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Abstract

Linear codes arising from the row span over any prime field Fp of the incidence matrices of the
odd graphs Ok for k ≥ 2 are examined and all the main parameters obtained. A study of the hulls
of these codes for p = 2 yielded that for O2 (the Petersen graph), the dual of the binary hull from an
incidence matrix is the binary code from points and lines of the projective geometry PG3(F2), which
leads to a correspondence between the edges and vertices of O2 with the points and a collection of
ten lines of PG3(F2), consistent with the codes.

The study also gives the dimension, the minimum weight, and the nature of the minimum words,
of the binary codes from adjacency matrices of the line graphs L(Ok).

1 Introduction

Recent investigations of the codes from the |V | × |E| incidence matrices of k-regular connected graph
Γ = (V,E) in, for example [8, 23, 14, 20, 21], yielded observations that led to a more general approach
for this study, using edge-connectivity of graphs, in [6, 5]. This showed that, under certain very broad
conditions on Γ, the codes over any field Fp from an incidence matrix G have the properties that: the
dimension is |V | or |V | − 1; the minimum weight is k and the words of weight k are the scalar multiples
of the rows of G; there are no words of weight i such that k < i < 2k − 2; the words of weight 2k − 2
are the scalar multiples of the differences of two rows of G corresponding to adjacent vertices. Thus the
graph can be retrieved from the code. Such properties are reminiscent of the codes from finite projective
planes: see [1, Chapter 6]. Codes from the adjacency matrices of graphs do not behave in such a uniform
way. However, since for p = 2, GTG is an adjacency matrix for the line graph of Γ, L(Γ), in such cases
we can use the facts about the code from the incidence matrix for Γ for information about the binary
code from the adjacency matrix of L(Γ), including the dimension and minimum weight. In particular,
the codes will not be trivial.

In this paper we examine these codes from incidence matrices of the odd graphs Ok, and deduce
properties of the binary codes from adjacency matrices of the line graphs L(Ok) and also the hulls of
these codes, where the hull of a code C is C ∩C⊥. The odd graphs Ok for k ≥ 2 are the uniform subset
graphs Γ(2k + 1, k, 0) whose vertices are the subsets of size k of a set of size 2k + 1, with two vertices
being adjacent if the two k-subsets intersect in the empty set1. They are thus (k + 1)-regular graphs.
Binary codes from the adjacency matrices of these graphs were examined in [10, Chapter 6]. Here we
consider p-ary codes from incidence matrices for these graphs, along with binary codes from the adjacency
matrices of their line graphs, and the hulls of these.

Our main results are collected in the following theorem, where we use the notation that if A is a
matrix then Cp(A) denotes the row span of A over the prime field Fp:
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Theorem 1. For k ≥ 2, let Gk = [gi,j ] be a
(
2k+1
k

)× k+1
2

(
2k+1
k

)
incidence matrix for the odd graph Ok,

and let Lk be an adjacency matrix for the line graph L(Ok). For p any prime, let εp = 0 if p is odd,
ε2 = 1. Then:

1. For any prime p, Cp(Gk) is a
[
k+1
2

(
2k+1
k

)
,
(
2k+1
k

)− εp, k + 1
]
p

code.

If k ≥ 3, the minimum words are the scalar multiples of the rows of Gk, there are no words of
weight i where k+ 1 < i < 2k, and the words of weight 2k are the scalar multiples of the differences
of two rows corresponding to two adjacent vertices.

If p = 2, the same is true for k = 2. For p odd, Cp(G2) has more words of weight 3.

2. If E(Gk) = 〈gi,j − gi,m | 1 ≤ i ≤ 2k + 1〉 over F2, then E(Gk) = C2(Lk). If k = 2l − 1 for
some l ≥ 2, then C2(Lk) = C2(Gk); otherwise C2(Lk) has codimension 1 in C2(Gk) and is a[
k+1
2

(
2k+1
k

)
,
(
2k+1
k

)− 2, 2k
]
2

code, with the words of weight 2k the rows of Lk.

3. For all k ≥ 2, Hull(C2(Gk)) and Hull(C2(Lk)) have minimum weight at least 2k+2, and either they
are equal or one has codimension 1 in the other. For k even, dim(Hull(C2(Gk))) =

(
2k−1
k

)
+2k−1−1;

for k odd, dim(Hull(C2(Gk))) =
(

2k
k−1

)− 1.

Further, for the strongly regular (10, 3, 0, 1) Petersen graph O2,

(Hull(C2(G2)))⊥ = C2(G2) + C2(G2)⊥ = C2(PG3,1(F2)) = H4,

where Hr denotes the Hamming code of length 2r − 1, 〈Hull(C2(G2)), 15〉 = C2(PG3,2(F2)). There
is a correspondence between the edges and vertices of O2 and the 15 points and a set of ten lines of
PG3(F2), consistent with the codewords. The edges of the 15 8-cycles of O2 are the supports of the
non-zero words of H⊥4 , with complements the 15 Fano planes PG2(F2) in PG3(F2).

General terminology is given in Section 2. The results collected in the theorem appear as propositions
in Sections 3, 4, 5, and 6. Some further general results about binary codes of adjacency matrices of line
graphs and their hulls are shown in Sections 4 and 5. The results for the Petersen graph are in Section 6.
This is followed by step-by-step procedures to correspond the points of PG3(F2) with the edges of O2,
and the converse operation of obtaining the graph from the points and a set of ten lines of PG3(F2).
Section 7 concerns the use of these codes for permutation decoding.

