism group
of F ). The kernel is the group of invertible linear transformations of V .

In terms of bases, given ordered bases v1,v2, . . . ,vm and w1,w2, . . . ,wn

of V and W , respectively, then if (vi)T =
∑n

j=1 aijwj , A = (aij) and α =
α(T ), then

T : (x1, x2, . . . , xm) 7→ (xα
1 , x

α
2 , . . . , x

α
m)A,

where, as usual, we have used the bases to identify V with Fm and W with
Fn. In matrix form, the composition of two semilinear transformations,
(α,A) and (β,B), is (αβ,AβB), where Aβ denotes the matrix (aβ

ij). Since
a matrix A together with an automorphism α clearly yield, by the above
formula, a semilinear transformation, the map sending T to α(T ), in the
case where V = W , is a homomorphism onto the Galois group of F .

Thus, for a given vector space V , the group of semilinear isomorphisms
of V contains GL(V ), the group of invertible linear transformations of V ,
as a normal subgroup, the quotient being the Galois group of F . The group
of semilinear isomorphisms is denoted by ΓL(V ) . Clearly every semilinear
isomorphism of V induces an isomorphism of PG(V ). The scalar trans-
formations (i.e. those that send v to av for some fixed a ∈ F ) induce the
identity isomorphism and they are the only semilinear isomorphisms that
do. The subgroup of scalar transformations is the centre of GL(V ) and a
normal subgroup of ΓL(V ); the quotient groups are denoted, respectively,
by PGL(V ) — the projective general linear group — and PΓL(V )
— the projective semilinear group. If V is n-dimensional and a basis
has been chosen, PGL(V ) becomes a matrix group modulo scalar matrices
and is denoted by PGLn(F ); similarly in this case we write PΓLn(F ) for
PΓL(V ). Each of these groups acts as a permutation group on the elements
of PG(V ), the action on the points of PG(V ) being doubly-transitive, which
means that given any two pairs of distinct points, (P,Q) and (P ′, Q′), there
is an automorphism in PGL(V ) which simultaneously carries P to P ′ and
Q to Q′. In the standard notation, PGLn(F ) acts on PGn−1(F ); similarly
for the semilinear group.

All the collineations of PG(V ) are induced by semilinear transforma-
tions; this is the content of the following classical fundamental theorem
of projective geometry:
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Theorem 2.3 Let V be a vector space of dimension at least 3. Then
PΓL(V ) is the full automorphism group of PG(V ).

There are well-established proofs of this theorem readily available: see
Artin [1, Chapter II], for example, or, for a slightly more modern account,
Hahn and O’Meara [24, Chapter 3]. Also note that the theorem starts with
planes; the projective line consists merely of points and the lack of any inci-
dences allows an arbitrary permutation to be admitted as an automorphism.

Amongst the automorphisms of PGn(Fq) there is always one of order v =
(qn+1−1)/(q−1) that permutes the points of the geometry in a single cycle
of this length, called a Singer cycle (after Singer [49]). This automorphism
is constructed as follows: view the finite field K = Fqn+1 as a vector space of
dimension n+1 over the field F = Fq and let ω be a primitive element of K,
that is, a generator of the cyclic group K× = K−{0}. Using the given field
structure, it is clear that multiplication by ω induces a linear transformation
on the vector space V = K. Since the field F has ωv as primitive element,
it is easy to see that this linear transformation induces an automorphism of
PG(V ) that acts as a cycle of length v on the v points of the geometry. In
fact, the 1-dimensional subspaces of V = K given by the non-zero vectors
1, ω, ω2, . . . , ωv−1 represent all the points of PGn(F ), where, of course, ωv

represents the same point as 1, etc.

2.2 Affine geometry

The affine geometry, AG(V ), where V is a vector space over a field F ,
consists of all cosets, x + U , of all subspaces U of V with incidence defined
through the natural inclusion relation. Here the dimension is the same as
that of the vector space—for obvious geometric reasons. The dimension of
a coset is that of the defining subspace U , and if the latter has dimension
r, we will also refer to a coset of U as an r-flat. Thus the points are
all the vectors, including 0, the lines are 1-dimensional cosets, or 1-flats,
the planes are the 2-dimensional cosets, or 2-flats, and so on, with the
hyperplanes the cosets of dimension n − 1 — where V is of dimension n
over F . We also write AGn(F ) for AG(V ), in analogy with the projective
case. The affine geometry of these cosets is defined by the inclusion relation
which specifies that, if M = x + U and N = y + W are cosets in AG(V ),
then M contains N if M ⊇ N , from which it follows that W is a subspace of
U . The affine geometry AG(M) is, by definition, the set of cosets of AG(V )
that are contained in M together with the induced incidence relation. This
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is quite clear when M is a subspace but if M = x +U with x /∈ U it follows
also that AG(M) is isomorphic to AG(U) since every element of AG(M)
can be written in the form x + U ′ for some subspace U ′ of U . As in the
projective case we will use standard geometric terminology — in particular
the notion of parallelism:

Definition 2.4 The cosets x+U and y+W in AG(V ) are parallel if U ⊆W
or W ⊆ U .

Cosets of the same subspace are thus parallel and cosets of the same
dimension are parallel if and only if they are cosets of the same subspace.
For a given subspace U of dimension r, its distinct cosets partition V into
parallel r-flats and parallelism is an equivalence relation on the set of r-flats
of V , the equivalence classes being called parallel classes. Hyperplanes, i.e.
(n−1)-flats, in AGn(F ) are parallel if and only if they are equal or intersect
in the empty set and in AGn(F2) a hyperplane and its complement make
up a parallel class. In AGn(Fq) there are q hyperplanes in a parallel class.
Here is one more important fact about flats that we will need to properly
explain Reed’s decoding algorithm for Reed-Muller codes:

If M is an r-flat and N an (n−r)-flat in AGn(F ), then either M ∩N is
a single point, in which case N meets all the r-flats parallel to M in a single
point, or else the intersection of N with an r-flat parallel to M is either a
flat of positive dimension or the empty set.

As in the projective case, both GL(V ) and ΓL(V ) act on the geometry,
but now we also have V itself acting via translation. The underlying action
of the affine general linear group, AGL(V ) , and the affine semilinear
group, AΓL(V ), is given as follow: for T ∈ ΓL(V ) and v ∈ V , the map
(T,v) is defined by

x(T,v) = xT + v

for each x ∈ V . Such maps preserve cosets and thus act on AG(V ). Com-
position is given by (S,v)(T,w) = (ST,vT + w) and it follows that these
affine groups are semi-direct products of the linear and semilinear groups
(respectively) with the additive group of V , the action of the linear and
semilinear groups on V being the natural one. The permutation action on
the points of AG(V ), i.e. on the vectors in V , is doubly-transitive and, if
F = F2, it is triply-transitive.

Given a basis v1,v2, . . . ,vn for V , if (T,v) is an element of AΓL(V ),
and v =

∑
i bivi, define the matrix A via viT =

∑
j aijvj , and let α be the
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field automorphism associated with T . Then

(T,v) : (x1, . . . , xn) 7→ (xα
1 , . . . , x

α
n)A+ (b1, . . . , bn).

Moreover, given any triple (α,A, (b1, . . . , bn)) where α is an automorphism of
the field F , A is an n×n matrix with entries from F and (b1, . . . , bn) ∈ Fn,
the formula above defines an element of AΓL(V ) and, in fact, with the
obvious multiplication of the triples,

(α,A, (b1, . . . , bn))(β,B, (c1, . . . , cn)) = (αβ,AβB, (bβ1 + c1, . . . , b
β
n + cn)),

we have an isomorphism of AΓL(V ) with this group, denoted by AΓLn(F ).
Similarly we write AGLn(F ) for the affine linear group — when it is given
explicitly.

In analogy with the projective case, there is a fundamental theorem of
affine geometry which states that for n ≥ 2, Aut(AGn(F )) = AΓLn(F ).
This is the same theorem, in effect, as the fundamental theorem for projec-
tive geometry, if we consider the way in which affine geometries are embed-
ded in projective geometries:

Theorem 2.5 Let V be a vector space over F , H a hyperplane, and x a
vector in V that is not in H. Set PG(V )H = {U |U ∈ PG(V ), U 6⊆ H}.
Define a map

ϕ : AG(x +H) → PG(V )

by M 7→ 〈M〉 for any coset M ∈ AG(x+H). Then ϕ is an incidence preserv-
ing injection with image PG(V )H . Further, the inverse map ϕ−1 satisfies

Uϕ−1 = U ∩ (x +H),

for any U ∈ PG(V )H .

This is the fundamental embedding theorem and the proof is quite
direct from the definitions; it can be found in Gruenberg and Weir [23].
Note that the choice of the hyperplane H and vector x that produce the
embedding is not crucial since for another choice, K and y, it is clear
that AG(x + H) is isomorphic to AG(y + K) and, moreover, H and K
are equivalent under the projective group. One generally thinks of the 1-
dimensional subspaces of H as the “points at infinity” of the projective
space PG(V ) and discarding these points leaves the affine geometry of the
same dimension. In coordinate terms one can view H as the hyperplane in
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Fn+1 = {(x0, x1, . . . , xn) |xi ∈ F} given by the equation X0 = 0, taking,
for convenience, x = (1, 0, . . . , 0). Then the embedded affine space is Fn

viewed as the last n coordinates, where every projective point not at infinity
has homogeneous coordinates that can be taken to be (1, x1, . . . , xn). More
precisely, the embedded affine geometry of dimension n is obtained from a
projective geometry of dimension n by removing a hyperplane and all the
subspaces contained in it. The points and subspaces remaining form the
affine geometry.

When doing computations one works, normally, in the affine space. In an
affine geometry of dimension n, once a basis is chosen for the vector space,
any r-flat can be given by a set of (n − r) independent linear equations
and solutions are points of the geometry. In the projective case one uses
homogeneous equations, of course, and only looks for non-zero solutions —
which are not precisely the points but only representatives. So, for example,
in AG4(F ) the equations X1 + X2 − X3 = 0 and X1 + X4 = 1 define a
2-flat; it is given by (0, 0, 0, 1) + U where U is the 2-dimensional subspace
{(x, y, x+ y,−x) |x, y ∈ F}. In other words the 2-flat consists of all vectors
in F 4 of the form {(x, y, x+ y, 1− x}.

2.3 Designs from geometries

To define incidence structures from PG(V ) and AG(V ) we need to choose
point sets and block sets; the incidence relation will be that of the geometry,
namely containment. In every case the point set of our design will be the set
of points of the geometry: for projective spaces the 1-dimensional subspaces
of V and for affine spaces the vectors of V . For blocks we will take all
the subspaces (or cosets in the affine case) of a fixed dimension. In every
case the double-transitivity of the group involved will assure us that we are
dealing with a 2-design.

Thus, for example, we can consider the design of points and lines, the
design of points and planes, or the design of points and hyperplanes of a
geometry and be assured of a 2-design. The parameters will depend on both
the dimension of the geometry and the cardinality of the finite field. By
fixing one of these and letting the other vary we obtain numerous infinite
families of designs. Each of these designs will have an automorphism group
containing PΓL(V ) or AΓL(V ) in the projective or affine case, respectively.
Except for isolated cases the parameters will admit many designs other than
these classical designs, and a large amount of effort has gone into classifying
the classical designs amongst those with the same parameters.
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Perhaps the most interesting case is that of dimension 2. In the projective
case, PG2(Fq) produces the design of points and lines of a 3-dimensional
vector space over a finite field, a classical projective plane. It is a design
with parameters 2-(q2 + q + 1, q + 1, 1). For q a proper power of a prime
there are many such designs that do not arise from PG2(Fq), but for q a
prime only the classical plane has appeared — and it is possible that there
may not be any others. For q not a power of a prime no designs with
these parameters have been discovered. Observe that to recover q from the
parameters one must take λ1− λ2 in the notation of Chapter 1; this integer
is an important parameter of a design, and is called the order.

In the affine case, AG2(Fq) produces the design of points and lines of
a 2-dimensional vector space, i.e. a classical affine plane. It is a 2-(q2, q, 1)
design. It also has order q.

Projective planes are symmetric designs, i.e. have the same number of
points as blocks. For a symmetric 2-(v, k, λ) design λ1 = k and the order is
given as k − λ, as it was for projective planes. More generally, the design
of points and hyperplanes of a projective geometry produces a symmetric
design. If the finite field has q elements and the geometry has projective
dimension n, then this design of points and hyperplanes is a symmetric
design with parameters

2−
(
qn+1 − 1
q − 1

,
qn − 1
q − 1

,
qn−1 − 1
q − 1

)

and order qn−1.

2.4 Codes from designs

For any finite incidence structure D with point set P and block set B, the
code Cp(D) of D over a prime field Fp is the subspace of the space FP

p of
all functions from P to Fp that is spanned by the incidence vectors of the
blocks of D. This code is equivalent to the code given by the row space of
any incidence matrix of the incidence stucture — where we use the blocks
to index the rows (and the points the columns) of the incidence matrix.
Although this is the appropriate way to view the incidence matrix in the
context of this chapter, it does sometimes prove useful to examine the code
given by the row space of the “point by block” incidence matrix; see, for
example, [52].

For any subset X ⊆ P, we denote the characteristic function of X by



3 THE REED-MULLER CODES 12

vX and refer to vX as the incidence vector of X. Thus

vX(x) =

{
1 if x ∈ X
0 if x 6∈ X ,

where vX(x) denotes the value that the function vX takes at the point x.
Then

Cp(D) = 〈vB |B ∈ B〉.

The dimension of Cp(D) is referred to as the p-rank of D. The rank tends to
vary with p in the general case; for so-called 2-designs it is easily determined
except for those primes dividing the order of the design.

The minimum weight of the code arising from an incidence structure is
clearly at most equal to the cardinality of the smallest block. In general the
minimum weight is strictly less than this cardinality, but for the classical
geometric designs studied in this chapter there is a distinguished prime one
considers, and for these codes we will have equality.

As we will soon see, one of the most widely studied class of binary
codes, the Reed-Muller codes, arises precisely as the class of codes given by
geometric designs over the binary field — although the original presentation
of these codes in 1954 was in the boolean-function context and was given by
electrical engineers.

3 The Reed-Muller codes

The Reed-Muller codes have already been defined in Chapter 1 (Section 13).
For completeness, and in order to establish our notation for this section and
those to follow, we will repeat some of the definitions and results.

3.1 Definitions

Throughout this section F will denote the field F2. Let V be a vector space
of dimension m over F . We let F V denote the vector space over F of all
functions from V to F . As a vector space over F , F V has dimension 2m,
the cardinality of the set V . Since F V will be the ambient space for the
Reed-Muller codes we must choose a basis for it and we choose the standard
basis consisting of the characteristic functions of the elements of the set V .
Denoting a typical element of V by v these basis elements are {vv |v ∈ V },
where we write vv instead of the more cumbersome v{v}. Viewing V as Fm,
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it too has a standard basis e1, e2, . . . , em, where

ei = (0, 0, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0).

Moreover, any function f ∈ F V can be given as a function of m variables
corresponding to the m coordinate positions: writing the vector x ∈ V as

x = (x1, x2, . . . , xm) =
m∑

i=1

xiei,

then f = f(x1, x2, . . . , xm). The “polynomial” xi is, for example, the linear
functional that projects a vector in V onto its ith coordinate in the given
basis, its value at (

∑m
j=1 xjej) being xi.

As a function on V , xk
i = xi whenever k > 0, so we obtain all the

monomial functions via the 2m monomial functions:

M = {xi1
1 x

i2
2 . . . x

im
m | ik = 0 or 1; k = 1, 2, . . . ,m},

where we write 1 for the constant function x0
1x

0
2 . . . x

0
m with value 1 at all

points of V ; as a code vector it is the all-one vector 1. The linear com-
binations over F of these 2m monomials give all the polynomial functions,
since, once again, we can reduce any polynomial in the xi modulo x2

i − xi,
for i = 1, 2, . . . ,m. The set M of 2m monomials is another basis for the
vector space F V ; the following lemma indicates how each of our given basis
elements of characteristic functions of the vectors in V is given as a polyno-
mial, i.e. as a sum of elements of M. This not only proves the assertion but
also shows that the set M is a linearly independent set of vectors in F V .

Lemma 3.1 Set K = {1, 2, . . . ,m} and, for w = (w1, w2, . . . , wm) ∈ V , let
Iw = {i ∈ K |wi = 1}. Then

vw =
m∏

k=1

(xk + 1 + wk) =
∑

K⊇J⊇Iw

∏
j∈J

xj .

Proof: The proof is simple: the first polynomial is easily seen to define the
characteristic function of the vector w; and the expansion of this product is
clearly the sum on the right. 2

We repeat the definition of the Reed-Muller codes:
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Definition 3.2 Let V denote the vector space of dimension m over F = F2

and let r satisfy 0 ≤ r ≤ m. The Reed-Muller code of order r, denoted
by R(r,m), is the subspace of F V (with basis the characteristic functions of
the vectors of V ) that consists of all polynomial functions in the xi of degree
at most r, i.e.

R(r,m) =

〈∏
i∈I

xi|I ⊆ {1, 2, . . . ,m}, 0 ≤ |I| ≤ r

〉
.

Example 3.3 The first-order Reed-Muller code R(1,m) consists of all lin-
ear combinations of the monomials xi and 1 and hence each codeword, apart
from 0 and 1, is given either by a non-zero linear functional on V or by 1
plus such a functional. Since any non-zero linear functional has 2m−1 zeros,
every vector of R(1,m), apart from 0 and 1, has weight 2m−1. A generator
matrix for R(1,m) using the basis x1, x2, . . . , xm, 1 can be written so that
the first 2m − 1 columns and m rows are the binary representations of the
numbers between 1 and 2m− 1, whereas the last column is all 0, apart from
a final row where all entries are equal to 1. This is clearly a generator matrix
for the orthogonal of the extended Hamming code, i.e. R(1,m) = (Ĥm)⊥,
where Ĉ denotes the code obtained from C by adding an overall parity check.

As an immediate consequence of the definition and the linear indepen-
dence of the functions in M, we have that

dim(R(r,m)) =
(m

0

)
+
(m

1

)
+
(m

2

)
+ · · ·+

(m
r

)
.

In particular, dim(R(1,m)) = 1 +m.
The trivial cases include the repetition code, R(0,m) = F1, R(m,m) =

F V and the code R(m− 1,m), which is of codimension 1 in F V and equal
to (F1)⊥. The Reed-Muller codes are a nested sequence of codes. That is,

R(r,m) ⊆ R(s,m)

whenever 0 ≤ r ≤ s ≤ m.

We mentioned above that the orthogonal ofR(0,m) = F1 isR(m−1,m).
This is a special case of the following result, which was proved in Chapter 1:

Theorem 3.4 For any m ≥ 1 and any r such that 0 ≤ r < m,

R(r,m)⊥ = R(m− r − 1,m).
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We will, in fact, reprove this result in Section 5 when we give its straight-
forward generalization to generalized Reed-Muller codes, Theorem 5.8.

Example 3.5 From Theorem 3.4 we get immediately that

R(1,m)⊥ = Ĥm = R(m− 2,m).

Thus, extended Hamming codes are Reed-Muller codes.

In the next subsection we will see the connection between the Reed-
Muller codes and the codes of the designs of points and flats in affine space
over F2. The codes of the analogous designs from projective spaces over F2

arise as punctured Reed-Muller codes:

Definition 3.6 For 0 ≤ r < m the punctured Reed-Muller code of
order r, R(r,m)∗, is the code obtained from R(r,m) by puncturing at the
vector 0 ∈ V .

One could puncture at any vector of V and get an isomorphic code
since the set of polynomial functions is invariant under translation in V ;
i.e. if f is a polynomial in the xi’s of degree s then so is g where g =
f(x1 + a1, . . . , xm + am) for any vector a = (a1, . . . , am) ∈ V , which means
that the automorphism group of any Reed-Muller code acts transitively on
the coordinates.