2 Background, terminology, and previous results

2.1 Designs and codes

The notation for designs and codes is as in [1]. An incidence structure D = (P,B,J ), with point set
P, block set B and incidence J is a t-(v, k, λ) design, if |P| = v, every block B ∈ B is incident with
precisely k points, and every t distinct points are together incident with precisely λ blocks. A design is
symmetric if it has the same number of points as blocks. The code CF (D) of the design D over the
finite field F is the space spanned by the incidence vectors of the blocks over F . If Q ⊆ P, then we will
denote the incidence vector of Q by vQ. Thus CF (D) =

〈
vB |B ∈ B〉, and is a subspace of FP . For

any w ∈ FP and P ∈ P, w(P ) denotes the value of w at P . If F = Fp then the p-rank of D, written
rankp(D), is the dimension of Cp(D), writing Cp(D) for CF (D).

All the codes here are linear codes, and the notation [n, k, d]q is used for a q-ary code C of length n,
dimension k, and minimum weight d, where the weight wt(v) of a vector v is the number of non-zero
coordinate entries. The support, Supp(v), of a vector v is the set of coordinate positions where the entry
in v is non-zero. A generator matrix for C is a k×n matrix with rows a basis for C, and the dual code
C⊥ is the orthogonal under the standard inner product (, ), i.e. C⊥ = {v ∈ Fn | (v, c) = 0 for all c ∈ C}.
If C = Cp(D), where D is a design, then C ∩ C⊥ is the hull of D or C. A check matrix for C is a
generator matrix for C⊥. The all-one vector will be denoted by , and is the vector with all entries
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equal to 1. The all-one vector of length m is written m. We call two linear codes isomorphic if they can
be obtained from one another by permuting the coordinate positions. An automorphism of a code C
is an isomorphism from C to C. The automorphism group will be denoted by Aut(C). An information
set for C is the set of k coordinate positions of a set of k linearly independent columns of a generator
matrix for C. The remaining coordinates are called a check set.

For any finite field Fq of order q, the set of points and r-dimensional subspaces of an m-dimensional
projective geometry forms a 2-design which we will denote by PGm,r(Fq). The automorphism group
of each of these designs is the full projective semi-linear group, PΓLm+1(Fq) and is 2-transitive on points.
The codes of these designs are subfield subcodes of the generalized Reed-Muller codes: see [1, Chapter 5]
for a full treatment.

2.2 Graphs and codes

The graphs, Γ = (V,E) with vertex set V and edge set E, are simple. If X,Y ∈ V and X and Y are
adjacent, we write X ∼ Y , and XY or [X,Y ] for the edge in E that they define. The set of neighbours
of X ∈ V is denoted by N (X), and the valency of X is |N (X)|. Γ is regular if all the vertices have
the same valency. A path of length r from vertex X to vertex Y is a sequence Xi, for 0 ≤ i ≤ r − 1, of
distinct vertices with X = X0, Y = Xr−1, and Xi−1 ∼ Xi for 1 ≤ i ≤ r − 1. It is closed of length r if
X ∼ Y , in which case we write it (X0, . . . , Xr−1). The graph is connected if there is a path between
any two vertices. A perfect matching is a set S of disjoint edges such that every vertex is on exactly
one member of S. An adjacency matrix A is a |V | × |V | matrix with entries aij such that aij = 1 if
vertices Xi and Xj are adjacent, and aij = 0 otherwise. An incidence matrix is a |V | × |E| matrix B
with bij = 1 if the vertex labelled by i is on the edge labelled by j, and bij = 0 otherwise. If Γ is regular
with valency k, then the 1-(|E|, k, 2) design with incidence matrix B is called the incidence design of
Γ. The neighbourhood design of Γ is the symmetric 1-(|V |, k, k) design formed by taking the points
to be the vertices of the graph and the blocks to be the sets of neighbours of a vertex, for each vertex,
i.e. an adjacency matrix as an incidence matrix for the design. The line graph of Γ is the graph L(Γ)
with E as vertex set and where adjacency is defined so that e and f in E, as vertices, are adjacent in
L(Γ) if e and f as edges of Γ share a vertex in Γ. A strongly regular graph Γ of type (n, k, λ, µ)
is a regular graph on n = |V | vertices, with valency k which is such that any two adjacent vertices are
together adjacent to λ vertices and any two non-adjacent vertices are together adjacent to µ vertices.

The code of Γ over a finite field F is the row span of an adjacency matrix A over the field F , denoted
by CF (Γ) or CF (A). The dimension of the code is the rank of the matrix over F , also written rankp(A)
if F = Fp, in which case we will speak of the p-rank of A or Γ, and write Cp(Γ) or Cp(A) for the code. It
is also the code over Fp of the neighbourhood design. Similarly, if G is an incidence matrix for Γ, Cp(G)
denotes the row span of G over Fp. If L is an adjacency matrix for L(Γ) where Γ is regular, then

GTG = L+ 2I|E|. (1)

We need some of the notions of edge connectivity. If Γ = (V,E) is a connected graph, then an
edge-cut of Γ is a subset S ⊆ E such that removing the edges in S renders the new graph Γ − S
disconnected. The edge-connectivity of Γ, denoted by λ(Γ), is the minimum cardinality of an edge-cut
of Γ. If Γ is k-regular then λ(Γ) ≤ k; Γ is super-λ if λ(Γ) = k and every minimal edge-cut consists of
the edges incident with some vertex. If Γ − S has only nontrivial components, i.e., components with at
least two vertices, then S is a restricted edge-cut. The minimal cardinality of a restricted edge-cut
is the restricted edge-connectivity, denoted by λ′(Γ). If Γ is k-regular then λ′(Γ) ≤ 2k − 2. Γ is
super-λ′ if λ′(Γ) = 2k − 2 and every minimal restricted edge-cut consists of the edges incident with
some edge. A restricted bipartition set is a bipartition set S ⊆ E such that Γ − S has a nontrivial
bipartite component, i.e., a component that is bipartite and contains more than one vertex. The minimum
cardinality of a restricted bipartition set of Γ is denoted by λ′bip(Γ). If Γ is k-regular then λ′bip(Γ) ≤ 2k−2.
Γ is super-λ′bip if λ′bip(Γ) = 2k − 2 and every minimum restricted bipartition set consists of the edges
incident with some edge. The minimum number of edges of Γ whose removal renders the graph bipartite
is denoted by b(Γ).
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If Γ = (V,E) is a graph, X a vertex, N (X) its neighbours, then we write

X = {[X,Y ] | Y ∈ V, Y ∼ X} = {[X,Y ] | Y ∈ N (X)}, (2)

i.e. the edges that correspond to non-zero entries in the row labelled by X of an incidence matrix G for
Γ. Thus Cp(G) is generated by the vectors vX =

∑
Y ∈N (X) v

[X,Y ].

For the line graph L(Γ) we have N ([X,Y ]) = {[X,Z] | Z 6= Y }∪ {[Y,Z] | Z 6= X}, for the neighbours
of [X,Y ].

Lemma 1. Let Γ be a graph, L(Γ) its line graph, and G an incidence matrix for Γ. If π = (X1, . . . , Xl)
is a closed path in Γ, then w(π) =

∑l−1
i=1 v

[Xi,Xi+1] + v[Xl,X1] ∈ C2(G)⊥.

Proof: The proof is clear. �

We will need the following result from [8]:

Result 1. Let Γ = (V,E) be a regular graph with valency k and G the 1-(|E|, k, 2) incidence design for
Γ. Then Aut(Γ) = Aut(G).

We need also the following from [23, Result 2]:

Result 2. Let Γ = (V,E) be a graph, G an incidence matrix for Γ, Cp(G) the row-span of G over Fp. If
Γ is connected then dim(C2(G)) = |V | − 1, and if Γ is connected and has a closed path of odd length ≥ 3,
then dim(Cp(G)) = |V | for odd p.

2.3 Permutation decoding

Permutation decoding was first developed by MacWilliams [27] and involves finding a set of automor-
phisms of a code called a PD-set. The method is described in MacWilliams and Sloane [28, Chapter 16,
p. 513] and Huffman [17, Section 8]. In [18] and [24] the definition of PD-sets was extended to that of
s-PD-sets for s-error-correction:

Definition 1. If C is a t-error-correcting code with information set I and check set C, then a PD-set
for C is a set S of automorphisms of C which is such that every t-set of coordinate positions is moved
by at least one member of S into the check positions C.

For s ≤ t an s-PD-set is a set S of automorphisms of C which is such that every s-set of coordinate
positions is moved by at least one member of S into C.

The algorithm for permutation decoding is given in [17]. There is a bound on the minimum size that
the set S may have, due to Gordon [16], from a formula due to Schönheim [29], and quoted and proved
in [17]. The formula can be adapted to s-PD-sets for s ≤ t by replacing t by s in the formula: see, for
example, [11]

3 Incidence matrices of odd graphs

The odd graphs Ok for k ≥ 2 are the uniform subset graphs G(2k+ 1, k, 0), i.e. if Ω is a set of size 2k+ 1,
the vertex set of Ok is the set Ω{k} of subsets of size k of Ω, with two vertices being adjacent if the two
k-subsets intersect in the empty set. The graphs are regular, of valency ν = k+ 1, and Aut(Ok) = S2k+1,
acting transitively on vertices and on edges. The set of edges of Ok is denoted by Pk and is the point set
of the 1-(k+1

2

(
2k+1
k

)
, k + 1, 2) incidence design Gk of Ok. Thus Ok = (Ω{k},Pk).

General theorems in [6, 5], along with special results for Ok, can be used to prove the following
proposition; these depend on results from the literature on edge cuts.

Proposition 1. For k ≥ 2, let Gk be a
(
2k+1
k

)× k+1
2

(
2k+1
k

)
incidence matrix for the odd graph Ok. For

p any prime, let εp = 0 if p is odd, ε2 = 1.

Then for any prime p, Cp(Gk) is a
[
k+1
2

(
2k+1
k

)
,
(
2k+1
k

)− εp, k + 1
]
p

code.
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If k ≥ 3, the minimum words are the scalar multiples of the rows of Gk, there are no words of weight
i where k+ 1 < i < 2k, and the words of weight 2k are the scalar multiples of the differences of two rows
corresponding to two adjacent vertices.

If p = 2, the same is true for k = 2. For p odd, Cp(G2) has more words of weight 3.

We need a lemma to employ the results of [6, 5] before we can prove this proposition. First note that
for k ≥ 2, since Ok is both vertex and edge transitive, has no triangles and is not bipartite, from Result 9
in [5], Ok is both super-λ and super-λ′. We also need to show that, for k ≥ 3, Ok is super-λ′bip, and this
will hold if it is super-λ′ and if b(Ok) > 2ν − 2 = 2k. Thus we need only check the bound on b(Ok). The
necessary terminology, including b(Γ), that we use here for edge-connectivity is defined in Section 2.2.

Lemma 2. Let Γ = (V,E) be a ν-regular connected graph which is such that every edge is on x m-cycles,
where x > 0 and m ≥ 3 is odd. Then b(Γ) ≥ 1

2m |V |ν.
Ok is connected for k ≥ 2, and if k ≥ 3, b(Ok) > 2k.