Example 3.7 Ifm = 3, r = 1, R(1, 3) is a self-dual [8, 4, 4] binary code, and
R(1, 3)∗ is a [7, 4, 3] code, viz. the Hamming code H3. Example 3.5 gives the
reason for this and shows that Hamming codes are punctured Reed-Muller
codes.

Proposition 3.8 For r < m the punctured Reed-Muller code R(r,m)∗ is a

[2m − 1,
(m

0

)
+
(m

1

)
+ · · ·+

(m
r

)
]

binary code.

Proof: This follows easily: the dimension must be that of R(r,m) since
all the vectors in this code are of even weight and the projection cannot,
therefore, have a nontrivial kernel. 2

Finally, note that it follows from Theorem 3.4 that

(R(r,m)∗)⊥ = R(m− r − 1,m)∗ ∩ (F21)⊥

provided r < m. That is, (R(r,m)∗)⊥ consists of the vectors of (R(m− r−
1,m)) with a zero at 0, that coordinate being discarded.
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3.2 Geometries and Reed-Muller codes

The set of vectors V is the point set for any design defined from an affine
geometry AGm(F2); moreover the binary codes of all the associated designs
of points and flats are subspaces of F V . Similarly, the designs from the
projective geometry PGm−1(F2) all have point set V ∗ = V − {0} and F V ∗

is the ambient space of their binary codes. In this section we indicate how
to associate these design codes with the Reed-Muller and punctured Reed-
Muller codes of the last section.

Consider the generating elements of R(r,m): the polynomial xi as a
codeword has value 1 at a point x in V if the vector x has a 1 in the
coordinate position i and value 0 otherwise. Thus 1 + xi = vH , where H
is the hyperplane with the equation Xi = 0. Also, xi is the characteristic
function of the complement of this hyperplane, i.e. the (m − 1)-flat with
equation Xi = 1. Similarly, (1 + xi)(1 + xj), for i 6= j, is the characteristic
function of the intersection of two hyperplanes, a subspace of dimension
m − 2. In general, all the elements of M are the incidence vectors of flats
in the affine geometry and R(r,m) is spanned by the incidence vectors of
these (m − s)-flats, for 0 ≤ s ≤ r. In order to show that R(r,m) is the
binary code of the design of points and (m − r)-flats of AGm(F2), which
is our aim, we need to show that the vectors given by the (m − r)-flats
span R(r,m). Notice that we already have this result for the first-order
Reed-Muller codes, since the linear equations certainly define (m − 1)-flats
and, furthermore, R(1,m) has precisely 2(2m− 1) such vectors, the number
of (m − 1)-flats in AGm(F2). Thus, if A is the affine design of points and
(m− 1)-flats, we have that

R(1,m) = C2(A).

The general case is almost as easy. First of all we have that the flats are
in the Reed-Muller code:

Proposition 3.9 The incidence vectors of the (m − r)-flats of AGm(F2)
are all in R(r,m).

Proof: Any (m− r)-flat T in AGm(F2) consists of all the vectors (points of
the affine space) x = (x1, x2, . . . , xm) that satisfy r linear equations,

m∑
j=1

aijXj = bi, for i = 1, 2, . . . , r ,
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where all the aij and bj are in F2. The polynomial,

r∏
i=1

bi + 1 +
m∑

j=1

aijxj

 ,
has degree at most r and thus is in R(r,m). Moreover it is clearly the
characteristic function vT of T . 2

In fact the degree of the polynomial is exactly r when the equations are
independent and the proof actually shows that all the (m − s)-flats are in
R(r,m) provided s ≤ r.

Theorem 3.10 Let A be the design of points and r-flats of the affine ge-
ometry AGm(F2), where 0 ≤ r ≤ m. Then the binary code C2(A) is the
Reed-Muller code R(m− r,m). Its dimension is(

m

0

)
+

(
m

1

)
+ · · ·+

(
m

m− r

)
.

Let P be the design of points and r-dimensional subspaces of the pro-
jective geometry PGm−1(F2) where 1 ≤ r ≤ m − 1. Then the binary code
C2(P) is the punctured Reed-Muller code R(m − r − 1,m)∗. Its dimension
is (

m

0

)
+

(
m

1

)
+ · · ·+

(
m

m− r − 1

)
.

Proof: The characteristic function of any (t + 1)-flat is the sum of the
characteristic functions of two t-flats contained in it and thus the binary
code of the design of points and (m−r)-flats contains, by a trivial induction,
the characteristic function of every (m− s)-flat for 0 ≤ s ≤ r and hence the
code of this design is R(r,m). Reversing the roles of r and m− r gives the
first part of the theorem.

For the second part of the theorem, notice first that the code of the
design is contained in the punctured Reed-Muller code. Extend the code
of the design by an overall parity check and note that this extended code
is a subcode of R(m − r − 1,m) and that incidence vectors of the (r + 1)-
dimensional subspaces of V generate this extended code. Now every (r+2)-
dimensional subspace of V has an incidence vector that is the sum of all the
incidence vectors of the (r+1)-dimensional subspaces it contains. But, over
F2, an (r + 1)-flat that is not a subspace consists of an (r + 2)-dimensional
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subspace from which the points of an (r + 1)-dimensional subspace, the
subspace of which it is a coset, have been removed. Thus, in the code of
the design it is the sum of the incidence vectors of an (r + 2)-dimensional
subspace and an (r + 1)-dimensional subspace. It follows that all the (r +
1)-flats of V are in the extended code of the design and it is, therefore,
R(m− r − 1,m). 2

In the proof the essential new point is that subspaces alone generate
the Reed-Muller codes because flats can be obtained from subspaces, a fact
which makes the discussion of the binary case very easy. We record this as

Corollary 3.11 The Reed-Muller code R(m−r,m) is generated by the char-
acteristic functions of the r-dimensional subspaces of Fm

2 or, indeed, by the
r-flats containing any fixed point of Fm

2 .

The characteristic functions of the r-flats are vectors of weight 2r and are
precisely the minimum-weight vectors ofR(m−r,m), as we shall soon prove.
Before doing so, we introduce two exact sequences that arise naturally from
the geometric nature of the Reed-Muller and punctured Reed-Muller codes.

Lemma 3.12 Any embedding of PGm−1(F2) into PGm(F2) gives rise to
the following two short exact sequences whenever 0 ≤ r < m:

(i) 0 → R(m− r − 1,m)∗ → R(m− r,m+ 1)∗ → R(m− r,m) → 0;

(ii) 0 → R(m− r − 1,m) → R(m− r,m+ 1)∗ → R(m− r,m)∗ → 0.

Proof:
Let W be the (m+1)-dimensional vector space defining PGm(F2). Then

an embedding of PGm−1(F2) in PGm(F2) is given by a hyperplane H of W
and, moreover, the complement of H in W , H = W − H, is a copy of
AGm(F2), as we explained in Section 2.2.

Let D be the design of points and r-dimensional subspaces of PGm(F2).
Using PG(H) we form the design D1 of r-dimensional subspaces in
PGm−1(F2), and from AG(H) we form the design D2 of r-flats in AGm(F2).
By Theorem 3.10, C2(D) = R(m− r,m+ 1)∗, C2(D1) = R(m− r − 1,m)∗

and C2(D2) = R(m− r,m).
Any block of the design D is either in H or meets it in an (r − 1)-

dimensional (projective) subspace. The intersection with H is thus empty or
an r-flat; clearly every r-flat of AG(H) arises in this way. Thus C = C2(D)
projects onto C2(D2), and C2(D1) is in the kernel. Thus dim(C2(D1)) ≤
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dim(C2(D))− dim(C2(D2)), and using the formula for the dimension of the
Reed-Muller codes, we have

m−r−1∑
i=0

(
m

i

)
≤

m−r∑
i=0

(
m+ 1
i

)
−

m−r∑
i=0

(
m

i

)
.

Using the identity
(m+1

k

)
=
(m

k

)
+
( m
k−1

)
repeatedly, shows that this is actually

an equality, and hence that C2(D1) is the whole kernel. This yields the short
exact sequence (i).

To obtain the second sequence we use the same embedding but now
project C onto the coordinate positions corresponding to the points of
PG(H). Let E2 be the design of points and (r−1)-dimensional subspaces of
PGm−1(F2), and E1 the design of points and (r+1)-flats of AGm(F2). Then
C2(E2) = R((m − 1) − (r − 1),m)∗, and C2(E1) = R(m − r − 1,m). Cer-
tainly C projects onto C2(E2) since every r-dimensional projective subspace
of PG(W ) meets H in an (r − 1)-dimensional subspace — or is contained
in H — and every (r − 1)-dimensional subspace arises in this way. Two
r-dimensional subspaces of PG(W ) that meet PG(H) in the same (r − 1)-
dimensional subspace have disjoint intersections in H and thus form two
cosets of the same r-dimensional subspace of AG(H). Together they form
an (r + 1)-dimensional space. It follows immediately that the kernel of the
projection is C2(E1) and thus yields the sequence (ii). 2

We next draw out the consequences of Lemma 3.12 and in so doing
prove that the minimum weights of the Reed-Muller codes are as we have
indicated and, more importantly, determine the nature of the minimum-
weight vectors.

Theorem 3.13 For 0 ≤ r ≤ m the minimum weight of R(m − r,m) is
2r and the vectors of minimum weight are the incidence vectors of the r-
flats of AGm(F2). For 1 ≤ r ≤ m the minimum weight of R(m − r,m)∗ is
2r − 1 and the vectors of minimum weight are the incidence vectors of the
(r − 1)-dimensional subspaces of PGm−1(F2).

Proof: Clearly the minimum weights are at most 2r and 2r − 1 by Theo-
rem 3.10. Now we use the short exact sequences and induction on m, the
result being trivial for m = 1. Assume the result true for m and all r < m.
Thus we assume that R(m − s,m) has minimum weight 2s for m − s ≤ m
and R(m− s,m)∗ has minimum weight 2s − 1 for m− s < m and that the
minimum-weight vectors are as announced.
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Since, for r = 0, the result is trivial for any m we may assume r > 0
and consider dimension m + 1. If r = m the results are easy, for then we
have R(1,m+ 1), a case we have already discussed. We suppose 0 < r < m
and use the notation of Lemma 3.12. Thus D is the design of points and
r-dimensional subspaces of PGm(F2). Let v be a minimum-weight vector
of C = C2(D), so that wt(v) ≤ 2r+1 − 1. If v is zero at the coordinates
corresponding to H = W − H, then v can be viewed in C2(D1), from the
short exact sequence (i), and hence v has weight 2r+1−1 and is the incidence
vector of an r-dimensional subspace of H (and hence of W ), by the induction
hypothesis. If v is zero at the coordinates corresponding to H, then v can
be viewed in C2(E1) = R(m − (r + 1),m), from the short exact sequence
(ii), and thus has weight at least 2r+1, which is not possible. Thus v can
be taken to have support meeting both H and H. Again by the induction
hypothesis, the weight is at least 2r + 2r − 1 = 2r+1 − 1, using the last
non-zero terms of the short exact sequences, and hence has exactly this
weight. Furthermore, restricted to PG(H), v is the incidence vector of an
(r − 1)-dimensional subspace. To show that v is the incidence vector of an
r-dimensional subspace of PGm(F2), construct an r-dimensional subspace
of PGm(F2) whose incidence vector w coincides with v on PG(H) and that
contains at least one point in H in common with the support of v. Then
the weight of v −w is easily seen to be less than 2r+1 − 1 and hence v = w.
This gives the projective result for projective dimension m from which the
affine result for dimension m + 1 follows since the Reed-Muller codes are
invariant under translation in V — as we remarked in the last section —
which means it is sufficient to consider only those minimum-weight vectors
of the Reed-Muller code with a 1 at 0. 2

It should be noted that the code of any projective-geometry design is
cyclic due to the existence of Singer cycles (as already mentioned in Sec-
tion 2.1) and hence the punctured Reed-Muller codes are cyclic.

We summarize the results obtained on the properties of the Reed-Muller
codes and finite geometries over the field F2:

Theorem 3.14 Let m be any positive integer.

(1) If A is the design of points and r-flats of the affine geometry AGm(F2),
where 0 ≤ r ≤ m, then the binary code C = C2(A) is the Reed-Muller
code R(m − r,m). It is a [2m,

(m
0

)
+
(m

1

)
+ · · · +

( m
m−r

)
, 2r] binary

code and the minimum-weight vectors are the incidence vectors of the
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r-flats. Further, C contains the incidence vectors of all t-flats for
r ≤ t ≤ m.

For r > 0 the orthogonal, C⊥, is the Reed-Muller code R(r − 1,m),
which is the binary code of the design of points and (m − r + 1)-flats
of the affine geometry AGm(F2).

(2) If D is the design of points and r-dimensional subspaces of the pro-
jective geometry PGm(F2), where 0 ≤ r ≤ m, then the binary code
C = C2(D) is the punctured Reed-Muller code R(m − r,m + 1)∗. It
is a [2m+1 − 1,

(m
0

)
+
(m+1

1

)
+ · · ·+

(m+1
m−r

)
, 2r+1 − 1] binary cyclic code

and the minimum-weight vectors are the incidence vectors of the r-
dimensional subspaces. Further, C contains the incidence vectors of
all t-dimensional subspaces for r ≤ t ≤ m.

The code orthogonal to R(m − r,m + 1)∗ is R(r,m + 1)∗ ∩ (F21)⊥,
which is the even-weight subcode of the binary code of the design of
points and (m− r)-dimensional subspaces of PGm(F2).

Example 3.15 (1) The code of the design of points and lines in AG4(F2)
is R(3, 4), which is the even-weight subcode of F V . Its orthogonal is
F1 = R(0, 4). The code of the design of points and planes is R(2, 4),
of dimension 11, with orthogonal the code from the design of points
and hyperplanes, of dimension 5, i.e. R(1, 4).

(2) The code of the design of points and lines in PG3(F2) is R(2, 4)∗,
of dimension 11 and minimum weight 3; it is, of course, a binary
Hamming code.

(3) A basis consisting of the incidence vectors of lines in PGm(F2) for the
code R(m − 2,m)∗ = Hm can be found as follows (as described in
Key and Sullivan [32]): take any line and include its incidence vector;
take any point off the line, and include the three incidence vectors of
the three lines joining the new point to the points on the first line.
Continue in this way: at each stage, if there is a point not yet incident
with a chosen line then simply take all the incidence vectors of the
lines joining that point to the points already obtained. These incidence
vectors are clearly linearly independent and, as is easily seen, are equal
in number to the dimension; hence they yield a basis. The successive
dimensions are

1, 1 + 3 = 4, 4 + 7 = 11, 11 + 15 = 26, 26 + 31 = 57, . . .



3 THE REED-MULLER CODES 22

Moreover, the incidence vectors chosen that have a point in common
with a fixed point of the first line form a collection of parity checks (of
the simplex code that is dual to the Hamming code) that are “focused
on” that fixed point — see Section 3.3 — and can be used for majority-
logic decoding.

The group AGLm(F2), in its natural action on V = Fm
2 , yields a group

of automorphisms of every Reed-Muller code R(r,m) and PGLm(F2), in its
natural action on V ∗ = V − {0}, yields a group of automorphisms of every
punctured Reed-Muller code R(r,m)∗. That PGLm(F2) is the full group
of automorphisms of R(r,m)∗ whenever 0 < r < m − 1 follows from Theo-
rem 3.13 and the fundamental theorem of projective geometry, Theorem 2.3.
¿From this it follows that AGLm(F2) is the full group of automorphisms of
R(r,m) whenever 0 < r < m − 1. One must be careful here and note that
it is not the entire projective space that must be preserved, but only part of
it, to ensure that the automorphism comes from the general linear group.

3.3 Decoding

One of the attractions of Reed-Muller codes is the simple and easily im-
plemented decoding scheme that is available, with decoding decisions made
by majority vote, just as with the repetition code — which is, of course,
the simplest Reed-Muller code, R(0,m). Since the scheme is related to
the geometric nature of these codes we describe it here. The scheme dates
from the very beginning of coding theory and is due to Reed [46]. It was
Reed’s algorithm that prompted the investigation of majority-logic decoding
and the rather peculiar definition of so-called Euclidean-geometry codes as
maximal cyclic subspaces of duals of the codes generated by certain flats in
AGm(F2s). We begin by describing majority-logic decoding.

Let C be an arbitrary linear code contained in the ambient space Fn
q .

Recall that a parity check is simply a code vector in the orthogonal code,
C⊥, and that the support of a vector in Fn

q is the set of coordinate positions
in which it has non-zero entries. Suppose we are given J parity checks and a
coordinate position, i say, such that the intersection of the supports of any
two of the given parity checks is precisely the singleton set {i}. If a received
vector has been perturbed by t or fewer errors during transmission, where
2t ≤ J , then, clearly, at least half of the parity checks will give zero (i.e.
check) when applied to the received vector unless the symbol at coordinate i
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is in error. Moreover, had we normalized the given parity checks so that each
had a 1 at coordinate i, then, in the event that one of the t or fewer errors
had occured at coordinate i, at least half of the parity checks would record
that error. Thus a majority “vote” of the values of the parity checks corrects
the entry at coordinate i. This is the essence of majority-logic decoding.

Such a collection of parity checks is said to be focused on i2. Note that
if each of the coordinates of C has a collection of J parity checks focused
on it, then the code will necessarily correct t or fewer errors — where again
2t ≤ J — and therefore C must have minimum weight at least 2t + 1.
Indeed, it is very easy to see that if there is a set of J parity checks focused
on a coordinate i, then any code vector with a non-zero entry at i must
have weight at least J + 1 in order to satisfy the J parity checks. Note also
that any code with a transitive automorphism group (and, in particular, a
cyclic code) will have minimum weight at least J+1 provided that one, and
hence all coordinates, has a collection of J parity checks focused on it. In
the cyclic case majority-logic decoding, when it is available, is particularly
simple.

An instructive example is the dual C of a binary Hamming code, fre-
quently referred to as a simplex code. It has the classical Steiner triple
system, namely the lines of the projective geometry, among its parity checks
and the pencil of lines through a point of the geometry fulfills the require-
ments for a collection of parity checks focused on the given point; if the
Hamming code is of block length 2m− 1, then J = 2m−1− 1. Indeed, C has
minimum weight 2m−1 and t = 2m−2−1 errors can be corrected. A simpler,
but still important, case is the following:

Example 3.16 The repetition code of length n over Fq has, clearly, n − 1
parity checks of weight 2 focused on any given coordinate and, for odd n,
one simply uses a majority vote to determine the symbol sent, obtaining the
correct symbol provided at most n−1

2 errors occurred during transmission.

To use majority logic to correct many errors one must have many parity
checks focused on each coordinate, which entails that the minimum weight
d⊥ of C⊥ be small; in fact, in order to have J parity checks focused on a given
coordinate we must have (d⊥ − 1)J ≤ n− 1. The examples above have the

2Unfortunately the term “orthogonal on i” is the terminology of most of the coding
literature. Blahut, recognizing the problem with that terminology, used “concurrent on
i” in [7], but that does not seem to have been adopted. We here make another attempt
at change.
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smallest possible minimum weights for their duals and allow error-correction
via majority logic to correct up to the full error-correcting capacity of the
code. In the coding literature such codes are said to be “completely orthog-
onalizable”.

Consider next the Reed-Muller code C = R(r,m) where r < m. A
basis for C is the set of monomials of degree r or less. The idea of Reed’s
decoding scheme is to determine first the “information bits” corresponding
to monomials of degree r, thus reducing the problem to decoding in the Reed-
Muller code R(r − 1,m). Let K be a subset of {1, 2, . . . ,m} of cardinality
r and let L be the complement of K. Now the monomial of degree r,∏

k∈K

xk,

as an element of C = R(r,m), is the characteristic function of the (m−r)-flat
S given by the equations

Xk = 1, k ∈ K.

Also ∏
l∈L

xl

is the characteristic function of the r-flat T given by

Xl = 1, l ∈ L

and, moreover, is an element of R(r − 1,m)⊥. Each of the 2m−r translates
of T meets the flat S precisely once, but any other (m − r)-flat given by a
different monomial of degree r evenly. (To see this the reader may wish to
think of subspaces of the relevant dimensions; in one case the intersection
is the zero vector and S is a transversal to the 2m−r translates of T ; in the
other the intersection is a subspace of positive dimension and S meets a
translate of T either in a flat of that dimension or not at all.) Thus, a ma-
jority vote of the parity checks corresponding to these 2m−r translates will
record only the information bit corresponding to

∏
k∈K xk provided fewer

than 2m−r−1 − 1 errors have been made in transmission. Note that one
retrieves the information bit directly by majority vote and that, after deter-
mining those information bits corresponding to the

(m
r

)
monomials of degree

r, the received vector is adjusted and decoding proceeds in R(r − 1,m) via
precisely the same method.

Finally, we make contact, briefly, with so-called L-step majority-logic
decoding . In our discussion of Reed’s algorithm we used parity checks which
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were not in the dual of the code in question: the r-flat T above has a
characteristic function in R(r − 1,m)⊥ but not in R(r,m)⊥. However, if
T ′ is any tranlate of T then T ∪ T ′ is an (r + 1)-flat whose characteristic
function is in R(r,m)⊥. Moreover, the 2m−r − 1 flats of this form (namely,
T ∪T ′, where T ′ is a distinct translate of T ) are focused on T in the sense
that the intersection of the supports of any two of them is precisely the
set T . Thus, provided sufficiently few errors were made in transmission, a
majority vote using these parity checks will give the sum of the error bits
contained in the coordinate positions corresponding to the flat T . Such a
“divide and conquer” technique using majority or threshold circuitry was
thoroughly investigated early in the history of coding theory and was the
subject of Massey’s thesis, [41]. For a fuller discussion of the decoding of
Reed-Muller and Generalized Reed-Muller codes and L-step majority-logic
decoding the reader may wish to consult [40] or a textbook on error control,
for example, [7] or [36].

4 The group-algebra approach

We have not, so far, taken full advantage of the fact that the coordinate
set of the codes in question is, itself, endowed with structure. We did, of
course, use that structure in defining the Singer cycles — where the co-
ordinate set was given the structure of a field — and, moreover, we used
the additive structure to discuss the minimum-weight vectors and the auto-
morphism groups of the Reed-Muller codes. But, for example, we have not
yet explicitly shown how to get the generator polynomials of the punctured
Reed-Muller codes although we know they are cyclic. In fact, of course, there
are many Singer cycles and the codes are therefore cyclic in many ways —
which is another way of saying that one must specify explicitly how a code is
cyclic before one can compute the generator polynomial. The group-algebra
approach allows one to naturally specify the roots of the generator polyno-
mial without actually choosing the Singer cycle and it is this intrinsic nature
of the approach which makes the group-algebra setting so attractive.

We follow Charpin [14] but Landrock and Manz [34] have also given
an expository account; the original source of this approach was Berman’s
seminal paper, [6]. One exploits the modular group algebra of an elementary
abelian3 group, the additive group of the field that labels the coordinates,

3The group, in fact, need not be elementary abelian nor even abelian and the general
case has been treated; see, for example, the chapter by Ward in this Handbook. But, if one
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as the ambient space for the codes.

4.1 Elementary results and Berman’s theorem

We proceed in full generality but the reader interested only in Berman’s
result and the Reed-Muller codes can take G below to be Fm

2 and F to be
F2.

Let q = pm and set G equal to the additive subgroup of the field Fq.
We will very soon regard G as Fq, but for the moment it is merely an
elementary abelian p-group4 of order pm. Let F be any subfield of Fq and
set R = F [G], the group algebra of G over the field F . Recall that the
elements of R are simply functions from G to F and therefore, when G and
F are taken as suggested above, R is the ambient space of the Reed-Muller
codes. We choose, however, to formulate things a bit differently and view
the group algebra in a polynomial way — as one frequently does with group
algebras given by abelian monoids5. Thus a typical element of R is a formal
sum

∑
g∈G xgX

g where the xg are elements of F and, as a function, it is
simply the one that assigns xg to the element g of G. Addition and scalar
multiplication are component-wise and the multiplication is given by the
addition in G. Thus,∑

g∈G

xgX
g +

∑
g∈G

ygX
g =

∑
g∈G

(xg + yg)Xg

and, for c ∈ F ,
c(
∑
g∈G

xgX
g) =

∑
g∈G

(cxg)Xg;

using the “polynomial” multiplication XgXh = Xg+h gives the usual mul-
tiplication formula in the group algebra:

(
∑
g∈G

xgX
g)(
∑
h∈G

yhX
h) =

∑
g,h∈G

xgyhX
g+h =

∑
k∈G

(
∑
h∈G

xk−hyh)Xk.

Notice that X0 is the unit element of the commutative ring R; i.e. X0a = a
for every a ∈ R. The augmentation map R → F given by

∑
g∈G xgX

g 7→
restricts oneself to p-groups, a result of Faldum’s [20] shows that one might as well restrict
oneself to the elementary abelian case — as far as producing “good” codes is concerned.

4That is, G is an abelian group all of whose non-identity elements have order p or, in
other words, a vector space over the field Fp. Since the group operation is being written
additively “order p” means simply that pg = 0 for every g ∈ G.

5The paradigm is the ordinary polynomial ring where the monoid in question is the set
of non-negative integers under addition.
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∑
g∈G xg is clearly a linear transformation of the vector space structure of R

onto F ; moreover, it is an algebra homomorphism — as one can easily check
from the multiplication formula. We denote the kernel of this augmentation
map by M ; it is, of course, an ideal of R, but much more is true: since we
are in characteristic p we have the Frobenius homomorphism, a 7→ ap, at
our disposal and the fact that G is an elementary abelian p-group gives

(
∑
g∈G

xgX
g)p =

∑
g∈G

xp
gX

0 = (
∑
g∈G

xp
g)X

0 = (
∑
g∈G

xg)pX0,

which shows that every element not in M is invertible in R and hence that
M is the unique maximal ideal of R.

In the binary case, with the interpretation suggested above, M is the
Reed-Muller code R(m− 1,m); we shall shortly see that the powers of the
ideal M give precisely the Reed-Muller codes.

Observe that in our present notation the characteristic function of a sub-
set S of G is given by the element

∑
g∈S X

g of the group algebra. Consider
next the element Xg − X0 = Xg − 1 of the ideal M , where we have set
X0 = 1 since it is the unit element of R. Provided g 6= 0,

(Xg − 1)p−1 =
p−1∑
i=0

(−1)p−1−i

(
p− 1
i

)
Xig = (−1)p−1

p−1∑
i=0

Xig =
∑
h∈U

Xh

where U = 〈g〉 = {ig | 0 ≤ i < p} is the subspace over Fp spanned by g. We
have here used the fact that (−1)p−1 = 1, even when p = 2, and the fact that(p−1

i

)
= (−1)i since we are working in a field of characteristic p. Moreover,

if we are given a set of linearly independent elements of G, g1, g2, . . . , gr say,
then one checks easily that

∏r
i=1(X

gi − 1)p−1 =
∑

g∈U X
g, where now U

is the subspace spanned by {g1, g2, . . . , gr}. In fact, we have the following
more precise statement:

Lemma 4.1 Let S be a non-empty subset of G. Then

∏
g∈S

(Xg − 1)p−1 =

{ ∑
g∈〈S〉X

g if S is a linearly independent set
0 otherwise

Proof: We have already remarked on the case of a linearly independent set
S, so suppose S is linearly dependent. We wish to show that the product
is zero. If 0 ∈ S, that result is immediate; otherwise, let S′ be a linearly
independent subset of S with the property that there is a g0 ∈ S − S′
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contained in 〈S′〉. Then the product in question is (
∏

g∈S′(X
g−1)p−1)(Xg0−

1)p−1a where a is an element of R.
By the first part of the lemma,

(
∏

g∈S′

(Xg − 1)p−1)(Xg0 − 1)p−1 = (
∑

g∈〈S′〉
Xg)(

∑
h∈〈g0〉

Xh) =
∑

h∈〈g0〉

∑
g∈〈S′〉

Xg+h.

Since g+h runs through 〈S′〉 as g does for every h ∈ 〈g0〉, this latter sum is∑
h∈〈g0〉

∑
g∈〈S′〉X

g = p
∑

g∈〈S′〉X
g = 0 and we have the result. 2

Now since the ideal M is generated linearly over the field F by the
elements Xg − 1, the ideal M r is generated linearly by elements of the
form

∏
g∈S(Xg − 1) where S is a subset of G of cardinality r. Moreover,

in characteristic 2, the subsets S can be taken to be linearly independent
subsets of the vector space G over F2, by the above Lemma. Hence in this
binary case M r is generated linearly by the characteristic functions of the r-
dimensional subspaces of the vector space G over F2. Because of the simple
result (Corollary 3.11) that R(m − r,m) is generated by the characteristic
functions of subspaces of dimension r, we have proved Berman’s theorem:

Theorem 4.2 In the group algebra F2[G], where G is an m-dimensional
vector space over F2, the Reed-Muller code R(m− r,m) = M r, where M is
the unique maximal ideal of F2[G].

Remark: The theorem is even true for r = 0 provided we define M0 = R,
as is customary, it being the ideal generated by 1. Observe that for r = m
we have the repetition code and, indeed,

∏
g∈B(Xg − 1) = 1 for every basis

B of G.

4.2 Isometries of the group algebra

If R = F [G] is the group algebra of any group G, abelian or not, then any
automorphism σ of the group G induces an automorphism of R, which we
also denote by σ, via

σ(
∑
g∈G

xgX
g) =

∑
g∈G

xgX
σ(g),

as one can easily check. Moreover, in the basis given by Xg, the coding-
theory basis we have chosen, such an automorphism is weight preserving
— i.e. it is also an isometry preserving the Hamming metric. If σ is any
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automorphism of the algebra R that is weight preserving, then it must be
given monomially; i.e. σ(Xg) must be of the form aXh for some h ∈ G
and a ∈ F×; for G an elementary abelian p-group we have — since auto-
morphisms preserve the unit element — σ(X0) = σ((Xg)p) = apX0 = X0,
which implies that a = 1, since F is of characteristic p, and that the auto-
morphism is given by a coordinate permutation. But now one easily checks
that setting h = σ(g) defines an automorphism of G that induces the given
isometry. In the case of an elementary abelian p-group G, the automorphism
group is simply GL(G) where G is viewed as a vector space over the field
Fp. In the case at hand we can choose a basis for G and then GLm(Fp),
where |G| = pm, is precisely the group of isometric automorphisms of our
group algebra. We record this fact with

Proposition 4.3 The group of isometric automorphisms of the group al-
gebra F [G], where G is an elementary abelian p-group and F a field of
characteristic p, is GL(G) = Aut(G) in its natural action on the coordinate
set G.

A group algebra, F [G], comes canonically equipped with an involutory
anti-automorphism induced by the map G → G which sends a group ele-
ment to its inverse. When G is abelian this canonical map is an involutory
automorphism and clearly isometric. We denote this canonical involution
by x 7→ x; in GL(G) it is represented by the map g 7→ −g. As we shall see
this canonical automorphism plays an important role when discussing the
orthogonal of a code viewed in R. It is the analogue of taking the “reverse”
when computing orthogonals to cyclic codes.

The ideal M of R is intrinsically defined since it consists of the nilpotent6

elements of R. It follows that every automorphism fixes M and hence
all powers of M ; in particular, isometric automorphisms fix M r for all r.
There are isometries not given by automorphisms, of course. For example,
multiplication by Xg yields an isometry of R; such an isometry is clearly
given by a translation in the vector space G. Since any ideal of R is fixed by
such a multiplication, all the powers of M are fixed. We thus have AGL(G)
acting as a group of isometries of R and fixing the ideals that are here of
interest. We have now explained in our new language — but in a more
general setting — what we already know about the Reed-Muller codes.

6An element of a ring is nilpotent if some power of it is 0; in our case the generators of
M , viz. Xg − 1, are 0 when raised to the pth power and it follows easily that all elements
of M are nilpotent. M is the Jacobson radical of the ring R.
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In the early history of coding theory there was great interest in deciding
which extended cyclic codes were “affine invariant” and Kasami, Lin and
Peterson [29] settled the question. Because of the historic interest and the
motivation it will provide for the rest of this chapter, we discuss and prove
their result. We are here, as in all of this section, following Charpin [14].

First of all it must be emphasized that “affine invariant” refers not to
the group of isometries discussed above but to a smaller group; a more
precise name would be “translation-invariant extended cyclic codes”. The
point is that one does not demand invariance under the group AGL(G), but
only under the subgroup AGL1(Fq), where now we are viewing G as the
field Fq. There are many more codes invariant under this smaller group,
even if one insists that the codes be self-dual: see, for example, [17] where
all binary, affine-invariant self-dual codes of block length at most 512 have
been found and where evidence is presented to suggest that the number goes
to infinity with the admissible block length. On the other hand, the only
binary codes invariant under the larger group are the Reed-Muller codes
(see Theorem 4.17 below).

We shall see in a moment how to extend the cyclic codes in question so
that they will lie in the ideal M , but let us note first that a linear subspace
of R invariant under translation is simply an ideal of R. Our aim, therefore,
is to characterize those ideals invariant under the isometric automorphisms
given by Xg 7→ Xug where u is a non-zero field element and where we have
identified G with Fq.

4.3 Translation-invariant extended cyclic codes

We prove here the theorem of Kasami, Lin and Peterson characterizing
“affine-invariant” cyclic codes.

Set n = pm− 1 and suppose C ⊂ Fn is a cyclic code. Now C is specified
completely by the nth roots of unity that are roots of its generator polyno-
mial. We shall assume that 1 is not a root for we wish to extend C by an
overall parity check and we wish to avoid trivial cases. Let α be a primitive
nth root of unity, i.e. a primitive element of Fq, where q = pm. Then the
set of roots of the generator polynomial are specified by that subset T of
{1, 2, . . . , n− 1} where αi is a root if and only if i ∈ T . We shall refer to T
as the defining set of the cyclic code C. We embed C in R as follows:

(c0, c1, . . . , cn−1) 7→ (−
n−1∑
i=0

ci)X0 +
n−1∑
i=0

ciX
αi
.
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Clearly the image, which we denote by Ĉ, is invariant under the map∑
g∈G

xgX
g 7→

∑
g∈G

xgX
αg

and, indeed, any linear subspace of R invariant under this map comes from
a cyclic code. Since α is a generator of F×

q the image is invariant under the
maps given by Xg 7→ Xug for all non-zero u ∈ Fq. We have, by our choice
of α, embedded all cyclic codes over F in M .

Consider next the following F -linear maps φs of R into the space G = Fq:

φs(
∑
g∈G

xgX
g) =

∑
g∈G

xgg
s,

where 0 ≤ s < n. With the proviso that 00 = 1, the map φ0 is simply the
augmentation map with kernel M . Observe that if i is in the defining set of
a cyclic code C, then the image, Ĉ, of C has the property that φi(c) = 0 for
all c ∈ Ĉ. Moreover, for any embedded cyclic code, φ0(c) = 0 for all c ∈ Ĉ.
Thus, we “extend” T to T̂ = T ∪ {0} and note that the image of the cyclic
code is defined by T̂ in the sense that c ∈ Ĉ if and only if φi(c) = 0 for all
i ∈ T̂ . Hence we abuse the terminology and refer to T̂ as the defining set
of Ĉ.

Unlike φ0, φs is not an algebra homomorphism for s > 0. It does,
however, have an important multiplicative property which we now explain.
Let N = {0, 1, . . . , n} and define a partial order on N by k � l if and only
if kν ≤ lν for all ν, where k =

∑m−1
ν=0 kνp

ν and l =
∑m−1

ν=0 lνp
ν are the p-ary

expansions of k and l. We give k ≺ l the obvious meaning: k � l but k 6= l.
Then

Proposition 4.4 For all x, y ∈ R,

φs(xy) =
∑
i�s

(
s

i

)
φi(x)φs−i(y).

Proof: Setting x =
∑

g∈G xgX
g and y =

∑
h∈G yhX

h and writing out the
definition of φs(xy) yields

φs(xy) =
s∑

i=0

(
s

i

)
φi(x)φs−i(y)
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and an application of Lucas’s theorem7 gives the result. 2

We have immediately the following

Corollary 4.5 If I is an ideal of R and φs(x) = 0 for all x ∈ I, then
φi(x) = 0 for all x ∈ I and i � s.

Proof: Since xXg ∈ I for all x ∈ I the formula above yields

φs(xXg) =
∑
i�s

(
s

i

)
φi(x)gs−i = 0

for all g ∈ G× and unless the φi(x) = 0 for all i � s we would have a
non-zero polynomial,

∑
i�s

(s
i

)
φi(x)Zs−i, of degree less than n with n roots,

namely the elements of G×. 2

The discussion above and the corollary yield the theorem of Kasami, Lin
and Peterson:

Theorem 4.6 A cyclic code of block length pm − 1 has an extension which
is translation invariant if and only if its defining set T does not contain 0
and has the property that s ∈ T implies i ∈ T for all i � s.

Proof: Clearly an extended cyclic code that is translation invariant is an
ideal and hence its defining set has the required property. On the other hand
if an extended cyclic code has a defining set with the required property the
formula shows that φs(cXg) = 0 for all c ∈ Ĉ and all s ∈ T or, in other
words, that c ∈ Ĉ implies cXg ∈ Ĉ for all g ∈ G or that Ĉ is translation
invariant. 2

The powers of M are, of course, extended cyclic codes that are trans-
lation invariant since they are invariant under the larger group AGL(G).
Thus we should be able to determine their generator polynomials. The
reader should observe that these polynomials will depend on the choice of
α, but the defining sets are intrinsic to R since they are given by the ap-
propriate φi’s. This intrinsic nature of the group-algebra approach has been
exploited in diverse directions by Charpin and her students. The interested
reader may wish to consult [16, 17]. In the following section we give the
promised defining sets for the Reed-Muller codes and look briefly at their
p-ary analogues.

7Lucas’s theorem states that
(

s
i

)
≡
∏

ν

(
sν
iν

)
modulo p. Hence

(
s
i

)
is non-zero if and

only if i � s.
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4.4 The generator polynomials of punctured Reed-Muller
codes and their p-ary analogues

We will in fact determine the defining set of R(r,m). If that set is T̂ =
T ∪{0} and α is the chosen nth-root of unity then the generator polynomial
of R(r,m)∗ is simply

∏
i∈T (Z − αi). Now R(r,m) = Mm−r and we are

interested in the case where r < m. For r = m−1 we know that T = ∅ since
M is, clearly, annihilated only by φ0 and, of course, R(m−1,m)∗ = F 2m−1

2 ,
the whole ambient space. Since the dimension of R(r,m) is k =

∑r
i=0

(m
i

)
we know that |T | = 2m − 1 − k =

∑m−r−1
i=0

(m
i

)
− 1 and that therefore

|T̂ | =
∑m−r−1

i=0

(m
i

)
. This is the cardinality of the set of integers less than n

whose binary expansions have fewer than m − r entries equal to 1. As the
next proposition will show, T̂ is precisely this defining set and therefore the
generator polynomial of R(r,m)∗ is∏

0<wt2(i)<m−r

(Z − αi)

where wt2 is the function given by the following more general

Definition 4.7 For any integers, k ≥ 0 and q > 1, the q-weight of k,
written wtq(k), is

wtq(k) =
∞∑

ν=0

kν ,

where k =
∑∞

ν=0 kνq
ν is the q-ary expansion of k.

Proposition 4.8 The defining set of the ideal M t in F2[G], where G is the
elementary abelian 2-group of order 2m, is that subset of {0, 1, . . . , 2m − 2}
whose elements have binary expansions containing fewer than t entries equal
to 1. That is, the defining set is {i | 0 ≤ i < 2m − 1 and wt2(i) < t}.