Proof: The number of m-cycles is t = 1
2m |V |νx. A set S of s edges removed from E such that Γ − S

is bipartite must destroy all the m-cycles; since each edge is on x m-cycles, at most sx m-cycles are
destroyed, so sx ≥ t. In particular b(Γ) ≥ 1

2m |V |ν.
Now let Γ = Ok. Then Γ has cycles of length m = 2k + 1: if σ = (1, 2, . . . , 2k + 1)−1 ∈ Aut(Γ),

X0 = {1, 2, . . . , k}, Y0 = {k + 1, k + 2, . . . , 2k}, and Xi = Xσi

0 , Yi = Y σ
i

0 , for 1 ≤ i ≤ k, then Yk = X0,
and

(X0, Y0, X1, Y1, . . . , Xk−1, Yk−1, Xk)

is a closed path of length 2k + 1 in Γ. To show that Γ is connected, note first that | X0 ∩Xi |= k − i for
0 ≤ i ≤ k, so to show that we can find a path between any two vertices, we need only show that X0 is
connected to any vertex Z, where | X0 ∩ Z |= r, and 0 ≤ r ≤ k − 1. Clearly in S2k+1 we can map the
pair X0, Xk−r to X0, Z, which proves the assertion.

From the first part of the lemma, with m = 2k + 1, |V | =
(
2k+1
k

)
, and ν = k + 1, we have b(Ok) ≥

1
2(2k+1)

(
2k+1
k

)
(k + 1). This is easily shown to be strictly greater than 2k for k ≥ 3. �

Note that the inequality in the lemma is not true for k = 2 and in fact the codes Cp(O2) for p odd
do not satisfy these properties, as noted before.

The proof of the proposition now follows from the facts that Ok is connected, super-λ and super-λ′

for k ≥ 2, and super-λ′bip for k ≥ 3, and Theorems 11, 18 of [5].

4 Binary codes of line graphs of odd graphs

Let Gk denote an incidence matrix for Ok, and Lk an adjacency matrix for the line graph L(Ok). For
binary codes, we have

(Gk)TGk = Lk.

The following result is deduced from results in [22, 7, 8]:

Result 3. Let Γ = (V,E) be a connected graph, G a |V |×|E| incidence matrix for Γ, and L an adjacency
matrix for L(Γ). Let E(G) denote the binary code spanned by the differences of all pairs of rows of G.
Then C2(L) = E(G) and C2(L) = C2(G) if and only if |V | 6∈ C2(GT ). Further, if Γ has a perfect
matching then |V | ∈ C2(GT ).

The result applies to Ok so we need to determine when (2k+1
k ) ∈ C2(GTk ). By [26] every vertex-

transitive graph on an even number of vertices has a perfect matching, so that this will be true for Ok,
k ≥ 2. Thus we need only establish when the number of vertices is even.

Proposition 2. For k ≥ 2, let Gk = [gi,j ] be a
(
2k+1
k

) × k+1
2

(
2k+1
k

)
incidence matrix for Ok, E(Gk) =

〈gi,j − gi,m | 1 ≤ i ≤ 2k + 1〉 over F2, and Lk an adjacency matrix for L(Ok). Then E(Gk) = C2(Lk)
and if k = 2l − 1 for some l ≥ 2, then C2(Lk) = C2(Gk); otherwise C2(Lk) has codimension 1 in C2(Gk)
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and is a
[
k+1
2

(
2k+1
k

)
,
(
2k+1
k

)− 2, 2k
]
2

code and the words of weight 2k are the differences of two rows of
Gk corresponding to adjacent vertices.

Proof: If k = 2l − 1 for some l ≥ 2 then by [10, page 78],
(
2k+1
k

)
is odd, so (2k+1

k ) 6∈ C2(GTk ) since this is

an even-weight code. If k is even, the sum of all the rows of GTk is (2k+1
k ); if k is odd, k 6= 2l − 1 for any

l ≥ 2, then by [10, page 78],
(
2k+1
k

)
is even. The statement about the minimum weight and the nature of

the minimum words follows from Proposition 1. This completes the proof. �

Note: The fact that dim(C2(Lk)) is even (see for example [15, Proposition 2.1]) could be used in the
proof. Also, if C2(Lk) 6= C2(Gk) then C2(Lk) cannot contain any vectors that are a sum of an odd
number of rows of Gk.

5 Binary hulls for C2(Gk)

Recall that Hull(C) = C ∩C⊥ for C any code. Thus it is a self-orthogonal code. A study of the hull of a
code or design often leads to some defining characters of the structure: see [1, 13] for more about hulls.
Hulls of codes from incidence matrices of regular connected graphs were studied in [12]. For the binary
hull of an adjacency matrix of L(Γ) we have the following:

Lemma 3. Let Γ be a graph, G an incidence matrix for Γ, C = C2(G), H = Hull(C), L an adjacency
matrix for L(Γ), CL = C2(L), and HL = Hull(CL). Then either H and HL are equal, or one has
codimension 1 in the other.

Proof: By Result 3, C2(L) = E(G), spanned by the differences of the rows of G. Suppose H 6= HL. If
there is w ∈ H but w 6∈ HL, then w =

∑
X∈X vX where |X | is odd, and w ∈ C⊥ implies that (w, vX) = 0

for all vertices X. We show that HL ⊂ H and that H = 〈w,HL〉. If u ∈ HL then (u, vX) = c, a constant
for all vertices X. Now (u,w) = 0 since w ∈ C⊥, so (u,w) = (u, vX + v) where X ∈ X and v ∈ CL, so
that 0 = (u, vX) = c, and thus u ∈ C⊥ and thus in H, so HL ⊂ H. For any h ∈ H for which h 6∈ HL,
h 6= w, h is a sum of an odd number of rows of G, so h + w ∈ CL and h + w ∈ C⊥ ⊆ CL⊥, and hence
h+ w ∈ HL.

If w ∈ HL but w 6∈ H, then w 6∈ C⊥ and (w, vX) = 1 for all vertices X. If u ∈ H then (u, vX) = 0 for
all vertices X. If u =

∑
X∈S vX , then 0 = (u,w) =

∑
X∈S (w, vX) = |S|, which is thus even, so u ∈ CL

and thus in HL. So H ⊂ HL. To show that HL = 〈w,H〉: if v ∈ HL, v 6∈ H then (v, vX) = 1 for all X,
so (v + w, vX) = 0, so v + w ∈ H. �

We show below that the binary hulls from the incidence matrices of the graphs Ok, and those from
the adjacency matrices of their line graphs, are non-trivial for all k; this contrasts with the hull from the
adjacency matrix of Ok, as studied in [10], which is always trivial. The p-ary hulls for p odd do not have
such a uniform characterization and the properties vary according to p and the parameters of the graph
(see [12]).

Using the formulae rank2(A) =
(
2k
k

)
and rank2(A + I) =

(
2k
k−1

)
+
(
2k−1
k−1

) − 2k−1 for A an adjacency
matrix for Ok, the following was proved in [12, Result 7]:

Result 4. For k ≥ 2, let Gk be an incidence matrix for Ok, Hk = Hull(C2(Gk)). Then

dim(Hk) =
{ (

2k−1
k

)
+ 2k−1 − 1 for k even(

2k
k−1

)− 1 for k odd.

Note: For HLk = Hull(C2(Lk)), if k = 2l − 1 where l ≥ 2 then Hk = HLk, by Proposition 2. For other
k we have equality or dim(HLk) = dim(Hk)± 1, by Lemma 3.

Proposition 3. For k ≥ 2, let Gk be an incidence matrix for Ok with vertex set Ω{k}, where Ω =
{1, 2, . . . , 2k + 1}, Hk = Hull2(C2(Gk)), Lk an adjacency matrix for L(Ok), and HLk = Hull(C2(Lk)).
Then the minimum weight of Hk and HLk is at least 2k + 2.
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If k is even, let S = {{2i − 1, 2i} | 1 ≤ i ≤ k}, and X = {X | X ∈ Ω{k}, |X ∩ s| = 1,∀s ∈ S}. Then
w =

∑
X∈X vX ∈ Hk, HLk, wt(w) = k2k, and there are

∏k
i=1

(
2i+1

2

)
/k! such words.

Proof: (1). Hk is a self-orthogonal binary code, so its words all have even weight. Since it is not C2(Gk),
it must have minimum weight at least 2k. The words of weight 2k are the vectors vX −vY where X ∼ Y .
If w = vX − vY ∈ Hk then (w, vX) = k+ 1 + 1 = 0, so k must be even. If X ∼ Z and Z 6= Y then Z 6∼ Y
(since there are no triangles) and hence (w, vZ) = 1, which is a contradiction. So Hk has minimum weight
at least 2k + 2.

Similarly, HLk has minimum weight at least 2k. If w = vX − vY ∈ HLk then (w, vZ − vW ) = 0 for
all Z,W , Z ∼ W . If Z ∼ X then X 6∼ W , Z 6∼ Y and W 6∼ Y since there are no paths of length 3 or 4
in Ok. So (w, vZ − vW ) = (vX − vY , vZ − vW ) = 1 so w 6∈ HLk. So HLk has minimum weight at least
2k + 2.

Suppose k ≥ 2 is even. Let Ω∗ = Ω \ {2k + 1}, and for X ∈ X , let Xc denote its complement in Ω∗.
Then Xc ∈ X and for X,Y ∈ X , X 6∼ Y unless Y = Xc. It follows that wt(w) = k2k. It also follows
that, for X ∈ X , (w, vX) = (vX , vX) + (vXc

, vX) = k + 1 + 1 ≡ 0.
If X 6∈ X and X ⊂ {1, . . . , 2k}, then X ⊇ s for some s ∈ S. Since every Y ∈ X meets every s ∈ S,

we have X 6∼ Y for Y ∈ X , and so (w, vX) = 0. If 2k + 1 ∈ X, then X cannot meet all the s ∈ S. If
X ⊇ s for some s ∈ S then (w, vX) = 0 as in the previous case. Suppose X does not contain any s ∈ S;
then X must meet k − 1 of the s ∈ S exactly once, and be disjoint from exactly one, {2j − 1, 2j}. If
X = {a1, . . . , ak−1, 2k + 1}, where ai ∈ sri

∈ S then X ∼ {sri
\ {ai} | 1 ≤ i ≤ k − 1} ∪ {2j − 1} and

X ∼ {sri \ {ai} | 1 ≤ i ≤ k − 1} ∪ {2j}, and X 6∼ Y for the other members of X . Thus (w, vX) = 0 and
so w ∈ Hk. Then also w ∈ HLk since it is a sum of an even number of rows of Gk. That the number of
such vectors is as stated follows from a simple count. �

6 Petersen graph, PG3(F2) and the Fano plane

O2 is the strongly regular Petersen graph with parameters (10, 3, 0, 1). We show how the points of the
projective geometry PG3(F2) can be put into correspondence with the 15 edges of O2 such that the
vertices correspond to pencils of lines, and such that Hull2(C2(G2))⊥ is the code of the 2-(15, 3, 1) Steiner
triple system defined by the points and lines of PG3(F2). Again, G2 is an incidence matrix for O2, and
in this section we write Γ = O2.