Proof: We use induction on t. We have the result for t = 1 since 0 is the
only integer k with wt2(k) = 0. Suppose the result true for t and consider
t+ 1. Now, a typical generating element of M t+1 is of the form x(Xg − 1)
where x ∈ M t. By the nested nature of the ideals we know, of course, that
M t+1 is annihilated by all φs with wt2(s) < t and we need only show that
it is annihilated by those φs with wt2(s) = t. For such an s we have that

φs(x(Xg − 1)) =
∑
i�s

(
s

i

)
φi(x)φs−i(Xg − 1)
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= φs(x)φ0(Xg − 1) +
∑
i≺s

(
s

i

)
φi(x)φs−i(Xg − 1).

But the first summand on the right side is 0 since Xg − 1 ∈ M and the
second summand is 0 since i ≺ s implies wt2(i) < wt2(s) = t. Since we
know the dimension of the ideal, we must have precisely the defining set. 2

The above proof is due to Charpin [13]; observe that it does not depend
on the fact that we are in characteristic 2 and, therefore, proves more. We
have, in fact, proved the following

Proposition 4.9 Let R = F [G] where G is an elementary abelian p-group
and F a field of characteristic p. Then the ideal M t, where M is the ideal
of nilpotent elements of R, is annihilated by all φs with wtp(s) < t.

In the event that the field F is not a subfield of G one must take an overfield
of both in order to have a target for the functions φs, but this does not effect
the proof.

Of course M t is an extended cyclic code invariant under translation,
but since we have not yet computed its dimension, we cannot assert that
we have its defining set — as we did in the binary case. The proposition
does, however, show that the dimension is at most equal to |{i | 0 ≤ i <
pm − 1,wtp(i) ≥ t}| since we are in the presence of an extended cyclic code
— which means that dimF (M t) = pm − |T̂ |, where T̂ is the defining set
of M t. We will soon exhibit linearly independent elements that will give
us not only this dimension but also the so-called “Jennings8 Basis” of the
algebra F [G].

Let {g0, g1, . . . , gm−1} be a basis of the Fp-space G. For any k =∑m−1
ν=0 kνp

ν , where 0 ≤ kν < p for all ν, set Jk =
∏m−1

ν=0 (Xgν − 1)kν . Clearly
Jk ∈ M t whenever wtp(k) ≥ t. Moreover, these elements are linearly in-
dependent over F , where F is any field of characteristic p. For suppose∑

wtp(k)≥t akJk = 0, where all ak ∈ F . Choose j such that wtp(j) is a mini-
mum with aj 6= 0 and set j =

∑m−1
ν=0 jνp

ν . Multiplying the linear relation by∏m−1
ν=0 (Xgν − 1)p−1−jν , bearing in mind that (Xg − 1)p = 0 for any g, yields

aj
∏m−1

ν=0 (Xgν − 1)p−1 = aj1 = 0 by Lemma 4.1, and hence that aj = 0.
We have thus proved the following

8In fact, this basis first appeared in a paper by Lombardo-Radice, [38]. Lombardo-
Radice goes over the same ground as Jennings did ([28]) but only for abelian groups;
Jennings was aware of the work of Lombardo-Radice and extended that work to arbitrary
p-groups.
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Theorem 4.10 Let G be an elementary abelian p-group of order pm and
F a field of characteristic p. For any basis {g0, . . . , gm−1} of G, the pm

elements
m−1∏
ν=0

(Xgν − 1)eν

where 0 ≤ eν < p form a linear basis for R = F [G]. Moreover,

{
m−1∏
ν=0

(Xgν − 1)eν |
m−1∑
ν=0

eν ≥ t, 0 ≤ eν < p}

form a basis of M t, where M is the radical of R.

Such a basis for F [G] was exploited by Jennings [28] and is called a
Jennings basis of the group algebra. It is, as the construction shows, in-
dependent of the coefficient field of the modular algebra and simultaneously
exhibits bases for all powers of the radical.

We note here that the index of nilpotency of the radical is 1 +m(p− 1);
i.e.

M1+m(p−1) = 0

but Mk 6= 0 for any smaller k. Just as in the binary case, Mm(p−1) is the
repetition code generated by

∏m−1
ν=0 (Xgν − 1)p−1 =

∑
g∈GX

g = 1; it is the
minimal ideal of R, which means that it is contained in every non-zero ideal
of R, a fact that is easily seen using the Jennings basis.

Corollary 4.11 The code M t is a code of block length pm, dimension
|{k|0 ≤ k < pm,wtp(k) ≤ m(p − 1) − t}| and minimum weight (b + 1)pa,
where t = a(p − 1) + b with 0 ≤ b < p − 1. As an extended cyclic code its
defining set is {i | 0 ≤ i < pm − 1, wtp(i) < t}.

Proof: The dimension is |{k|0 ≤ k < pm,wtp(k) ≥ t}|, of course, but
taking the set of complements, (pm − 1) − k, gives the above description
— which is sometimes more useful. As for the minimum weight, the BCH
bound implies that the minimum weight is at least as announced, since
k =

∑a−1
ν=0(p−1)pν+bpa = (b+1)pa−1 is the smallest integer with wtp(k) = t.

On the other hand, (Xg0 −1)b∏a
ν=1(X

gν −1)p−1 yields a vector of the given
weight since the product is the characteristic function of the a-dimensional
subspace generated by {g1, . . . , ga}, and multiplying by (Xg0 − 1)b merely
takes the sum of b+ 1 distinct, weighted translates.2
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Observe that the minimum-weight vectors we have exhibited have their
supports lying in an (a+1)-dimensional subspace of G, namely the subspace
generated by {g0, g1, . . . , ga}. When t is divisible by p − 1 these minimum-
weight vectors are characteristic functions of subspaces — just as in the
binary case.

Corollary 4.12 If t = a(p − 1) then M t contains the incidence vector of
every a-flat of the affine geometry AGm(Fp) and hence the code over Fp of
the design of points and a-flats of AGm(Fp).

Example 4.13 There is a simple formula, easily derived, for the dimension
of M (m−1)(p−1), since it is the number of ways of selecting at most p − 1
objects — repetitions allowed — from a set of m objects. One has then (cf.
Example 5.6) that

dim(M (m−1)(p−1)) =

(
m+ p− 1

m

)

and that among the minimum-weight vectors one finds the characteristic
functions of flats of codimension 1. As we shall see it is the code over Fp of
this affine design.

4.5 Orthogonals and annihilators

We have already seen that for the Reed-Muller codes

R(r,m)⊥ = R(m− r − 1,m)

for 0 ≤ r < m, or — in the current language — that the Reed-Muller code
(Mm−r)⊥ is precisely M r+1. Moreover, the same equality is true if we
replace the orthogonal by the annihilator in the group algebra.

More precisely, if S is any subset of R we set

Ann(S) = {x ∈ R |xs = 0 for all s ∈ S}.

Then, since Mm(p−1)+1 = {0}, Ann(M t) ⊇ Mm(p−1)+1−t and a dimen-
sion argument yields the equality. We explain the entire matter using the
canonical automorphism

x =
∑
g∈G

xgX
g 7→

∑
g∈G

xgX
−g =

∑
g∈G

x−gX
g = x
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introduced in Section 4.2.
In order to eliminate visual confusion we will use the following notation

for the usual inner product:

[x, y] =
[∑

xgX
g,
∑

ygX
g
]

=
∑

xgyg.

Of course, for a code C ⊆ R,

C⊥ = {x ∈ R | [x, c] = 0 for all c ∈ C}.

We have immediately the following “adjoint” relationship:

[x, y] = [x, y].

This shows that S⊥ = S⊥, where we have set, for S ⊆ R, S = {s | s ∈ S}.
Now, since xy = 0 if and only if

∑
h∈G xk−hyh =

∑
h∈G xk+hy−h = 0 for

all k ∈ G, xy = 0 if and only if [Xkx, y] = 0 for all k ∈ G, and we get the
following result — which is the analogue of Theorem 5.23 of Chapter 1 giving
the orthogonals to cyclic codes and, moreover, admits a generalization to a
more general case: Proposition 1.2 of Chapter (Ward).

Proposition 4.14 For an ideal I of R

Ann(I) = I⊥ = I
⊥
.

The ideals we are concerned with are invariant under all the isometric au-
tomorphisms and, in particular, under the canonical automorphism. Hence
we have

Corollary 4.15 If an ideal I is invariant under the canonical automor-
phism, i.e. if I = I, then Ann(I) = I⊥. In particular, in the group algebra
R we have that

Ann(M t) = (M t)⊥ = Mm(p−1)+1−t.

Example 4.16 Taking t = m(p − 1), we have that M = (Fp1)⊥ and, in
particular, is of codimension 1 in R, a fact that has emerged in various ways
during our discussion of the group-algebra approach.

Remark: Observe that even if an ideal is not invariant under the canonical
automorphism, the proposition shows that its annihilator and its orthogonal
are equivalent codes.
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4.6 The codes of the designs from AGm(Fp)

We next prove that M r(p−1) is the code, when p is prime, of the design
of points and r-flats of the affine geometry AGm(Fp), generalizing what we
already know when the prime is 2 (the Reed-Muller case). This more general
result follows easily from a corollary of a theorem of Delsarte [19] which
characterizes the subspaces left invariant by AGLm(Fq) acting naturally
on the group ring Fq[G] where G is the additive group of the field Fqm .
The corollary characterizes the codes in the group ring R invariant under
AGLm(Fp) acting naturally on R as precisely the powers of M . A recent
elegant proof of this result by Weidner [54], using the Jennings basis, will
be sketched now, but we will return to this matter in the next section.

Theorem 4.17 Let R be the group ring over Fp of an elementary abelian
p-group, G, of order pm with AGL(G) = AGLm(Fp) — the automorphism
group of the group G — acting naturally on R. Let M be the radical of R.
Then the only subspaces of R invariant under AGLm(Fp) are the powers of
M . In group-theoretical terms R, viewed as a module over AGLm(Fp), is
uniserial 9 and M t/M t+1 is an irreducible GLm(Fp)-module for 0 ≤ t ≤
m(p− 1).

Proof: We know, of course, that the powers of M are invariant under
AGLm(Fp). Any subspace invariant under AGLm(Fp) is necessarily an ideal
of R and, since Mm(p−1)+1 = 0, given any ideal I of R there is a smallest
t with M t ⊆ I and M t−1 6⊆ I — unless, of course, I = R in which case
we have our assertion since, by convention, R = M0. If I 6= M t, then
there is an x ∈ I which is not in M t and because I is an ideal multiplying
by a suitable element of R insures that x ∈ M t−1 ∩ I but x 6∈ M t. But
then M t−1 ∩ I would be a proper AGLm(Fp)-submodule of M t−1 strictly
containing M t, an impossibility whenever M t−1/M t is irreducible. Thus
we are reduced to showing that M t/M t+1 is irreducible as an AGLm(Fp)-
module for all t. In fact we will show that it is an irreducible GLm(Fp)-
module for all t. (A slight change at the end of the argument would, in
fact, show that it is an irreducible SLm(Fp)-module but we do not need this
generality for the purpose at issue.)

Of course, the action of GLm(Fp) on R is given once a basis of the
elementary abelian group G is given and then that action is given by the

9A module is “uniserial” if it has only one composition series and “irreducible” if it
has no proper submodules.
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realization of the group via non-singular m×m matrices over Fp. We slightly
change our notation letting the basis of the elementary abelian group be
g1, g2, . . . , gm. Then, for an element σ ∈ GLm(Fp) represented by the matrix
(aij), we have

σgi =
m∑

j=1

aijgj

and hence, by definition,

σXgi = Xσgi = X
∑m

j=1
aijgj .

Now set xi = Xgi − 1. A basis for M/M2 is given by the images of
x1, x2, . . . , xm and a basis for the quotient M t/M t+1 is given by the images
of elements of the form

∏
xki

i where 0 ≤ ki ≤ p − 1 and
∑
ki = t. These

elements are part of the Jennings basis of R given by our choice of the basis
of G. Moreover, the image of

{
m∏

i=1

xki
i |0 ≤ ki ≤ p− 1,

∑
ki = t}

in M t/M t+1 is a basis (over Fp) of that GLm(Fp)-module. We will sys-
tematically throughout the proof work with these elements and ignore any
elements of M t+1 that arise during calculations; this is tantamount to work-
ing in the quotient space. As an example of this caveat we note — since

Xg+h − 1 = (Xg − 1) + (Xh − 1) + (Xg − 1)(Xh − 1)

and since we are working over a prime field — that, modulo M2,

σ(xi) = σ(Xgi − 1) = X
∑

aijgj − 1 ≡
m∑

j=1

aijxj

when σ is given by the matrix (aij). Of course, since the σ are algebra
homomorphisms, we have that

σ(
m∏

i=1

xki
i ) =

m∏
i=1

(σxi)ki .

It is well-known — and easy to prove — that a p-Sylow subgroup of
GLm(Fp) is given by the lower triangular matrices with 1’s on the diagonal
and that any non-zero S-module (when the field is Fp) contains a non-zero



4 THE GROUP-ALGEBRA APPROACH 40

element left fixed by all elements of S.10 Letting S be this p-Sylow subgroup
we investigate the action of S on M t/M t+1, which we also denote by V t.

One first shows by induction on m that every non-zero S-submodule,
W , of V t contains the image of the element wt = xp−1

1 · · ·xp−1
a xb

a+1 where
t = a(p − 1) + b with 0 ≤ b < p − 1. For m = 1 this is obvious since, in
this case, modulo M t+1, M t is generated over Fp by xt

1. Let m > 1 and
let w be an element of M t not in M t+1 that represents an element of the
submodule W fixed by all elements of S; write

w =
p−1∑
i=0

wix
i
m

where wi ∈ M t−i ∩ 〈x1, . . . , xm−1〉. Set k = max{i|wi 6= 0}. For k = 0
the induction on m gives the result. Suppose k 6= 0. For 1 ≤ i < m define
σi ∈ S by:

σi(xj) =

{
xj if j 6= m ;
xm + xi if j = m .

Then

σiw =
k∑

j=0

wj(xm + xi)j =
k∑

j=0

vjx
j
m

for some vj ∈ M t−j ∩ 〈x1, . . . , xm−1〉 with vk−1 = wk−1 + kxiwk. On the
other hand σiw = w and hence vk−1 = wk−1 yielding kxiwk = 0. But
k is a positive integer less that p and hence non-zero in Fp. So we have
that xiwk = 0 for 1 ≤ i < m and it follows that wk is a scalar multiple of∏m−1

1 xp−1
i which entails a = m − 1 and b = k. But then, wi, for i < k, is

in M (m−1)(p−1)+k−i ∩ 〈x1, . . . , xm−1〉 = 0 and w is a scalar multiple of the
sought wt. Thus, we have the assertion.

Next, setting t′ = m(p− 1)− t, consider the bilinear map

φ : V t × V t′ → V m(p−1) ≈ Fp

given by φ(x, y) = xy. It is invariant under GLm(Fp), i.e. φ(σx, σy) =
φ(x, y) for all σ. Moreover, the form is non-degenerate. Thus there is a
vt ∈ V t with φ(vt, wt′) = 1. It follows that

vt = xb
a

m∏
i=m+1−a

xp−1
i .

10In other words, over Fp a p-group has only the trivial irreducible representation.
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We claim that vt generates V t as an S-module: let W be the S-submodule
generated by vt and set

W⊥ = {y ∈ V t′ |φ(w, y) = 0 for all w ∈W}.

W⊥ is also an S-submodule because of the invariance and, because wt′ is
not in W⊥, W⊥ = 0 — which gives that W = V t.

Finally, consider the the element of GLm(Fp) that sends xi to xm+1−i

for 1 ≤ i ≤ m. It sends wt to vt which shows that any non-trivial GLm(Fp)-
submodule of V t must, in fact, be V t. Thus these modules are irreducible. 2

Note: Another proof — somewhat more robust since it has something to
say about non-prime fields — of this result due to Mortimer [44] will be
given in Section 5.5.

Now the code generated by the r-flats of the affine geometry AGm(Fp)
is clearly invariant under the group AGLm(Fp) and is contained in M r(p−1)

but not in M r(p−1)+1. This yields

Theorem 4.18 For any prime p, the code of the design of points and r-flats
of the affine geometry AGm(Fp) is M r(p−1).

Since the dimension of M (m−1)(p−1) is easy to compute we have a proof
of the following important fact:

Corollary 4.19 The dimension of the code over Fp of the design of points
and (m− 1)-flats of AGm(Fp) is(

m+ p− 1
m

)
.

It is equally easy to compute the dimension of Mp−1, which gives us the
following

Corollary 4.20 The dimension of the code over Fp of the design of points
and lines of AGm(Fp) is

pm −
(
m+ p− 2

m

)
.
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Proof: The proof consists of observing that, by complementation, one need
only count the number of ways of choosing p− 2 objects from m objects —
repetitions allowed. 2

Remark: In both cases the formulas are simple binomial coefficients since
one does not have to worry about the constraint p − 1 on the number of
repetitions allowed.

Although we now know the dimensions and minimum weights of the
codes coming from AGm(Fp) we have not yet determined the nature of
the minimum-weight vectors nor have we discussed the codes coming from
PGm(Fp). We postpone that discussion until Section 5.7 where all the rel-
evant facts are established. See, for example, Theorem 5.42 and Theo-
rem 5.44.

5 Generalized Reed-Muller codes

5.1 Introduction

Our description of generalized Reed-Muller codes is based, primarily, on
the now classic paper of Delsarte, Goethals and MacWilliams [18]. We
have, however, reworked the material in several important respects and have
introduced a different notation. The definitions are based on the polyno-
mial codes introduced by Kasami, Lin and Peterson [30, 31]; these authors
introduced the primitive generalized Reed-Muller codes and Weldon [55]
introduced the non-primitive generalized Reed-Muller codes and the single-
variable approach using the Mattson-Solomon polynomial. Our treatment
of that polynomial appears to be new in that we view it in a quotient ring
that is slightly different from the one traditionally used.

Were it not for the complication introduced by moving from a prime
field to Fq, where q is a proper prime power, much of the material in this
section could be avoided. The reader interested only in the prime case will,
however, need to read Section 5.7 and the previous material necessary for
its understanding.

5.2 Definitions

First we describe the so-called m-variable approach. This is entirely anal-
ogous to our approach to the Reed-Muller codes (which are, simply, the
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generalized Reed-Muller codes for q = 2) and the generalization is straight-
forward (the functions involved being Fq-valued — rather than boolean —
and having Fq-valued variables).

Let q = pt, where p is a prime. Set E = Fq and let V be a vector space
of dimension m over E. Again we will denote a general vector in V by v,
and we will take V to be the space Em of m-tuples, with standard basis
e1, . . . , em, where

ei = (0, 0, . . . , 1︸ ︷︷ ︸
i

, 0, . . . , 0).

Our codes will be q-ary codes, i.e. codes over E, and the ambient space will
be the function space EV , with the usual basis of characteristic functions of
the vectors of V . As in Section 3, we can denote the members f ∈ EV by
functions of the m-variables denoting the coordinates of a variable vector in
V , i.e. if

x = (x1, x2, . . . , xm) ∈ V,
then f ∈ EV is given by

f = f(x1, x2, . . . , xm)

and the xi take values in E. Since every element in E satisfies aq = a, the
polynomial functions in the m variables can be reduced modulo xq

i − xi (as
was done in Section 3 for q = 2) and we can again form the set M of qm

monomial functions

M = {xi1
1 x

i2
2 . . . x

im
m | 0 ≤ ik ≤ q − 1, k = 1, 2, . . . ,m}. (1)

For a monomial in M the degree ρ is the total degree, i.e. ρ =
∑m

k=1 ik and
we have that 0 ≤ ρ ≤ m(q−1). We will shortly show that M forms another
basis (that we will not use for the codes) of EV — as was done for q = 2;
we do this in an entirely analogous way by expressing each characteristic
function of a vector as a polynomial — in fact, a linear combination, with
coefficients in Fq, of members of M:

Lemma 5.1 For w = (w1, w2, . . . , wm) ∈ V ,

vw =
m∏

i=1

(
1− (xi − wi)q−1

)
.