From Magma [2, 4] we found that H2 = Hull2(C2(G2)) is a [15, 4, 8]2 code, with weight distribution
(< 0, 1 >,< 8, 15 >), while H⊥2 is a [15, 11, 3]2 code, and has weight distribution

< 0, 1 >,< 3, 35 >,< 4, 105 >,< 5, 168 >,< 6, 280 >,< 7, 435 >,

together with the complements since clearly 15 ∈ H⊥2 . We show how these parameters can be explained.
In Proposition 3, 15 words of weight 8 in H2 are described. Define notation for these words as follows: let
S = {a, b, c, d} be a 4-subset of Ω = {a, b, c, d, e}. For each of the three partitions pi of S into two disjoint
subsets of size 2, we define a word of the hull H2 as follows: if pi = {{a, b}, {c, d}}, and P = {a, b},
Q = {c, d}, then

v(P,Q) = v(Q,P ) = v(pi) = v(a, b; c, d) = v(c, d; a, b) = v{a,c} + v{a,d} + v{b,c} + v{b,d}, (3)

has support
{[{a, c}, {e, b}], [{a, d}, {e, b}], [{a, d}, {e, c}], [{b, d}, {e, c}],
[{b, d}, {e, a}], [{b, c}, {e, a}], [{b, c}, {e, d}], [{a, c}, {e, d}]},

and is w(π) of Lemma 1 for the 8-cycle π = ({a, c}, {e, b}, {a, d}, {e, c}, {b, d}, {e, a}, {b, c}, {e, d}).
Lemma 4. The supports of the 15 words of weight 8 from Equation (3) in H2 form a 2-(15, 8, 4) symmetric
design D whose complement is a 2-(15, 7, 3) symmetric design Dc. Further, C2(D) is a [15, 4, 8]2 code
inside H2, and C2(Dc) is a [15, 5, 7]2 code.
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Proof: Consider the 15 words of weight 8 from Equation (3). We write down the eight blocks containing
a point X = [P,Q] where P = {a, b} and Q = {c, d}. Then X will be in the support of words from the
4-sets Ω \ {x} for each x ∈ {a, b, c, d}, two from each of these 4-sets as follows:

v(e, c; b, d), v(e, d; b, c); v(e, c; a, d), v(e, d; a, c); v(e, a; b, d), v(e, b; a, d); v(e, a; b, c), v(e, b; a, c). (4)

We show now that any other point Y = [R,S] is together on four blocks with X. There are three
cases: one if R ∪ S = P ∪ Q, and two if |(R ∪ S) ∩ (P ∪ Q)| = 3. In the first case, we can assume
Y = [{a, c}, {b, d}]. Then from the words in Equation (4), Y is in:

v(e, d; b, c), v(e, c; a, d), v(e, b; a, d), v(v(e, a; b, c).

Now suppose Y = [{a, b}, {c, e}]. Then from the words in Equation (4), Y is in

v(e, d; b, c); v(e, d; a, c); v(e, a; b, d), v(e, b; a, d).

If Y = [{a, c}, {b, e}], then from the words in Equation (4), Y is in

v(e, c; b, d), v(e, d; b, c); v(e, c; a, d); v(e, a; b, d).

This completes all the possibilities. Thus we have a 2-(15, 8, 4) symmetric design D, with complement
Dc a 2-(15, 7, 3) symmetric design.

To prove the result concerning the codes, we first show explicitly that the sum of any two weight-8
vectors from blocks of D is another block. This is done directly using Equation (3) for the various cases.
Firstly note that for any two partitions of a set S of size 4, the binary sum of two incidence vectors v(pi)
and v(pj) is the third v(pk). Next, if all the elements of Ω appear, first we have the case v(P,Q) and
v(P,R), with P = {a, b}, Q = {c, d}, R = {c, e}, i.e.

v(P,Q) + v(P,R) = v(a, b; c, d) + v(a, b; c, e) = v(a, b; d, e).

Otherwise if we have four vertices, i.e [P,Q] and [R,S], where P,Q,R, S are all distinct, then there is
essentially only one case, i.e. with [P,Q] = [{a, b}, {c, d}] and [R,S] = [{a, c}, {d, e}]. Then

v(a, b; c, d) + v(a, c; d, e) = v(a, e; b, d).

Thus C2(D) consists of 15 words of weight 8, together with the zero vector, so it is [15, 4, 8]2 code as
asserted. To get C2(Dc), add 15 and get a [15, 5, 7]2 code with weight distribution

< 0, 1 >,< 7, 15 >,< 8, 15 >,< 15, 1 >,

which completes the proof. �

Note: 1. If Hr denotes the binary Hamming code of length 2r − 1, dimension 2r − 1 − r (see, for
example, [1, Section 2.5]), then C2(D) = H⊥4 , the binary simplex code.
2. The 15 weight-8 words in H2 correspond to the 15 8-cycles in O2 and the 15 weight-7 words in 〈15, H2〉
to the complements of these in the set of edges of O2.

Proposition 4. Let G2 denote a 10 × 15 incidence matrix for O2, C = C2(G2), H2 = Hull(C). Then
C+C⊥ = H⊥2 contains 35 vectors of weight 3 and the set of supports form the blocks of a 2-(15, 3, 1) Steiner
triple system S that is the design PG3,1(F2) of points and lines in the projective geometry PG3(F2).
Furthermore, C2(S) = C + C⊥ = H⊥2 = H4.

Proof: From Proposition 1, C is a [15, 9, 3]2 code. Let Ω = {a, b, c, d, e}. We show how to construct 35
weight-3 vectors in C + C⊥. There are ten from the rows of C. We will call these words of type I,
corresponding to the ten vertices of Γ = O2.

Next, note that π = ({a, b}, {c, d}, {e, b}, {a, d}, {c, b}, {e, d}) is a 6-cycle in Γ and w(π) ∈ C⊥ by
Lemma 1. Then

w(π) + v{c,d} + v{a,d} + v{d,e} = v[{c,d},{a,e}] + v[{a,d},{c,e}] + v[{d,e},{a,c}] ∈ C + C⊥.
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Thus we get five weight-3 vectors of this form by taking the three partitions into pairs of each of the five
4-subsets. We denote the resultant weight-3 vector by t(x) if x is the omitted element. Thus

t(b) = v[{c,d},{a,e}] + v[{a,d},{c,e}] + v[{d,e},{a,c}]. (5)

We call these words of type II, and they correspond to the five “spokes” of the graph when drawn in
its usual representation (see Figure 1).

The remaining 20 weight-3 vectors are obtained in a similar way from the words w(π) of weight 5 in
C⊥ from closed paths π of length 5 as described in the proof of Lemma 2. Thus for

π = ({a, b}, {c, d}, {a, e}, {b, c}, {d, e}),

w(π) + v{c,d} + v{b,c} = v[{d,c},{b,e}] + v[{d,a},{b,c}] + v[{d,e},{b,a}] = f1(d, b) ∈ C + C⊥. (6)

Then
f1(d, b)(a,e) = f2(d, b) = v[{d,c},{b,a}] + v[{d,e},{b,c}] + v[{d,a},{b,e}] ∈ C + C⊥, (7)

and it is clear that for every pair x, y of elements from Ω we get exactly two weight-3 vectors of this
type, fi(x, y), i = 1, 2, where each point of the support has the form [P,Q] where x ∈ P, y ∈ Q. This
gives another

(
5
2

) × 2 = 20 weight-3 vectors. We call the words fi(a, b) words of type III. Note that
Supp(f1(d, b))∪ Supp(f2(d, b)) is the 6-cycle ({a, b}, {d, c}, {b, e}, {a, d}, {b, c}, {d, e}), and any 6-cycle in
the graph will give two lines in the geometry from the two sets of three alternate edges.

We now show that the set of supports of these weight-3 vectors form the blocks of a 2-(15, 3, 1) design.
First notice that the replication number r is 7, since [{a, b}, {c, d}] is in the support of

v{a,b}, v{c,d}, t(e), fi(a, c), fj(a, d), fk(b, c), fl(b, d),

where i, j, k, l are 1 or 2. There are two of type I, one of type II, and four of type III, the latter
corresponding to alternate edges of each of the four 6-cycles that contain [{a, b}, {c, d}].

Now take two points, X = [P,Q], Y = [R,S]. If P = R, then clearly P is the only block containing
X,Y . If |P ∪ Q ∪ R ∪ S| = 4 and if z is the element that does not appear, then t(z) is the only block
containing both X and Y . If P ∪Q∪R∪S = Ω, then suppose X = [{a, b}, {c, d}]. Then Y has the form
[{e, a}, {c, b}] since it is not of a type previously looked at. Thus X and Y are together in fi(a, c) for
i = 1 or 2, again giving a unique block.

Thus S is a 2-(15, 3, 1) design. To show S = PG3,1(F2), we look at C2(S). Clearly C2(S) ⊆ C+C⊥ =
H⊥2 , since it is spanned by vectors from H⊥2 . From Lemma 4, dim(H2) ≥ 4, so dim(H⊥2 ) ≤ 11, and thus
dim(C2(S)) ≤ 11. However, by a theorem of Doyen, Hubaut and Vandensavel (see [1, Theorem 8.2.1,
page 297]), the binary code of a Steiner triple system with these parameters has dimension at least 11,
and equal to 11 only if it is PG3,1(F2). Thus S = PG3,1(F2) and C2(S) = H⊥2 . �

Note: A line in PG3(F2) that is the support of a word of type X will be called a line of type X, where
X is I, II, or III.

Corollary 1. The design Dc of Lemma 4 is PG3,2(F2), the design of points and planes in the projective
geometry PG3(F2). Further, Aut(Dc) = Aut(D) = Aut(S) = PGL4(F2) ∼= A8.

Proof: From [3, Proposition 2] we know that the minimum words of C2(S)⊥ are the incidence vectors of
the complements of the Fano planes in PG3(F2). These are precisely the words of weight-8 in H2 = CS⊥.
Thus the 15 words of weight 8 (one from each 8-cycle) are the complements of the 15 Fano planes, and
so Dc = PG3,2(F2). The automorphism group follows. �

Note: It can be shown that if L2 is an adjacency matrix for L(O2), then Hull(C2(L2)) = Hull(C2(G2)).
We now fit the points of PG3(F2) onto the edges of the Petersen graph Γ = O2, with vertices labelled

{i, j} for i, j ∈ {1, . . . , 5}, i 6= j, as shown in Figure 1. We will first place a Fano plane F with point set
A, . . . , G, and lines as shown in Fig. 1. The remaining points of PG3(F2) will be labelled H, I, . . . , O and
we will fit these onto the edges of Γ after we have placed F . Since, from the proof of Proposition 4, any
point of PG3(F2) is on two lines of type I, one of type II, and four of type III, so dually each Fano plane
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contains two lines of type I, one of type II, and four of type III. Recall that the Fano planes correspond
to the complements of the 8-cycles.
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Figure 1: Petersen graph O2 and Fano plane F = (0, 0, 0, 1)′

• Let σ be any 8-cycle in Γ and denote the edges of Γ that are not in σ by A, . . . , G. Label the type II
line (from the spokes) on Γ with A,B,C.

• The two lines in F that are of type I must pass through one of A,B,C, so suppose it is C. Then
D,F and E,G on Γ are at the two vertices of the edge labelled C. We can place D,F arbitrarily
but then E,G must be placed according to the type III lines, by finding the 6-cycle through D and
E, say. This places all the points of F on Γ.

• To fit the remaining points of PG3(F2) we can repeat what we have just done with another 8-cycle,
or we can introduce coordinates: if F is the plane (0, 0, 0, 1)′, and points A, . . . , G as shown in
Fig. 1, then any one of the remaining eight points of PG3(F2) can be inserted randomly on Γ, and
the remaining correspondences will follow by employing the rules for type I lines. In Fig. 1 we chose
H = (0, 0, 0, 1) to label the edge [{1, 2}, {3, 4}].