Proof: Since aq−1 = 1 for any non-zero a ∈ E, 1−(xi−wi)q−1 = 0 whenever
xi 6= wi; thus the polynomial function on the right is clearly the same as the
characteristic function on the left. 2
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Example 5.2 The polynomial 1− (xi− a)q−1 is the characteristic function
of the (m− 1)-flat in Em given by the equation Xi = a. This polynomial is
not linear unless q = 2.

Since EV has dimension qm, M, being of cardinality qm, is another basis
for EV — by the above lemma. The space EV can then be viewed as the
space of all polynomials (reduced modulo xq

i −xi) in the m variables; i.e. all
linear combinations with coefficients in E of the monomials in M. We use
this interpretation to define the generalized Reed-Muller codes:

Definition 5.3 Let E = Fq, where q = pt and p is a prime, and set V =
Em. Then for any ρ such that 0 ≤ ρ ≤ m(q−1), the ρth order generalized
Reed-Muller code RE(ρ,m) over E is the subspace of EV (with basis
the characteristic functions of the vectors in V ) of all reduced m-variable
polynomial functions of degree at most ρ. Thus

RE(ρ,m) = RFq(ρ,m) =

〈
xi1

1 x
i2
2 . . . x

im
m ∈M|

m∑
k=1

ik ≤ ρ

〉
.

Example 5.4 (1) For q = 2 and 0 ≤ ρ ≤ m, RF2(ρ,m) = R(ρ,m).

(2) For any q, RFq(0,m) = Fq = 〈〉 and R(m(q − 1),m) = F qm

q , the
entire ambient space.

The dimension of a generalized Reed-Muller code can be obtained by
simply counting the number of elements in its obvious monomial basis:

Theorem 5.5 For any ρ such that 0 ≤ ρ ≤ m(q − 1),

dim(RFq(ρ,m)) =
ρ∑

i=0

m∑
k=0

(−1)k

(
m

k

)(
i− kq +m− 1

i− kq

)

=
m∑

k=0

(−1)k

(
m

k

)(
m+ ρ− kq

ρ− kq

)
.

Proof: We use the fact that the number of ways of picking j objects from
a set of m objects — with repetitions allowed — is

(j+m−1
m−1

)
=
(j+m−1

j

)
.

An inclusion-exclusion argument shows that the inner sum is the number
of ways of picking i objects from a set of m objects, when no object can
be chosen more than q − 1 times. Summing on i yields the result. The
simplification to a single sum is due to Calkin. 2
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Example 5.6 (1) By a direct count we have dim(RFq(1,m)) = 1 + m,
just as in the binary case — but note that the function xi is zero
on the hyperplane Xi = 0 but takes on many different values off the
hyperplane unless q = 2. Since every non-constant linear polynomial
in the m variables has qm−1 zeros, these codes have minimum weight
qm − qm−1 = qm−1(q − 1) and all code vectors except the zero vector
and non-zero multiples of 1 have this weight.

(2) By a direct count we have, for 0 ≤ ρ ≤ q − 1, dim(RFq(ρ, 1)) = 1 + ρ,
and, since a polynomial in one variable of degree at most ρ can have
at most ρ distinct roots, the minimum weight in this code is q − ρ,
there being a polynomial of degree ρ with exactly ρ distinct roots since
ρ < q. These codes are of genus zero in the sense of Tsfasman11 and
Vlăduţ, [53].

(3) More generally, if ρ ≤ q − 1 no choice of i1, i2, . . . , im with
∑
ik = ρ

will ever have an ik > q − 1 and inclusion-exclusion is unnecessary in
the proof. Moreover, by introducing a “dummy” object the number
of ways of choosing at most ρ things — repetitions allowed — from a
set of m objects is easily seen to be

(ρ+m
m

)
and hence one sees directly

that

dim(RFq(ρ,m)) =

(
ρ+m

m

)
, for 0 ≤ ρ ≤ q − 1.

Just as in the binary case, the codes orthogonal to generalized Reed-
Muller codes are again generalized Reed-Muller codes. Again the proof is
entirely analogous to the binary case, but we need a lemma which generalizes
the result that R(m − 1,m) consists of even-weight vectors. The required
result is an easy consequence of the orthogonality relations; thus the proof
depends simply on the fact that

∑n−1
i=0 ω

i = 0 whenever ω is an nth root of
unity different from 1.

Lemma 5.7 If f ∈ EV has degree ρ < m(q − 1) as a polynomial in
x1, x2, . . . , xm then ∑

w∈V

f(w) = 0.

In fact, if f is any linear combination of the elements of M with coefficients
in any overfield of E, the same result holds.

11These codes are usually referred to as MDS codes, or sometimes optimal codes, in the
coding literature; we have chosen to adopt the new terminology introduced in [53].
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Proof: The result is clearly true for any constant function (since the block
length of the code is a multiple of, in fact a power of, p, the characteristic
of Fq) so we need to prove the assertion only for monomial functions, i.e.
elements of M, of positive degree less than m(q − 1). Moreover, if in such
a monomial any ik = 0, the sum is again a multiple of q and hence 0. We
thus restrict ourselves to those monomials in which every xi appears. The
orthogonality relations for the group E× × . . . × E×, using E itself as the
field where the characters take their values, yields immediately, taking η
as the principal character and χ the character sending a = (a1, . . . , am) to
ai1

1 . . . a
im
m , that ∑

a

ai1
1 . . . a

im
m = 0

since there is some k for which ik < q − 1, and since the sum only need be
taken over those vectors all of whose entries are non-zero. 2

Theorem 5.8 For ρ < m(q − 1)

RFq(ρ,m)⊥ = RFq(m(q − 1)− 1− ρ,m).

Proof: If f has degree at most ρ and g has degree at most m(q− 1)− 1−ρ,
then the product fg has degree less than m(q−1). Thus Lemma 5.7 implies
that ∑

w∈V

f(w)g(w) = 0

and the corresponding codewords are orthogonal. Hence

RFq(ρ,m)⊥ ⊇ RFq(m(q − 1)− 1− ρ,m)

and now we need only check the dimensions: the involution of M that
sends xi1

1 . . . x
im
m to xq−1−i1

1 . . . xq−1−im
m yields the fact that the number of

monomials of degree greater than m(q− 1)− 1−ρ is equal to the number of
degree less than or equal to ρ and hence dim(RFq(m(q − 1)− 1− ρ,m)) =
qm − dim(RFq(ρ,m)), as required. 2

The generalized Reed-Muller codes are codes over possibly non-prime
fields and thus could not be the codes of designs coming from affine geome-
tries — unless q happens to be a prime. They do contain the incidence vec-
tors of flats in the geometry, as we will shortly see. In order to demonstrate
this it is convenient, notationally, to make an observation — important in
itself — about the automorphism group of RFq(ρ,m):
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Theorem 5.9 For 0 ≤ ρ ≤ m(q−1), the automorphism group of RFq(ρ,m)
contains the affine group AGLm(Fq) in its natural action on V = Fm

q .

Proof: Recall that for any code C ⊆ FP , an automorphism of C is a
permutation σ of P that preserves C, i.e. for which, if c ∈ C, cσ ∈ C, where
cσ is defined by cσ(P ) = c(σ(P )) for P ∈ P.

Now γ ∈ AGLm(Fq) is given by

γ : v 7→ Av + a,

where v,a ∈ V = Em — viewed as column vectors — and A is a non-singular
m×m matrix over E. Thus, for f ∈ RFq(ρ,m), fγ is defined by

fγ(x) = f(Ax + a),

and so, clearly, fγ ∈ RFq(ρ,m). 2

Note: Berger and Charpin [5] have shown that AGLm(Fq) is the full group
of permutation automorphisms of these generalized Reed-Muller codes —
when, of course, 0 < ρ < m(q − 1). See Chapter (Huffman) for the details.

Theorem 5.10 For 0 ≤ r ≤ m and ρ ≥ r(q − 1), the generalized Reed-
Muller code RFq(ρ,m) contains the incidence vector of any (m − r)-flat of
AGm(Fq).

Proof: Any (m− r)-flat in AGm(Fq) consists of all the points x of V satis-
fying r independent equations

m∑
j=1

aijXj = wi, for i = 1, 2, . . . , r

where all aij and wi are in Fq. If the code RFq(ρ,m) contains the incidence
vector of some t-flat, then it will contain the incidence vector of every t-flat,
since the affine group AGLm(Fq) acts transitively on t-flats and, as we have
just seen, preserves the code. So we need only construct one (m − r)-flat
that is in RFq(ρ,m).

Consider the polynomial

p(x1, . . . , xm) =
r∏

i=1

(
1− xq−1

i

)
,
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of degree r(q − 1). Then p(x1, . . . , xm) = 0 on V unless xi = 0 for i =
1, 2, . . . , r. Thus the codeword corresponding to p(x) has the entry 1 at
points on the (m− r)-flat defined by the r equations

X1 = 0, X2 = 0, . . . , Xr = 0

and the entry 0 at points off the flat. Hence it is the incidence vector of this
(m− r)-flat. Since p(x1, . . . , xm) ∈ RFq(ρ,m) for ρ ≥ r(q − 1), we have the
result. 2

As in the binary case the proof shows more, namely that the generalized
Reed-Muller code contains all (m − s)-flats for 0 ≤ s ≤ r. Moreover, the
subcode generated by the (m−r)-flats contains, by the same induction argu-
ment used in the binary case, all (m− s)-flats for 0 ≤ s ≤ r. Note, however,
that when using characteristic functions of t-flats to obtain characteristic
functions of (t + 1)-flats one could use coefficients other than 1 provided
q > 2 and hence obtain vectors that are supported on the (t + 1)-flat but
are not characteristic functions.

Example 5.11 Take q = 3 and m = 2. The geometry is then AG2(F3), the
affine plane of order 3. Let C = C3(AG2(F3)) be the code over F3 associated
with this plane, i.e. the code generated by the incidence matrix of the plane.
The incidence vectors of the lines (1-flats) will be in RF3(ρ, 2) for ρ = 2, 3
and 4. In fact C = RF3(2, 2), while, as we know, RF3(3, 2) = (F3)⊥ and
RF3(4, 2) = F 9

3 , the entire ambient space.

This example is indicative of what happens in the case of planes over
prime fields. A rather easy argument using elementary divisors (see [2,
Chapter 6]) shows that the dimension of the code of any affine plane of prime
order p is

(p+1
2

)
and since the computation of the dimension of RFp(p− 1, 2)

is also easy (see Example 5.6 above) and also yields
(p+1

2

)
we have a proof,

which avoids the use of Delsarte’s theorem, of the following

Proposition 5.12 The code over Fp of the desarguesian affine plane of
prime order p is the generalized Reed-Muller code RFp(p− 1, 2).

Since it is easy to see ([2, Corollary 6.4.1]) that the code over Fp of
any affine plane of order p has as minimum-weight vectors only the scalar
multiples of the characteristic functions of lines of the plane, the above
proposition yields an elementary proof of the following
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Corollary 5.13 The generalized Reed-Muller code RFp(p− 1, 2) is a

[p2,
p(p+ 1)

2
, p]

code over Fp all of whose minimum-weight vectors are scalar multiples of
characteristic functions of 1-flats of F 2

p .

In terms of the modular algebra R = Fp[G], where G is the elementary
abelian p-group of order p2, the result above is expressed as

Mp−1 = RFp(p− 1, 2) = Cp(AG2(Fp)).

These equalities should, strictly speaking, be isomorphisms but if we take the
point of view that the set on which the various functions involved are defined
is a fixed copy of F 2

p , we actually can assert equality. We shall see later
on (Theorem 5.19) that, more generally, in the prime case Mm(p−1)−ρ =
RFp(ρ,m), which is a generalization of Berman’s theorem.

Just as for the Reed-Muller codes, we can remove a coordinate position
to obtain a code of length qm − 1, which turns out to be cyclic:

Definition 5.14 The ρth order punctured generalized Reed-Muller
code, where 0 ≤ ρ < m(q− 1), denoted by RFq(ρ,m)∗, is the code of length
qm − 1 obtained by deleting the coordinate position 0 from RFq(ρ,m).

For q = 2, RF2(ρ,m)∗ = R(ρ,m)∗, the punctured Reed-Muller code.
These are also called shortened generalized Reed-Muller codes (see van Lint
[37]) or cyclic generalized Reed-Muller codes (see Blake and Mullin [8]) since
our next result will show they are cyclic (which we already know for q = 2).
Observe also that any coordinate position can be deleted in place of 0, since
AGLm(Fq) acts transitively on the vectors of V = Em.

Theorem 5.15 For any ρ such that 0 ≤ ρ < m(q − 1), the automorphism
group of RFq(ρ,m)∗ contains the general linear group GLm(Fq). In partic-
ular, RFq(ρ,m)∗ is a cyclic code.

Proof: The group GLm(Fq) is the stabilizer of 0 in AGLm(Fq), so it ob-
viously acts on RFq(ρ,m)∗. We can obtain a cyclic group of order qm − 1
acting on it in the usual way: consider the field K = Fqm and let ω be a
primitive element in K; now K, as a vector space over Fq = E, is isomorphic
to V and multiplication by ω simply cycles the elements of K× = V − {0}.
(This map also yields a Singer cycle on the projective points — as discussed
earlier in Section 2.) 2
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Corollary 5.16 Provided that ρ < m(q − 1), the generalized Reed-Muller
codes RFq(ρ,m) are extended cyclic codes and of the same dimension as the
corresponding cyclic codes RFq(ρ,m)∗.

Proof: By Lemma 5.7, f(0) = −
∑

w 6=0 f(w) provided that the degree of f
is less than m(q − 1). 2

5.3 The single-variable approach

We introduce now the single-variable approach to the generalized Reed-
Muller codes utilizing the Mattson-Solomon polynomial [42].

Taking ω to be a primitive element of K = Fqm and, using the same
notation as above, set v = qm − 1 and consider the vector space of polyno-
mials in Z with coefficients in K and of degree less than v. Then Lagrange
interpolation (see, for example, [48]) shows that any function from K× to K
is given uniquely by such a polynomial, viewed as a polynomial function in
the single variable Z. In terms of the characteristic functions of the points
ωi of V ∗ = V −{0} ≈ K×, where V = Fm

q ≈ K, such a polynomial function
can be written as

P (Z) =
v−1∑
i=0

P (ωi)gi(Z), (2)

where gi(Z) denotes the characteristic function of {ωi}, i.e.

gi(Z) = −ωi (Z
v − 1)

(Z − ωi)
. (3)

Clearly the polynomials Zi, for i = 0, 1, . . . , v − 1, form an alternative
basis, and the correspondence is given as follows: if

P (Z) =
v−1∑
j=0

cjZ
j , where cj ∈ K,

then, using the discrete Fourier transform and noting that 1/v is −1 when
viewed in K,

cj = −
v−1∑
i=0

P (ωi)ω−ji = −φv−j(P ), (4)

where φs is the function defined in Section 4.3. Then

P (Z) =
v−1∑
j=0

cjZ
j = −

v−1∑
j=0

φv−j(P )Zj ,
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is the Mattson-Solomon polynomial of the function P .
We now restrict to those functions taking values in E = Fq ⊆ K, i.e. we

require that P (ωi) ∈ E for all i. This is equivalent, from Equation (4), to
requiring that (cj)q = cqj , where the subscripts are taken modulo v = qm−1.
These functions form an E-subspace of KV ∗

. Denoting this subspace by L
and writing its vectors in terms of the basis of characteristic functions, we
have

L =

(P (1), . . . , P (ωv−1)) |P (Z) =
v−1∑
j=0

cjZ
j , cj ∈ K, (cj)q = cqj

 .
The vector space L over the field E corresponds with the vector-space struc-
ture of the polynomial ring E[Y ]/(Y v − 1) via

(P (1), . . . , P (ωv−1)) 7→
v−1∑
i=0

P (ωi)Y i.

In fact a polynomial f(Y ) =
∑v−1

i=0 aiY
i corresponds to the function P (Z)

defined by P (Z) =
∑v−1

j=0 cjZ
j , where cj = −f(ω−j). If the polynomial g(Y )

divides Y v − 1, then the cyclic code generated by g(Y ) contains f(Y ) if and
only if f(ω−j) = 0 for all zeros ω−j of g(Y ). The corresponding P (Z) ∈ L
has the property that cj = 0 if ω−j is a root of g(Y ). Thus the cyclic code
with zeros {ω−j | j ∈ T}, where T ⊆ {0, 1, . . . , v − 1}, can be characterized
as (P (1), . . . , P (ωv−1)) |P (Z) =

v−1∑
j=0

cjZ
j ∈ L, cj = 0 if j ∈ T

 .
Note that if a positive integer u has an orbit of length i under the map

j 7→ jq modulo v, i.e. if uqi ≡ u (mod v) and i is the smallest integer satisfy-
ing the congruence, then the choice of the coefficient of Zu must be in a field
of degree i over E; this agrees, of course, with the dimensional requirements.

For the extended codes we adjoin the extra coordinate position corre-
sponding to 0 ∈ K, where the entry is −

∑v−1
i=0 P (ωi). Since P (0) = c0,

Equation (4) implies that all extended cyclic codes are contained in

M = {(P (0), P (1), P (ω), . . . , P (ωv−1)) |P (Z) ∈ L}, (5)

the subspace of Eqm
consisting of those vectors the sum of whose coor-

dinates is zero. (We have deliberately called this subspace M to suggest
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to the reader the correspondence with M .) It follows from the above
that every polynomial P (Z) in K[Z] of degree less than v has the prop-
erty that

∑
z∈K P (z) = 0; thus a polynomial r(Z) =

∑v
j=0 cjZ

j satisfies∑
z∈K r(z) = 0 if and only if it is of degree less than v — i.e. has cv = 0 —

since such polynomials form a subspace of codimension 1 (as a vector space
over K).

We next establish the correspondence between reduced polynomials in
the variables x1, . . . , xm of degree less than m(q − 1) and polynomials
P (Z) ∈ L. In fact, we do more and establish an algebra isomorphism
between E[x1, . . . , xm]/(xq

1 − x1, . . . , x
q
m − xm) and the E-subalgebra of

K[Z]/(Zqm − Z) given by the set of fixed points of the Frobenius map
x 7→ xq. The difference between what follows and the development given in
[18] is that here the Mattson-Solomon polynomials live in K[Z]/(Zqm − Z)
rather than K[Z]/(Zqm−1 − 1).

In order to explain the correspondence we first introduce the trace: let
TrK/E denote the trace from K to E, i.e. for z ∈ K,

TrK/E(z) = z + zq + zq2
+ · · ·+ zqm−1

.

Since the trace is a linear transformation from the vector space K over E
onto E, given any basis {α1, α2, . . . , αm} for K over E there is a unique
complementary basis {β1, β2, . . . , βm} for K over E such that

TrK/E(αiβj) = δij ,

where δij denotes the Kronecker delta function. (See, for example, Lidl and
Niederreiter [35, Theorem 2.24].)

Using the basis {1, ω, ω2, . . . , ωm−1}, where ω is a primitive element for
K, let the complementary basis be {β1, β2, . . . , βm}. Then z ∈ K satisfies
z =

∑m
i=1 aiω

i−1, where the ai are in E, if and only if ai = TrK/E(βiz).
Since E ⊆ K, we can define a ring homomorphism θ by

θ :

{
E[x1, . . . , xm] → K[Z]

xi 7→ βiZ + (βiZ)q + . . .+ (βiZ)qm−1
= TrK/E(βiZ),

where we are utilizing the Frobenius map of K[Z] into itself and slightly
abusing the trace notation. Following θ by the natural map

K[Z] → K[Z]/(Zqm − Z),

using the standard representatives — namely polynomials in Z of degree
less than or equal to v — and viewing Z as Z + (Zqm − Z), we see that
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(TrK/E(βiZ))q = TrK/E(βiZ); hence we get the induced ring homomor-
phism,

θ̄ : E[x1, . . . , xm]/(xq
1 − x1, . . . , x

q
m − xm) → K[Z]/(Zqm − Z).

We can thus convert any “reduced” polynomial in the variables xi with
coefficients in E into a polynomial in Z, of degree less than or equal to
v = qm − 1, with coefficients in K. It follows from Lemma 5.7 and the fact
that the vector

(TrK/E(β1z), . . . ,TrK/E(βmz))

takes on every value in Em as z varies overK, that the image of p(x1, . . . , xm)
is of degree less than v provided p(x1, . . . , xm) is of degree less than m(q−1).
Moreover, the polynomial P (Z) =

∑v−1
j=0 cjZ

j has cqj = cjq (with subscripts
computed modulo v) if and only if P (Z)q = P (Z) in the ringK[Z]/(Zqm−Z)
— since qj 6= v for j < v and therefore computing subscripts modulo v is the
same as viewing the polynomial inK[Z]/(Zqm−Z). Since (p(x1, . . . , xm))q =
p(x1, . . . , xm) in the ring E[x1, . . . , xm]/(xq

1−x1, . . . , x
q
m−xm), the reduced

polynomials of degree less than m(q − 1) have images, under θ̄, in L.
Conversely, we define a ring homomorphism,

K[Z] → K[x1, . . . , xm]/(xq
1 − x1, . . . , x

q
m − xm),

by

Z 7→
m∑

i=1

xiω
i−1.

Since (
∑m

i=1 xiω
i−1)qm

=
∑m

i=1 xiω
i−1, we obtain a ring homomorphism

K[Z]/(Zqm − Z) → K[x1, . . . , xm]/(xq
1 − x1, . . . , x

q
m − xm).

If P (Z)q = P (Z), then the image of P (Z) must lie in E[x1, . . . , xm]/(xq
1 −

x1, . . . , x
q
m−xm), since this is the subring ofK[x1, . . . , xm]/(xq

1−x1, . . . , x
q
m−

xm) left fixed by the Frobenius map, x 7→ xq. Let R denote the subring of
K[Z]/(Zqm − Z) left pointwise fixed by the Frobenius map; then we have a
ring homomorphism

ψ : R→ E[x1, . . . xm]/(xq
1 − x1, . . . , x

q
m − xm)

and using the fact that TrK/E(xiβ) = xiTrK/E(β) it follows easily that ψ ◦ θ̄
is the identity map. Moreover, since in K[Z]/(Zqm−Z) we have (Zv)k = Zv
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for any positive integer k, P (Z)q = P (Z) =
∑v

j=0 cjZ
j if and only if cv ∈ E

and
∑v−1

j=0 cjZ
j ∈ L. Both rings have dimension qm as E-algebras and hence

θ̄ is an isomorphism of rings, with ψ the inverse of θ̄. In addition, under this
ring isomorphism

M ≈ RFq(m(q − 1)− 1,m).

In fact, much more is true: a simple calculation shows that Zj corresponds
to a polynomial in the xi’s of degree12 wtq(j); thus, if P (Z) ∈ L is such that
cj = 0 for wtq(j) > ρ, its image in E[x1, . . . , xm]/(xq

1 − x1, . . . , x
q
m − xm)

has degree less than or equal to ρ. Hence the isomorphism above carries,
for 0 ≤ ρ < m(q − 1), the extended cyclic code with defining set T̂ =
{j |wtq(j) < m(q−1)−ρ} onto the generalized Reed-Muller code RFq(ρ,m).
Hence we have proved the following

Theorem 5.17 Let R be the subring of Fqm [Z]/(Zqm − Z) left pointwise
fixed by the Frobenius homomorphism, x 7→ xq. Then R is isomorphic (as an
algebra over the field Fq) to Fq[x1, . . . , xm]/(xq

1−x1, . . . , x
q
m−xm). Moreover,

the isomorphism can be chosen in such a way that the extended cyclic code
over Fq with defining set {j |wtq(j) < m(q − 1) − ρ} is carried onto the
generalized Reed-Muller code RFq(ρ,m).

5.4 Roots, dimensions and minimum weights

In this section we draw out the consequences of what we have just proved
and discuss the minimum weights of the relevant codes.

Theorem 5.18 If K = Fqm, E = Fq, and ω is a primitive element of K,
then, for 0 ≤ u ≤ qm − 2, ωu is a root of the generator polynomial of the
code RFq(ρ,m)∗ if and only if 0 < wtq(u) ≤ m(q − 1)− 1− ρ.

This is a consequence of Theorem 5.17 and the discussion at the begining
of Section 4.3, where αi is a root if and only if i is in the defining set T .

We also obtain the promised generalization (due to Charpin, [14, 15]) of
Berman’s theorem:

Theorem 5.19 For any prime p, and any ρ such that 0 ≤ ρ < m(p− 1), if
M is the radical of Fp[G], the group algebra over Fp of the elementary abelian
group G of order pm, then the code given by Mm(p−1)−ρ is the generalized
Reed-Muller code RFp(ρ,m).

12The reduction modulo xq
i − xi can only reduce the degree of a given monomial and,

for future reference, we note that the reduction is by a multiple of q − 1.



5 GENERALIZED REED-MULLER CODES 55

This is a consequence of Theorem 5.17 and Corollary 4.11.
We draw out the consequences of Theorem 5.18 below.

Corollary 5.20 For 0 ≤ ρ < m(q − 1) the code RFq(ρ,m)∗ is the cyclic
code with generator polynomial

g(Y ) =
∏

0<u<qm−1

wtq(u)≤m(q−1)−1−ρ

(Y − ωu) ,

where ω is a primitive element of Fqm.

Corollary 5.21 For 0 ≤ ρ < m(q− 1) the code (RFq(ρ,m)∗)⊥ is the cyclic
code with generator polynomial

g(Y ) =
∏

0≤u<qm−1

wtq(u)≤ρ

(Y − ωu) ,

where ω is a primitive element of Fqm. Moreover,

(RFq(ρ,m)∗)⊥ = (Fq)⊥ ∩RFq(m(q − 1)− 1− ρ,m)∗.

Proof: That the generating polynomial is as asserted follows from results in
Chapter 1 on cyclic codes. The second statement then follows from Corol-
lary 5.20, with the extra factor (Y − 1) placing the code inside (Fq)⊥. 2

Corollary 5.22 For 0 ≤ ρ < m(q − 1), the dimensions of both RFq(ρ,m)∗

and RFq(ρ,m) are given by

|{u|0 ≤ u ≤ qm − 1 and wtq(u) ≤ ρ}|.

Proof: This is simply a restatement of the value of the dimension in terms
of the q-weight. 2

Example 5.23 For m = 2 and q = 3, E = F3 and K = F9. The quadratic
f(Z) = Z2 + Z − 1 is a primitive polynomial for K, with primitive root
ω. Since m(q − 1) = 4, RE(1, 2)∗ and RE(2, 2)∗ are the only interesting
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cases. The generator polynomial for RE(2, 2)∗ is g(Y ) = (Y −ω)(Y −ω3) =
Y 2 + Y − 1 and the code has dimension 6. A generator matrix is

G =



−1 1 1 0 0 0 0 0
0 −1 1 1 0 0 0 0
0 0 −1 1 1 0 0 0
0 0 0 −1 1 1 0 0
0 0 0 0 −1 1 1 0
0 0 0 0 0 −1 1 1


.

The extended code, RE(2, 2), has a generator matrix that is G augmented
by an extra column whose entries are −1’s: this is a generator matrix for
the code of the affine plane AG2(F3). If the extra column, corresponding to
0, is labelled 0, and added as the first column, and the columns of G then
labelled 1 to 8, then the plane can be pictured as in Figure 1, with incidence
matrix as given in Figure 2, where the rows are arranged in parallel classes.
The columns then correspond to the points

(0, 0), (1, 0), (0, 1), (1,−1), (−1,−1), (−1, 0), (0,−1), (−1, 1), (1, 1);

equivalently, they correspond to the elements of F9 in the order

0, 1, ω, ω2, ω3, ω4, ω5, ω6, ω7.

The matrix (
0 1
1 −1

)
cycles the last eight of these points and correspondes to multiplication by
ω. The line {0, 1, 5}, for example, has the equation X2 = 0 and the line
{6, 5, 8} has the equation X1 +X2 + 1 = 0.

�
�

�
�

�
�

�
�

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

qqqqqqq
qqqqqqq
qqqqqqq
qqqqq

qqqqqqqqqq
qqqqqqqqqqqq

qqqqqqqqqqqqqqqqqqqqqq
qqqqq q q q q q

q q q q q q q q q q q q
qqqqq q q q q q q q q q q q q q q q q q

1 2 4

0
3

7

6 5 8

s s s

s s s
s s s

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

@
@

@
@

@
@

@
@

Figure 1: The affine plane AG2(F3)
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

0 1 2 3 4 5 6 7 8
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1

1 1 1
1 1 1
1 1 1

1 1 1
1 1 1


Figure 2: Incidence matrix for AG2(F3)

The generator polynomial for RE(1, 2)∗ is

f(Y ) = (Y − ω)(Y − ω2)(Y − ω3)(Y − ω4)(Y − ω6)

and that for (RE(2, 2)∗)⊥ is

(Y − 1)f(Y ) = Y 6 + Y 5 − Y 4 − Y 2 − Y + 1,

so a check13 matrix for RE(2, 2)∗ is

H =

(
1 −1 −1 0 −1 1 1 0
0 1 −1 −1 0 −1 1 1

)
.

Theorem 5.24 If ρ = r(q − 1) + s, where 0 ≤ s < q − 1, then the code
RFq(ρ,m)∗ is a subcode of a BCH code of length qm−1 over Fq with designed
distance

(q − s)qm−r−1 − 1.

Proof: From Theorem 5.18, for a primitive element ω of Fqm , ωu is a root
of the generator polynomial of RFq(ρ,m)∗ if and only if 0 < wtq(u) <
m(q − 1)− ρ. Now

m(q − 1)− ρ = (m− r)(q − 1)− s = (m− r − 1)(q − 1) + (q − 1− s),
13This matrix is frequently called a parity-check matrix in the literature.
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so if we let h be the smallest integer with wtq(h) = m(q − 1)− ρ, then

h = (q − s− 1)qm−r−1 +
m−r−2∑

i=0

(q − 1)qi = (q − s)qm−r−1 − 1.

It follows that every integer u with 0 ≤ u < h satisfies wtq(u) < m(q −
1)− ρ, and thus the elements ω1, ω2, . . . , ωh−1 are all roots of the generator
polynomial of the code. Thus RFq(ρ,m)∗ is a subcode of a BCH code of
designed distance (q − s)qm−r−1 − 1 as stated. 2

The designed distance is the true minimum distance, as the following
theorem shows by an explicit construction of codewords of this weight.

Theorem 5.25 For any ρ such that 0 ≤ ρ < m(q−1), where ρ = r(q−1)+s
with 0 ≤ s < q − 1, RFq(ρ,m) has vectors of weight (q − s)qm−r−1 that
consist of the sum of multiples of the incidence vectors of (q − s) parallel
(m− r − 1)-flats, all contained in an (m− r)-flat.

Proof: Given arbitrary elements wi ∈ E, for i = 1, . . . , r, and s distinct
elements w′j in E, let

p(x1, . . . , xm) =
r∏

i=1

(
1− (xi − wi)q−1

) s∏
j=1

(xr+1 − w′j).

Then p(x1, . . . , xm) has degree r(q−1)+s = ρ and is zero in Em = V unless

xi = wi, for i = 1, . . . , r, (6)
xr+1 6= w′j for j = 1, . . . , s. (7)

There are (q − s)qm−r−1 vectors in Em satisfying both equations and the
codeword corresponding to p(x1, . . . , xm) has this weight.

To establish the geometric nature of the codewords defined by such poly-
nomials, consider the qm−r−1 points of Em satisfying (6) and the additional
equation xr+1 = c, where c is an element of E that is not amongst the w′j .
Then these points all belong to an (m − r − 1)-flat and the corresponding
coordinate positions in the codeword of p(x) have the constant value

s∏
j=1

(c− w′j)
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on these points. The same is true of each of the (q − s) elements of E that
are not amongst the w′j , and hence we get a vector of the stated form. 2

Remark: If s = 0, then the polynomial p(x1, . . . , xm) is the incidence vector
of an (m− r)-flat.

Corollary 5.26 If ρ = r(q − 1) + s < m(q − 1) with 0 ≤ s < q − 1, then
RFq(ρ,m) has minimum weight (q−s)qm−r−1 and RFq(ρ,m)∗ has minimum
weight (q − s)qm−r−1 − 1.

Proof: By taking the flat with wi = 0 for i = 1, . . . , r, and w′j 6= 0 for
j = 1, . . . , s, it follows that the coordinate at the point 0 of the corresponding
polynomial is non-zero, so that the corresponding codeword in RFq(ρ,m)∗

has weight (q−s)qm−r−1−1. This is the minimum weight by Theorem 5.24.
By translation invariance the minimum weight of RFq(ρ,m) must be (q −
s)qm−r−1 since it has vectors of that weight and, as we have just seen, the
minimum weight of RFq(ρ,m)∗ is (q − s)qm−r−1 − 1. 2

Corollary 5.27 Let p be a prime. The code over Fp of the design of points
and r-flats of the affine geometry AGm(Fpt) has minimum weight ptr.

Proof: Apply Theorem 5.25 with s = 0. Since the code of the design is
a subset of the generalized Reed-Muller code, it must have at least this
minimum weight, and since it has vectors of this weight, this must be the
minimum weight. 2

Corollary 5.28 Let p be a prime. The code over Fp generated by the dif-
ferences of the incidence vectors of two parallel r-flats of the affine geometry
AGm(Fpt) has minimum weight 2ptr.

Proof: Set q = pt and take ρ = (m − r − 1)(q − 1) + (q − 2). Each of the
generating vectors of the code in question is in RFq(ρ,m) which, even as a
code over Fq, has minimum weight 2qr. Thus the code of the design, being
a subset and having vectors of this weight, must also have minimum weight
2qr. 2
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5.5 Codes invariant under the full affine group

Delsarte [19], generalizing the ideas of Kasami, Lin and Peterson and The-
orem 4.6, characterized those codes invariant under GLm(Fq) in its natural
action on the non-zero vectors of an m-dimensional vector space over Fq; he
also discussed, in a very general way, the “projective” case. In our report
[3] we described in full Delsarte’s proof for the affine case when q is a prime.
Here we give an alternative approach to this case due to Mortimer [44]; it is
more direct and more suitable for our purposes.

Mortimer’s results culminate in the proof that the only codes in EEm
,

where E = Fp and p is a prime, invariant under G, where ASLm(Fp) ⊆
G ⊆ AGLm(Fp), are the generalized Reed-Muller codes, RE(ρ,m). We will
prove his more general results leading to this, all of which can be found
in [44, Chapter 5]. Note that we have already sketched in Section 4.6,
Theorem 4.17, a new proof, due to Weidner, of the main result. Weidner’s
proof is in the single-variable context and utilizes the Jennings basis.

As usual, let E = Fq, where q = pt and p is a prime, and set V = Em.
We will be slightly more general than in Definition 5.3 and let K denote
any extension field of E, and consider the vector space KV — viewing that
space as the space of linear combinations of M with coefficients in the field
K, where M denotes the set of monomials in m variables, as in Section 5.2,
Equation (1), page 43. For any ρ with 0 ≤ ρ ≤ m(q − 1), we write

Kρ = {f | f ∈ KV , and deg(f) ≤ ρ}, (8)

where the degree of f is the total degree, i.e. the maximum value of
∑
ai

for the monomials xa1
1 x

a2
2 . . . xam

m that actually occur in the expression for f .
For K = E we have Kρ = RE(ρ,m).

For any integers b ≥ 0 and i and j such that 1 ≤ i, j ≤ m, define linear
transformations, δb

i and εbi,j from KV to itself by giving them as follows on
our chosen basis, the monomials in M:

(xa1
1 x

a2
2 . . . xam

m )δb
i =

(
ai

b

)
xa1

1 x
a2
2 . . . xai−b

i . . . xam
m (9)

(xa1
1 x

a2
2 . . . xam

m )εbi,j =

(
ai

b

)
xa1

1 x
a2
2 . . . xai−b

i . . . x
aj+b
j . . . xam

m . (10)

Since
(ai

b

)
= 0 for ai < b, δb

i annihilates the monomial xa1
1 x

a2
2 . . . xam

m

unless b ≤ ai; similarly εbi,j annihilates xa1
1 x

a2
2 . . . xam

m unless b ≤ ai. Both δ0i
and ε0i,j are the identity on KV .
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Theorem 5.29 Let T be the translation subgroup of AGLm(Fq). Then a
subspace C of KV is a T -module if and only if it is invariant under δb

i for
all i and b such that 1 ≤ i ≤ m and 0 ≤ b ≤ q − 1.

Proof: For u ∈ E and 1 ≤ i ≤ m let τu
i denote the translation of V such

that
τu
i : (x1, x2, . . . , xm) 7→ (x1, . . . , xi − u, . . . , xm). (11)

It is clearly sufficient to show that each τu
i in its action on KV is a linear

combination of the δb
i and conversely.

Let f =
∑

j pjx
j
i be any function in KV where the pj are polynomials

independent of xi. Then

(f)τu
i =

∑
j

pj(xi + u)j

=
∑
j

pj

∑
b

(
j

b

)
xj−b

i ub

=
∑

b

ub
∑
j

(
j

b

)
pjx

j−b
i

=
∑

b

ub(f)δb
i ,

and thus τu
i =

∑
b u

bδb
i . On the other hand,

(f)
∑

u∈E×

u−bτu
i =

∑
u∈E×

u−b
∑
j

pj(xi + u)j

=
∑

u∈E×

u−b
∑
j

pj

∑
k

(
j

k

)
xj−k

i uk

=
∑
k

∑
j

pj

(
j

k

)
xj−k

i

∑
u∈E×

uk−b

=

{
−(f)δb

i if b 6= 0, q − 1
−(f)δ0i − (f)δq−1

i if b = 0 or q − 1
,

so that δb
i = −

∑
u∈E× u−bτu

i for b 6= 0, q − 1, and δq−1
i = −δ0i −

∑
u∈E× τu

i .
Thus each translation is a linear combination of the δb

i over K, and con-
versely, giving the theorem. 2
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Now we show that invariance under transvections is equivalent to invari-
ance under the εbi,j . In fact, we need only the following transvections: for
u ∈ E and i, j = 1, 2, . . .m and i 6= j, define

γu
i,j : (x1, x2, . . . , xm) 7→ (x1, . . . , xi − uxj , . . . , xm). (12)

Then γu
i,j is a transvection with axis given by xj = 0. Recall that the special

affine group, ASLm(Fq), is generated by the translations and transvections:
see, for example, [23].

Theorem 5.30 A subspace C of KV is invariant under ASLm(Fq) if and
only if it is invariant under all the transformations δb

i and εbi,j with 0 ≤ b ≤
q − 1 and i 6= j satisfying 1 ≤ i, j ≤ m.

Proof: In view of Theorem 5.29, since SLm(Fq) is spanned by the transvec-
tions γu

i,j , we need only show that each of these is a linear combination over
E of the εbi,j , and conversely.

Any f ∈ KV can be written in the form

f =
∑
r,s

pr,sx
r
ix

s
j

where pr,s is a polynomial which is independent of xi and xj . Then

(f)γu
i,j =

∑
r,s

pr,s(xi + uxj)rxs
j

=
∑
r,s

pr,s

∑
b

(
r

b

)
xr−b

i xs+b
j ub

=
∑

b

ub
∑
r,s

(
r

b

)
pr,sx

r−b
i xs+b

j ub

=
∑

b

ub(f)εbi,j .

Thus γu
i,j =

∑
b u

bεbi,j , and we can invert this formula to obtain the converse
exactly as in the proof of Theorem 5.29. 2

Theorem 5.31 Let C be a subspace of KV . Then C is invariant under
AGLm(Fq) if and only if

1. C is invariant under the transformations δb
i and εbi,j for i 6= j and

1 ≤ i, j ≤ m and 0 ≤ b ≤ q − 1, and
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2. C is spanned by monomials.