One can check that the complement in the edge set of any 8-cycle is indeed a plane PG2(F2): e.g. the
8-cycle with consecutive edges AMEGKBJH has complement (1, 0, 1, 1)′.

Conversely, to construct the Petersen graph from PG3(F2) we want a set L of ten lines such that each
point of PG3(F2) is on exactly two of these lines, or alternatively, each Fano plane in PG3(F2) contains
exactly two lines of L. This can be done as follows:

• denote the 15 points of PG3(F2) by {A,B, . . . , O} and suppose that ABC is a line, πA, πB , πC the
three planes containing it, with point sets

πA : {A,B,C,D,E, F,G};πB : {A,B,C,H, I, J,K};πC : {A,B,C, L,M,N,O};

• excluding ABC, take the other two lines through A in πA, B in πB , and C in πC , respectively,
writing a = ADE, b = AFG, c = BHI, d = BJK, e = CLM, f = CNO;

• let DHL be a line skew to ABC and let ΠD,ΠH ,ΠL be the three planes containing DHL, and
suppose that A ∈ ΠD, B ∈ ΠH , C ∈ ΠL, and so ADE = πA∩ΠD, BHI = πB∩ΠH , CLM = πC∩ΠL;

• let g be the third line through D in ΠD, h that through H in ΠH , and i that through L in
ΠL; suppose g ∩ πB = K, g ∩ πC = N , h ∩ πA = F, h ∩ πC = O, i ∩ πA = G, i ∩ πB = J , so
g = DKN,h = HFO, i = LGJ ;

• for the final (10th) line take j = EIM . (That this is a line is easy to see: suppose, as vectors in F4
2,

A = v1, B = v2, C = v1 + v2, D = w1, H = w2, L = w1 + w2, where these vectors are all distinct.
Then E = v1 + w1, I = v2 + w2,M = v1 + v2 + w1 + w2, which shows that EIM is a line.)
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• The ten lines are a = ADE, b = AFG, c = BHI, d = BJK, e = CLM, f = CNO, g = DKN,h =
HFO, i = LGJ, j = EIM .

These lines are taken to be the ten vertices, with {A, . . . , O} as the set of 15 edges, and vertices are
adjacent if the triples intersect. So A = ab,B = cd and so on. We have a 3-regular connected graph and
it can be fitted onto the Petersen diagram as shown in Figure 2.
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Figure 2: PG3(F2) to Petersen graph

Using coordinates, we can choose A = (1, 0, 0, 0), B = (0, 1, 0, 0), D = (0, 0, 1, 0), H = (0, 0, 0, 1)
and then C,E,L, I,M will follow. Then we can choose K = (1, 0, 0, 1), so that N follows, and choosing
F = (0, 1, 1, 0), all the remaining edges and vertices follow. One can check that the complement of any
of the planes, e.g. ΠD, is an 8-cycle.

7 Permutation decoding

In [19, Lemma 7] the following result, which holds for any information set, was proved:

Result 5. Let C be a linear code with minimum weight d, I an information set, C the corresponding
check set and P = I∪C. Let G be an automorphism group of C, and n the maximum value of |O∩I|/|O|,
over the G-orbits O. If s = min(d 1

ne − 1, bd−1
2 c), then G is an s-PD-set for C.

If the group G is transitive then |O| is the degree of the group and |O ∩ I| is the dimension of the
code. This is applicable to codes from incidence matrices of connected regular graphs with automorphism
groups transitive on edges, leading to the following result from [9]:

Result 6. Let Γ = (V,E) be a regular graph of valency k with automorphism group A transitive on edges.
Let M be an incidence matrix for Γ. If, for p a prime, C = Cp(M) is a [|E|, |V | − ε, k]p code, where
ε ∈ {0, 1, . . . , |V | − 1}, then any transitive subgroup of A will serve as a PD-set for full error correction
for C.

Using the hull, more errors can be corrected, as shown in [12, Corollary 4]. For the binary hulls of
the graphs Ok, since Aut(Ok) acts transitively on edges for all k ≥ 2, we have the following:

Proposition 5. Let Γ = (V,E) = Ok, k ≥ 2, A ⊆ Aut(Ok) transitive on edges, Gk an incidence matrix
for Γ and Hk = Hull(C2(Gk)). Then A can be used as a k-PD-set for Hk.

Proof: We use Result 5. By Result 4, if dim(Hk) = dH , then dH =
(
2k−1
k

)
+ 2k−1 − 1 for k even, and

dH =
(

2k
k−1

)− 1 for k odd.
By Proposition 3, the minimum weight of Hk is at least 2k + 2, so it can correct k errors. In the

notation of Result 5, if s = min(d 1
ne − 1, bd−1

2 c) = min(d |E|dH
e − 1, k), then s errors can be corrected by
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using A as a PD-set. We need to show that s = k. This will be so if |E|/dH −1 ≥ k, i.e. |E| ≥ dH(k+ 1),
so if |V | ≥ 2dH . This is not difficult to prove in the two cases, k even or k odd. �

For smaller, and thus more efficient, PD-sets one needs first to find suitable information sets and
then search for suitable sets of elements from the automorphism group. For example, for k = 2 when
H2 = Hull(C2(G2)) = H⊥4 , small PD-sets were found in [11]. Also, a PD-set of five elements for H2,
thus attaining the Gordon-Schönheim bound was found in [25]. By computation with Magma we also
found small PD-sets for full error correction for some of the other binary hulls. Explicit s-PD-sets that
satisfy the Gordon-Schönheim bound for s-PD-sets for the class of q-ary simplex codes (the duals of the
Hamming codes) for all prime powers q can be found in [11].
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