Proof: By the previous theorems, the first condition characterizes subspaces
invariant under ASLm(Fq), so it will suffice to show that an ASLm(Fq)-
invariant subspace is also invariant under AGLm(Fq) if and only if it is
spanned by monomials. This is equivalent to showing that if a monomial
appears with a non-zero coefficient in a function in C, then the monomial
itself is in C.

The group AGLm(Fq) is generated by ASLm(Fq) and the dilations ηu
i

defined by
ηu

i : (x1, x2, . . . , xm) 7→ (x1, . . . , uxi, . . . , xm) (13)

for i = 1, 2, . . . ,m and u ∈ E×. Suppose C is an ASLm(Fq)-module spanned
by monomials. Each ηu

i maps each monomial to a scalar multiple of itself,
so C is invariant under ηu

i . Thus C is an AGLm(Fq) module.
Conversely suppose that C is an AGLm(Fq)-invariant subspace that is

not spanned by monomials. Thus C is invariant under the transformations

λk
i = −

∑
u∈E×

ukηu
i , (14)

for 0 ≤ k ≤ q − 1, and 1 ≤ i ≤ m. Then

(xa1
1 x

a2
2 . . . xam

m )λk
i = (−

∑
u∈E×

uk−ai)xa1
1 x

a2
2 . . . xam

m

=

{
xa1

1 x
a2
2 . . . xam

m if k ≡ ai (mod (q − 1))
0 otherwise

.

Thus if f ∈ C then (f)λk
i ∈ C and consists of the terms of f that contain

xk
i if k 6= 0, q− 1 and consists of those containing xq−1

i or independent of xi

if k = 0 or q − 1.
Choose f ∈ C such that none of the monomial terms in it are in C.

Subject to this condition choose f to have a minimal number of terms.
Within f choose a term g with a maximal number of exponents which are
neither 0 nor q − 1. Subject to this condition choose g with a maximal
number of exponents q − 1. Relabelling subscripts we have

g = xa1
1 x

a2
2 . . . xar

r x
q−1
r+1 . . . x

q−1
r+s,

where 0 < ai < q − 1.
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The function (f)λa1
1 . . . λar

r of C contains the terms of f that contain xi

raised to the exponent ai for i = 1, . . . , r. By the minimality of the number
of terms in f , we have f = (f)λa1

1 . . . λar
r . Thus every monomial in f begins

with xa1
1 x

a2
2 . . . xar

r . . . and by the choice of g, the remaining exponents are 0
or q − 1.

If r + s < m then the monomial g is fixed by κi = εq−1
i,m εq−1

m,i for i =
r + 1, . . . , r + s. If κi annihilates any monomial of f then (f)κi contains
fewer terms than f , contradicting the choice of f . Thus each term of f
begins

xa1
1 x

a2
2 . . . xar

r x
q−1
r+1 . . . x

q−1
r+s . . . .

Since g has the maximal number of exponents q−1 we have f = ag for some
a ∈ E, contradicting our hypothesis.

Thus r + s = m and g = xa1
1 x

a2
2 . . . xar

r x
q−1
r+1 . . . x

q−1
m . There must be

another term h of f and we can take this to be

h = xa1
1 x

a2
2 . . . xar

r x
q−1
r+1 . . . x

q−1
t ,

where r < t < m, by changing the last variables if necessary (leaving g
fixed). Now (h)δq−1

m = 0, and

(f)δq−1
m δq−1

m−1 . . . δ
q−1
t+1 = h+ . . .

contains fewer terms than f and is still in C. This contradicts the choice
of f as a function none of whose terms lies in C with a minimal number of
terms. This contradiction gives the theorem. 2

Now take q = p a prime, so that K is any field of characteristic p.

Lemma 5.32 The collection of transformations εki,j act transitively on the
set of all monomials of fixed degree (ignoring scalar multiples) when q = p
is a prime.

Proof: We prove this recursively. Let g = xa1
1 . . . xam

m and h = xb1
1 . . . xbm

m

be two monomials with a1 + · · ·+ am = b1 + · · ·+ bm. Suppose that after a
change of variables (if necessary) we have

a1 = b1, . . . , ar−1 = br−1, ar > br, . . . , as−1 > bs−1, as < bs, . . . , am < bm.

Clearly
ar − br ≤ (bs − as) + · · ·+ (bm − am)
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and thus there are integers cj for j = s, . . . ,m with

ar − br = cs + · · ·+ cm

and 0 ≤ cj ≤ bj − aj . Thus

e = (g)εcs
r,s . . . ε

cm
r,m

= uxb1
1 . . . x

br−1

r−1 x
ar−cs−···−cm
r x

ar+1

r+1 . . . x
as−1

s−1 x
as+cs
s . . . xam+cm

m

= uxb1
1 . . . xbr

r x
ar+1

r+1 . . . x
as−1

s−1 x
as+cs
s . . . xam+cm

m

for some non-zero u ∈ E is a monomial with one more exponent in common
with h than g has. The lemma now follows by induction. 2

Theorem 5.33 Let

ASLm(Fp) ⊆ G ⊆ AGLm(Fp)

where p is a prime. If C is a non-trivial G-invariant subspace of KV , where
V = Fm

p , then C = Kk for some k such that 0 ≤ k ≤ m(p− 1).

Proof: The proof is by induction on m. For m = 1 let f ∈ C be of maximal
degree k, say. Then (f)δi

1 has degree k − i, and so C contains functions of
each degree degree less than k. It follows that C = Kk.

Now suppose m ≥ 2 and let f ∈ C be of maximal degree k. If k = 0
then C = K0 = 〈1〉. If k = 1 then C contains a linear function, and hence
all such, since G is transitive on linear functions; thus C = K1. Now use
induction on k. Then for some i (f)δ1i ∈ C has degree k − 1 and hence
Kk−1 ∩C is not trivial and thus equal to Kk−1 by the induction hypothesis.
Thus Kk−1 ⊂ C. The function f can then be taken to be homogeneous of
degree k.

Suppose k ≤ (m−1)(p−1). Choose a monomial g = xa1
1 . . . xam

m amongst
the terms of f with a1 the maximal exponent of x1 in f . From the lemma
above we have a product σ of transformations εki,j such that (g)σ is a mono-
mial of degree k that is independent of x1. Thus h = (f)σ ∈ C is, by the
maximality of a1, independent of x1. The subspace C ′ of C consisting of the
functions in C that are independent of x1 is invariant under ASLm−1(Fp).
By the induction hypothesis then C contains every function of degree k that
is independent of x1. In particular, C contains a monomial of degree k and
since G acts transitively on the monomials of degree k, it follows that C
contains all the monomials of degree k. Since C ⊃ Kk−1, we have C = Kk.
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Now suppose that (m − 1)(p − 1) < k < m(p − 1). Since K⊥
k =

Km(p−1)−k−1 and
Kk−1 ⊂ C ⊆ Kk,

we have
Km(p−1)−k−1 ⊆ C⊥ ⊂ Km(p−1)−k.

Since from the above inequality we have that

m(p− 1)− k ≤ m(p− 1)− (m− 1)(p− 1)− 1 ≤ (m− 1)(p− 1),

we get C⊥ = Km(p−1)−k−1 by the argument above, and thus C = Kk. 2

Corollary 5.34 With the natural action of AGLm(Fp) on a vector space V
of dimension m over Fp, where p is a prime, the only subspaces of F V

p left
invariant by AGLm(Fp) are the generalized Reed-Muller codes RFp(ρ,m).

5.6 The geometric codes

We are now ready to consider the so-called non-primitive codes. We re-
strict ourselves to the case of geometric interest; the reader interested in the
general case may wish to consult [2, Section 5.6].

Set n = (qm−1)/(q−1) = qm−1+. . .+1 and observe that n is the number
of points of PGm−1(Fq). We wish to look at those polynomials P (Z) =∑v−1

j=0 cjZ
j ∈ L for which P (ωi) = P (ωn+i) for all i, in order that they should

define functions on the projective points, ωn being a primitive element of the
field Fq. It follows from Equation (4) that, for such a polynomial, cj = ωjncj
for each j, so that cj = 0 unless j ≡ 0 (mod q − 1). Hence the polynomial
has the form

P (Z) =
n−1∑
i=0

ci(q−1)Z
i(q−1). (15)

We set Lproj equal to the subspace of all such polynomials of L.
Now since P (ωi) = P (ωi+n), the usual vector of length qm−1 will consist

of q − 1 repetitions of the vector

(P (1), P (ω), P (ω2), . . . , P (ωn−1)),

and we will take n to be the length of the geometric codes we will consider.
Since, for any integer j, j ≡ wtq(j) (mod q − 1), in the isomorphism

we have given between R and E[x1, . . . , xm]/(xq
1 − x1, . . . , x

q
m − xm), the
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polynomials in Lproj will correspond to reduced polynomials all of whose
monomials will have degree divisible by q − 1. It follows that we should
look only at those generalized Reed-Muller codes of order divisible by q− 1.
Thus, we shall change notation and use r rather than ρ = r(q − 1) in the
following

Definition 5.35 The rth order projective generalized Reed-Muller
code

PFq(r,m)

where 0 ≤ r < m is the code of length n = (qm− 1)/(q− 1) given as the set
of vectors

{(P (1), P (ω), . . . , P (ωn−1)) |P (X) ∈ Lproj , cj = 0 for wtq(j) > r(q − 1)}.

Here P (Z) is defined in Equation (15) and Lproj is defined above. The rth

order projective generalized Reed-Muller code is also given by〈
xi1

1 x
i2
2 . . . x

im
m |

m∑
k=1

ik ≡ 0 (mod q − 1),
m∑

k=1

ik ≤ r(q − 1)

〉
,

where these polynomials are only evaluated on a set of representatives in
Fm

q of the projective points. Observe that these codes are still cyclic since
they are invariant under a Singer cycle. This is clear, of course, from the
definition — since it is phrased in the single-variable language. The following
proposition is also clear.

Proposition 5.36 The dimension of PFq(r,m) is

|{j|0 ≤ j ≤ qm − 1, q − 1 divides j,wtq(j) ≤ r(q − 1)}|.

Here the weight wtq(j) is defined in Definition 4.7, on page 33.

Example 5.37 To construct the code PF3(1, 3), of length 13 and dimension
7, the multi-variable formulation is the easiest to give, since the generating
monomials are readily seen to be

{1, x1x2, x1x3, x2x3, x
2
1, x

2
2, x

2
3}.

If the irreducible cubic X3−X2 +1, with root ω, is used to obtain F27, then
the matrix  0 0 −1

1 0 0
0 1 1


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can be used to generate representatives of the projective points, starting, say
with (1, 0, 0)t. The seven generating monomials yield the generator matrix

G =



1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 0 0 −1 1 −1 −1 0
0 0 0 −1 −1 0 0 1 −1 1 1 0 0
0 0 0 0 −1 0 1 0 1 1 −1 0 −1
1 0 0 1 1 1 0 1 1 1 1 1 0
0 1 0 0 1 1 1 0 1 1 1 1 1
0 0 1 1 1 0 1 1 1 1 1 0 1


.

This code is the code over F3 of the projective plane of order 3. The code vec-
tors in G can be described geometrically: for example, labelling the columns
1 to 13, to represent the points, and using sets of these numbers to represent
lines, then the penultimate row (corresponding to the monomial x2

2) repre-
sents the complement of the line {1, 3, 4, 8}, i.e. the vector 1−v{1,3,4,8} in our
usual notation for characteristic functions. The second row (corresponding
to the monomial x1x2) is the vector v{3,5,6,10} − v{3,9,11,12}. In terms of ho-
mogeneous coordinates for the projective geometry, the line {1, 3, 4, 8} rep-
resents the point set {(1, 0, 0), (0, 0, 1), (−1, 0, 1), (1, 0, 1)}, which is (0, 1, 0)t

in homogeneous coordinates.

Since our projective codes are cyclic we can use the roots to obtain the
orthogonal in the usual way. The code orthogonal to PFq(r,m) is obtained
as follows:

Theorem 5.38 If 0 ≤ r < m then

(PFq(r,m))⊥ = PFq(m− r − 1,m) ∩ (Fq1)⊥.

Remark: In Example 5.37, r = 1 and the orthogonal is PF3(1, 3)∩ (F31)⊥,
as expected.

Theorem 5.39 The minimum weight of PFq(m− r,m) is

(qr − 1)/(q − 1) = qr−1 + . . .+ 1.

Proof: Since, by Corollary 5.26, the minimum weight of RFq((m − r)(q −
1),m)∗ is qr − 1, the minimum weight is at least (qr − 1)/(q − 1). But the
polynomial

p(x1, . . . , xm) =
m−r∏
i=1

(
1− (xi)q−1

)
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is such that each of its monomials has degree divisible by q− 1 and yields a
code vector. Since it takes the value 1 at 0, it obviously yields a vector of
weight (qr − 1)/(q − 1) in PFq(m− r,m). 2

The polynomial above that yields a minimum-weight vector is, in fact,
the incidence vector of an r-dimensional subspace of Fm

q . Thus projectively
it is an (r − 1)-dimensional subspace of PGm−1(Fq).

5.7 The codes of the designs from PGm(Fp)

We have already discussed in Section 4.6 the codes coming from AGm(Fp),
showing that the code of the design of points and r-flats is precisely M r(p−1),
which, by Theorem 5.19, is RFp((m−r)(p−1),m). We are now in a position
to consider the projective case — when q = p is a prime14 — and we wish
to show that the code of the design of points and projective r-dimensional
subspaces of PGm(Fp) is precisely PFp(m − r,m + 1). If P is this design
we already know from above, since P has an automorphism group that acts
transitively on the set of r-dimensional subspaces, that Cp(P) ⊆ PFp(m −
r,m + 1), since the characteristic functions of the r-dimensional subspaces
are in PFp(m− r,m+ 1). Clearly, we can use a dimension argument to get
the equality. The following lemma gives a recursion for the dimension of the
projective generalized Reed-Muller codes at hand and will allow us to use
an induction argument. In view of our treatment of the Reed-Muller codes,
this recursion can be viewed as a substitute for the Pascal-triangle property
enjoyed by the binomial coefficients.

Lemma 5.40 For p a prime, the dimensions of the generalized Reed-Muller
codes and the projective generalized Reed-Muller codes are related by the
following recursion:

dim(PFp(r − 1,m)) + dim(RFp(r(p− 1),m)) = dim(PFp(r,m+ 1)).

Proof: Let Q,A and P be the sets of integers whose cardinalities give the
dimensions of PFp(r−1,m), RFp(r(p−1),m) and PFp(r,m+1), respectively.
We must show that |Q|+ |A| = |P |. Now Q is the set of integers satisfying
0 ≤ u ≤ pm−1, where (p−1) divides u, and wtp(u) ≤ (r−1)(p−1). Similarly,
A is the set of integers satisfying 0 ≤ u ≤ pm − 1 and wtp(u) ≤ r(p − 1)
while P the set of integers satisfying 0 ≤ u ≤ pm+1− 1, p− 1 divides u, and
wtp(u) ≤ r(p− 1).

14The general case will be treated in the following section.
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Divide P into the following two disjoint sets: Q′, the set of those integers
in P whose p-ary expansion has um = p − 1, and A′, those integers in P
whose p-ary expansion has um < p−1. For u ∈ P where u = u0+· · ·+ump

m,
set f(u) = u − ump

m. The reader will have no difficulty in seeing that f
yields a one-to-one correspondence between Q′ and Q and between A′ and
A. 2

We now use an embedding of PGm−1(Fp) in PGm(Fp) just as we did in
the Reed-Muller case; here we know that the code of the projective design of
r-dimensional subspaces projects onto RFp((m− r)(p− 1),m), which is the
code of the design of r-dimensional flats of AGm(Fp), and that the kernel
contains the code of r-dimensional subspaces of PGm−1(Fp). An induction
on m now yields the dimensional equality we seek and hence the following

Theorem 5.41 For p a prime, the code over Fp of the design of points
and r-dimensional subspaces of PGm(Fp) is the projective generalized Reed-
Muller code PFp(m − r,m + 1). Moreover, we have the following exact se-
quence for these codes:

0 → PFp(m− r−1,m) → PFp(m− r,m+1) → RFp((m− r)(p−1),m) → 0.

Remark: The sequence above can also be read as an exact sequence of the
geometric codes and, as such, is

0 → Cp(Q) → Cp(P) → Cp(A) → 0,

where Q is the design of points and r-dimensional subspaces of PGm−1(Fp),
P the design of points and r-dimensional subspaces of PGm(Fp) and A the
design of points and r-flats of AGm(Fp).

We now want to identity the minimum-weight vectors in these geomet-
ric codes. We already know the minimum weights and that among the
minimum-weight vectors one finds the relevant geometric objects: the char-
acteristic functions of the r-flats in the affine case and the characteristic
functions of the r-dimensional projective subspaces in the projective case.
We must, therefore, prove that only these vectors and their scalar multiples
are minimum-weight vectors. We begin with the affine case:

Theorem 5.42 For p a prime, the minimum-weight vectors of RFp((m −
r)(p − 1),m) are the scalar multiples of the characteristic function of the
r-flats of AGm(Fp).
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Proof: We know that the scalar multiples of the r-flats are minimum-weight
vectors. Moreover, if any minimum-weight vector has as its support an r-
flat, then it clearly must be a scalar multiple of the characteristic function
of that flat. Suppose, therefore, that we have a minimum-weight vector v
whose support, X say, is not an r-flat. Of course, |X| = pr. Without loss of
generality we may assume that X contains the zero vector. Now, since we
are over a prime field, the set X cannot be closed under addition (for then
it would be a subspace). Let x ∈ X be such that x + X 6= X. Now the
vector v is a linear combination of characteristic functions of r-flats, i.e.

v =
∑
S∈S

aSv
S ,

where S is a collection of r-flats and the aS are in Fp. Let w be the translate
of v by x. Then the support of w is x +X, v 6= w, and

w =
∑
S∈S

aSv
x+S .

Since v−w is in the code generated by the differences of the incidence vectors
of parallel r-flats, it has, by Corollary 5.28, weight at least 2pr. But this is
impossible since its support is a subset of X∪(x+X), which is of cardinality
less than 2pr since x ∈ X ∪ (x + X). Thus every minimum-weight vector
is supported on an r-flat and hence is a scalar multiple of the characteristic
function of an r-flat. 2

We complete our discussion of the geometric codes in the case in which
q = p is a prime by showing that we have the analogous result in the
projective case. In order to do so we first proceed more generally with q
arbitrary and introduce some temporary notation.

Let Ar,m denote the design of points and r-flats of AGm(Fq) and Pr,m

denote the design of points and r-dimensional subspaces of PGm(Fq).
Consider next the subcode Er,m of Cp(Ar,m) generated by the differ-

ences of incidence vectors of parallel r-flats. Just as in the binary case (see
Section 3.2) Er,m is in the kernel of the projection of Cp(Pr,m) onto the
coordinates corresponding to the embedded (m− 1)-dimensional projective
space, the image of the projection being Cp(Pr−1,m−1). Observe that by
using the (q − 1)-to-1 map of V − {0} onto PGm−1(Fq), where V is the m-
dimensional vector space over Fq defining the projective space, we can pull
the code Cp(Pr−1,m−1) back to FV ∗

p , where we are writing V ∗ for V − {0};
this simply amounts to repeating each column (q − 1) times. By adjoining
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an overall parity check to this pull-back we get the code in FV
p that is gen-

erated by the incidence vectors of the r-dimensional subspaces of V . Call
this code Pr,m. Viewing Cp(Ar,m) and Er,m in this same ambient space we
have, clearly, that

Er,m + Pr,m = Cp(Ar,m).

This equation points to the reason why the binary case is so easy: when
q = 2, Er,m ⊆ Pr,m and thus we need analyse only the projective geometry
codes.

For the same reason as in the binary case, Pr+1,m ⊆ Pr,m and, further-
more, Pr+1,m ⊆ Er,m since, if T is any (r + 1)-dimensional subspace, S any
r-dimensional subspace contained in it, and v is in T but not in S, then

−vT =
∑

a∈Fq ,a 6=0

(vS − vav + S).

Letting ar,m be the p-rank of Ar,m, pr,m the p-rank of Pr,m and setting
er,m = dim(Er,m), we have that dim(Pr,m) = pr−1,m−1 and that

pr−1,m−1 + er,m ≥ ar,m + pr,m−1, (16)

since the intersection, Pr,m ∩ Er,m, contains Pr+1,m. Further, we have the
following:

Lemma 5.43 Given an embedding of PGm−1(Fq) in PGm(Fq), if the first
of the following sequences,

0 → Cp(Pr,m−1) → Cp(Pr,m) → Cp(Ar,m) → 0

and
0 → Er,m → Cp(Pr,m) → Cp(Pr−1,m−1) → 0,

that arise from the embedding is exact, then so is the second and, moreover,
in that case we have

pr,m = ar,m + pr,m−1 and er,m + pr−1,m−1 = pr,m.

Proof: Clearly, just as in the binary case, the sequences follow easily from
the embedding, and we need only check that the kernels are as described.
That the codes are contained in the kernels is obvious; thus in order to prove
that they are the kernels we must check the dimensions. From the discussion
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preceding the lemma, in particular (16), and the second sequence, we have
that

pr,m−1 + ar,m ≤ pr−1,m−1 + er,m ≤ pr,m

and the result follows since, if the first sequence is exact, pr,m−1 + ar,m =
pr,m. 2

With this machinery in place one can now, for any prime p, imitate the
proof for the binary case: see Theorem 3.13. Note that here we need only
identify the vectors in the projective codes since we have already determined
the minimum-weight vectors in the affine case. We leave to the reader the
proof of the following

Theorem 5.44 For p a prime, the minimum-weight vectors of the code of
the design of points and r-dimensional subspaces of PGm(Fp) are the scalar
multiples of the incidence vectors of these subspaces.

Remark: We note that we have thus determined the minimum-weight vec-
tors of the codes PFp(r,m) in the prime case, since these codes are codes of
designs arising from PGm−1(Fp).

5.8 The subfield subcodes

To obtain the codes of the designs coming from affine and projective spaces
over Fq, in the case in which q is a proper prime power, we need to restrict
the codes, RFq((m − r)(q − 1),m) and PFq((m − r),m + 1), to subfield
subcodes — also defined in Chapter 1, Section 5.

Definition 5.45 Let C be a linear code over a field E and let F be a subfield
of E. The set C ′ of vectors in C, all of whose coordinates lie in F , is called
the subfield subcode of C over F .

It is easy to verify that C ′ is a linear code over F and that any per-
mutation of the coordinate positions preserving C also preserves C ′. We
are interested here only in the case where F = Fp, the prime subfield of
E = Fq. In what follows q = pt.

Definition 5.46 Denote by AFq/Fp
(ρ,m) the subfield subcode of the gener-

alized Reed-Muller code RFq(ρ,m) and by PFq/Fp
(r,m) the subfield subcode

of the projective generalized Reed-Muller code PFq(r,m).
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Taking first the single-variable approach, P (Z) =
∑v−1

j=0 cjZ
j yields a

vector in AFq/Fp
(ρ,m) if P (ωj) ∈ F for all j, and P (0) ∈ F , which is

equivalent to the condition that cjp = cpj for all j, the subscripts being read
modulo v = qm − 1 as usual. Writing

Vρ = {u | 0 ≤ u ≤ qm − 1,wtq(upj) ≤ ρ for j = 0, 1, . . . , t− 1}

(where upj is taken reduced modulo qm−1, for the same reasons as before),
we have that AFq/Fp

(ρ,m) is given by(P (0), . . . , P (ωv−1)) |P (Z) =
∑

u∈Vρ

cuZ
u, cu ∈ Fqm , cup = (cu)p


and that

dim(AFq/Fp
(ρ,m)) = |Vρ|.

Clearly, by Theorem 5.10, AFq/Fp
(ρ,m) will contain the incidence vector of

any (m− r)-flat when ρ ≥ r(q − 1). Its minimum weight dρ is bounded by

(q − s)qm−r−1 ≤ dρ ≤ qm−r,

where ρ = r(q − 1) + s and 0 ≤ s < q − 1, and, from Theorem 5.25, attains
the lower bound if there are s distinct w′j in E such that the ck, as defined
there, are in F . In particular, if s = 0, then this holds and dρ = qm−r.
Further, in the case s = q − 2 this is also the case: the vector obtained is
the difference of the incidence vectors of two parallel r-flats, which is clearly
a vector of the subfield subcode.

For the orthogonal code, AFq/Fp
(ρ,m)⊥, clearly we have

AFq/Fp
(µ,m) ⊆ AFq/Fp

(ρ,m)⊥,

where µ = m(q−1)−ρ−1 = (m−r−1)(q−1)+(q−2−s) (and ρ = r(q−1)+s,
and 0 ≤ s < q−1, as above). Its minimum weight d⊥ρ thus certainly satisfies

d⊥ρ ≤ dµ ≤ qr+1, (17)

from the above discussion. A lower bound for d⊥ρ follows from the BCH
bound, and some evaluations of these are quoted in Delsarte et al. [18,
Theorem 4.3.1]. In particular, for ρ = r(q − 1) this gives

d⊥r(q−1) ≥ (p+ q)qr−1,
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and for ρ = r(q − 1) + (q − 2) = (r + 1)(q − 1)− 1, it gives

d⊥r(q−1)+(q−2) ≥ qr+1,

which, from (17), yields

d⊥r(q−1)+(q−2) = qr+1.

For the codes of designs arising from projective geometries, we must take
the subfield subcodes of the codes PFq(m − r,m + 1). As we have already
indicated the minimum weight of this code is qr + qr−1 + · · · + 1 and the
incidence vectors of the projective subspaces of dimension r are minimum-
weight vectors.

Our interest is in the codes given by the designs of r-flats of the affine
spaces and r-dimensional subspaces of the projective spaces. Just as in the
binary case we must first analyse the codimension 1 case — in the projective
case the design of points and hyperplanes of a projective space. This case
was, historically, the one given the most attention and was introduced for
projective planes by Prange with Rudolph considerably enriching the sub-
ject and making serious conjectures. The first systematic treatment in the
case of planes was given by Graham and MacWilliams [22]. These results
were generalized to higher dimensions by Goethals and Delsarte [21] and
MacWilliams and Mann [39]; in particular, these authors computed the di-
mension of the code of the design of points and hyperplanes of an arbitrary
projective space. The results are highly diverse and some of the proofs very
technical: thus we only state what we need and show the reader how to
construct these codes, using results of Delsarte et al. [18]. More recently,
Rose [47] has given elegant new proofs of some of the results and Brouwer
and Wilbrink [10, Theorem 4.8] have given a simple method to compute the
p-ranks of the codes in question. We refer the reader also to a fuller account
in Assmus and Key [2].

We thus now simply state the general theorem. Notice that everything
stated is true also for p = 2, but that Theorem 3.14 gives more precise
information in that case.

Theorem 5.47 Let m be any positive integer, q = pt where p is a prime,
and let 0 ≤ r ≤ m.

(1) The code over Fp of the design of points and r-flats in the affine geom-
etry AGm(Fq), is AFq/Fp

((m − r)(q − 1),m). It has minimum weight
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qr and the minimum-weight vectors are the multiples of the incidence
vectors of the r-flats. The p-rank is given by the cardinality of the set
of integers u satisfying

• 0 ≤ u ≤ qm − 1

• wtq(upj) ≤ (m− r)(q − 1), j = 0, 1, . . . , t− 1

where upj is reduced modulo qm − 1. The orthogonal code satisfies

AFq/Fp
((m− r)(q − 1),m)⊥ ⊇ AFq/Fp

(r(q − 1)− 1,m)

and

AFq/Fp
(r(q−1)−1,m) = 〈vM−vN |M,N parallel (m− r)-flats in V 〉.

This latter code has minimum weight 2qm−r with minimum-weight vec-
tors multiples of the difference of the incidence vectors of two parallel
(m − r)-flats . The minimum weight, d⊥(m−r)(q−1), of the orthogonal
code satisfies

(q + p)qm−r−1 ≤ d⊥(m−r)(q−1) ≤ 2qm−r.

When q = p the subfield codes are the generalized Reed-Muller codes,
i.e.

AFp/Fp
((m− r)(p− 1),m) = RFp((m− r)(p− 1),m)

and
RFp((m− r)(p− 1),m)⊥ = RFp(r(p− 1)− 1,m).

(2) The code over Fp of the design of points and r-dimensional subspaces
of the projective geometry PGm(Fq) is PFq/Fp

(m − r,m + 1). It has
minimum weight (qr+1 − 1)/(q − 1) and the minimum-weight vectors
are the multiples of the incidence vectors of the blocks. The p-rank is
given by the cardinality of the set of integers u satisfying

• 0 ≤ u ≤ qm+1 − 1

• (q − 1) divides u

• wtq(upj) ≤ (m− r)(q − 1), j = 0, 1, . . . , t− 1

where upj is reduced modulo qm+1 − 1. The orthogonal code satisfies

PFq/Fp
(m− r,m+ 1)⊥ ⊇ PFq/Fp

(r,m+ 1) ∩ 〈1〉⊥
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and has minimum weight at least (qm−r+1 − 1)/(q − 1) + 1; if q = p
the subfield codes are the non-primitive generalized Reed-Muller codes
and this becomes an equality.

In particular, the code over Fp of the design of points and hyperplanes
in the affine geometry AGm(Fq) is AFq/Fp

(q− 1,m) and the code over Fp of
the design of points and hyperplanes of the projective geometry PGm(Fq)
is PFq/Fp

(1,m+ 1).

In order to actually construct the subfield subcodes, the m-variable ap-
proach is once again the most straightforward; it is described fully in [18].
Before describing the construction, we need some notation: if k satisfies
0 ≤ k ≤ q − 1, and k =

∑t−1
i=0 kip

i, where 0 ≤ ki ≤ p− 1, then write

[pk] = kt−1 + k0p+ · · ·+ kt−2p
t−1 = pk − kt−1(q − 1), (18)

i.e.

[pk] =

{
pk mod (q − 1) if k < q − 1
q − 1 if k = q − 1.

Further, write [k] = k.

Theorem 5.48 For any ρ such that 0 ≤ ρ ≤ m(q − 1), the code

AFq/Fp
(ρ,m)

consists of the following polynomial functions, in terms of the usual basis of
characteristic functions on Fm

q :

p(x1, . . . , xm) =
∑

l1,...,lm

d(l1, l2, . . . , lm)xl1
1 x

l2
2 . . . x

lm
m ,

where 0 ≤ li ≤ q − 1, d(l1, l2, . . . , lm) ∈ Fq, and

(1)
∑m

i=1[p
jli] ≤ ρ, for j = 0, 1, . . . , t− 1;

(2) d([pjl1], . . . , [pjlm]) = (d(l1, . . . , lm))pj
, for j = 0, 1, . . . , t− 1.

Example 5.49 Take m = 2 and q = 4 = 22. Thus t = 2 and 0 ≤
ρ ≤ 6. Taking ρ = 3 will give AF4/F2

(3, 2) = C2(AG2(F4)). Then V3 =
{0, 1, 2, 3, 4, 6, 8, 9, 12} and so dim(AF4/F2

(3, 2)) = 9. If ω is a primitive ele-
ment for E = F4, a root of X2 +X + 1 = 0, then polynomials that generate
the code, according to Theorem 5.48, are {1, x3

1, x
3
2, x1 + x2

1, x2 + x2
2, ωx1 +
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ω2x2
1, ωx2 + ω2x2

2, x1x
2
2 + x2

1x2, ωx1x
2
2 + ω2x2

1x2}. A generator matrix from
these polynomials can be constructed, and the entries are all, of course, in
F2. For example, if K = F16 is constructed from E using the primitive
polynomial X2 + ωX + ω and a is a root of this, then ordering the vectors
of E2 in the usual way, i.e. 0, 1, a, a2, . . . , a14. Then the codeword obtained
from the polynomial ωx2 + ω2x2

2 is

(0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0).

The codes PFq/Fp
(r,m) can be constructed in a manner analogous to the

primitive case as in Theorem 5.48. With the added condition that (q − 1)
divides

∑
i li, the codewords are given by the first n = (qm − 1)/(q − 1)

coordinates, as in Definition 5.35.

Example 5.50 For m = 3, q = 4, n = (43 − 1)/(4 − 1) = 21, and taking
r = 1, will produce PF4/F2

(1, 3) as the binary code of the projective plane
of order 4, PG2(F4). If ω is a primitive element for E = F4, then the
polynomials that generate (over F2) PF4/F2

(1, 3) are {1, x3
1, x

3
2, x

3
3, x1x

2
2 +

x2
1x2, ωx1x

2
2 + ω2x2

1x2, x2x
2
3 + x2

2x3, ωx2x
2
3 + ω2x2

2x3, x3x
2
1 + x2

3x1, ωx3x
2
1 +

ω2x2
3x1}. The dimension is thus 10 and a generator matrix is given by the

codewords corresponding to each of these ten polynomials p(x1, . . . , xm),
appropriately evaluated. Taking X3 + ω2X2 + ωX + ω for the generating
polynomial of F64 over F4. For example, the codeword corresponding to
p(x1, . . . , xm) = ωx1x

2
2 + ω2x2

1x2 is

(0, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0).

This is the vector vL − vM where L and M are lines, L = {3, 4, 7, 17, 19} =
(1, 1, 0)t, andM = {3, 5, 10, 11, 14} = (1, ω, 0)t, where the points are labelled
1, 2, . . . , 21 in the order given15.

Note: The designs formed from affine or projective geometries may happen
to have orders divisible by primes other than the characteristic prime for the
geometry. The codes for such primes will not be of any interest — a result
that follows from work of Mortimer [45] on the modular representations of
doubly-transitive groups.

15Computations here and elsewhere were with Cayley[9] and Magma[11].
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5.9 Formulas for p-ranks

The dimensions of the codes arising from finite geometries are given in the
preceding section in terms of the number of integers with q-weight satis-
fying certain properties and this may very well be the most efficient way
to calculate the dimension in the general case, since there seems to be no
simple formula that will cover all possibilities — except in the case of the
Reed-Muller codes, where q = p = 2. There are, however, simplifications in
certain cases, and we give some of these below.

But we first give Hamada’s [25, 26] rather complicated general formula:

Result 5.51 (Hamada) Let q = pt and let D denote the design of points
and r-dimensional subspaces of the projective geometry PGm(Fq), where
0 < r < m. Then the p-rank of D is given by

∑
s0

. . .
∑
st−1

t−1∏
j=0

L(sj+1,sj)∑
i=0

(−1)i

(
m+ 1
i

)(
m+ sj+1p− sj − ip

m

)
,

where st = s0 and summations are taken over all integers sj (for j =
0, 1, . . . , t− 1) such that

r + 1 ≤ sj ≤ m+ 1, and 0 ≤ sj+1p− sj ≤ (m+ 1)(p− 1),

and
L(sj+1, sj) = bsj+1p− sj

p
c,

i.e. the greatest integer not exceeding (sj+1p− sj)/p.

This formula is deduced in [25, 26]. It simplifies in certain cases, in
particular in the case of designs of points and hyperplanes, when the formula
becomes that found earlier by Graham and MacWilliams [22] for planes, and
by Goethals and Delsarte [21], MacWilliams and Mann [39], and Smith [50],
for general m. It becomes in that case:

Result 5.52 If q = pt, the p-rank of the design of points and hyperplanes
of PGm(Fq) is (

m+ p− 1
m

)t

+ 1.
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If q = pt, the p-rank of the design of points and (m − 1)-flats of the affine
geometry AGm(Fq) is (

m+ p− 1
m

)t

.

Observe that the passage from the projective dimension to the affine dimen-
sion is, in the codimension-1 case, quite easy: since the minimum-weight is
given by the number of points of a hyperplane and since the incidence vector
of a hyperplane is a minimum-weight vector one simply projects onto the
affine points off one such hyperplane — losing one dimension.

In the case q = p = 2, the codes are Reed-Muller, and the 2-ranks are
explicitly given in Theorem 3.14. When q = p in general, Theorem 5.5 gives
the p-rank; we restate it here for the affine geometry designs.

Result 5.53 For any r such that 0 ≤ r ≤ m,

dim(RFp((m− r)(p− 1),m)) =
m∑

k=0

(−1)k

(
m

k

)(
m+ (m− r)(p− 1)− kp

m

)
.

A simplification of this for q = p prime and r = 1, when we have the
design of points and lines, was obtained by Ceccherini and Hirschfeld [12];
a general summation formula in the prime case but for any r has been
established by Hirschfeld and Shaw [27] and is as follows:

Result 5.54 For p a prime, the p-rank of the design of points and r-
dimensional projective subspaces of PGm(Fp) is

pm + pm−1 + . . .+ 1−
r−1∑
i=0

(−1)i

(
(r − i)(p− 1)− 1

i

)(
m+ (r − i)p− r

m− i

)
.

For r = 1 Result 5.54 has a simple form which follows from Theorem 5.38
and the simple form for the dimension of points and hyperplanes; note that
the derivation of the formula below is particularly easy since one can utilize
Corollary 4.19 to get the dimension of the projective code of points and
hyperplanes — as explained above — and not even invoke Theorem 5.38,
but instead note that the complements of the hyperplanes give the necessary
orthogonal (with a compensating loss of the gained dimension). Thus the
code over Fp of the design of points and lines of the projective geometry
PGm(Fp) where p is a prime has dimension

pm + pm−1 + . . .+ 1−
(
m+ p− 1

m

)
.
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These simple derivations for the case q = p a prime highlight the difficulties
of the prime-power case.

As we have seen in Corollary 4.20:

Result 5.55 The p-rank of the design of points and lines of the affine ge-
ometry AGm(Fp), where p is a prime, is

pm −
(
m+ p− 2

m

)
.

In the case of q = p = 3 and r = 1, we have a Steiner triple system.
Hence we have

Result 5.56 The 3-rank of the Steiner triple system of points and lines of
AGm(F3) is 3m − 1−m.

Another particular case that gave a bound for the p-rank of a translation
plane is the following from Key and Mackenzie [33]:

Result 5.57 If D is the design of points and m-flats in AG2m(Fp), where
p is a prime, then the p-rank of D is given by

dim
(
RFp(m(p− 1), 2m)

)
= rankp(D) =

m−1∑
i=0

(−1)i

(
2m
i

)(
m+ (m− i)p

2m

)
.

There are also other cases where simpler arguments give the p-rank and
even a basis in terms of incidence vectors of the geometric objects involved.
For example, Bagchi and Sastry [4] have produced a simple derivation of the
dimension of the binary code of the design of points and planes in PG3(F2t)
by finding a set of planes whose incidence vectors form a basis:

Result 5.58 (Bagchi and Sastry) Let D be the design of points and
planes in PG3(F2t) and let O be an ovoid in PG3(F2t). Then the inci-
dence vectors of the tangent planes to the ovoid form a basis for C2(D). It
follows that dim(C2(D)) = 22t + 1.

Another result which describes an explicit basis of incidence vectors —
in this case lines — of the affine plane AG2(Fp), where p is a prime, has
been obtained by Moorhouse [43]. In this case the dimension of the code
over Fp is

(p+1
2

)
=
∑p

i=1 i, and a basis can be had by ordering, arbitrarily,
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any p of the p + 1 parallel classes and taking one line from the first, two
from the second, etc., even the choices of the lines being made arbitrarily;
the basis consists of the incidence vectors of the selected lines.

A conjecture of Hamada (see [25, 26]) that the p-rank of the design of
points and r-dimensional flats of a finite-geometry design over a field of char-
acteristic p is always the smallest for designs with the same parameters and
also characterizes such designs, is false in general, the counter-examples first
occuring for 2-(31,7,7) designs: see Tonchev [51] and Delsarte and Goethals
[21]. However, the minimality of the p-rank still appears to be true, and the
conjecture still stands for designs of points and hyperplanes and also for de-
signs of points and lines; moreover, when p = q = 2, this limited conjecture
is valid.
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