Codes of length n^2 and dimension $2n - 1$ or $2n - 2$ over the field \mathbb{F}_p, for any prime p, that can be obtained from designs associated with the complete bipartite graph $K_{n,n}$ and its line graph, the lattice graph, are examined. The parameters of the codes for all primes are obtained and PD-sets are found for full permutation decoding for all integers $n \geq 3$.

1 Introduction

Codes obtained from an adjacency matrix of the line graph of a graph are closely related to codes from an incidence matrix of the original graph, and are, in fact, subcodes of this in the binary case. The codes from the incidence matrix of a graph, in case the graph has some regularity, have been found, in many cases, to have rank either the number v of vertices, or $v - 1$, in particular the latter in the binary case: see [6, 7, 13]. Furthermore, their minimum weight is often the valency of the graph, and the minimum words simply the scalar multiples of the rows of the matrix. Thus it makes sense to look at these codes in conjunction with the codes from the adjacency matrix of the line graph, and codes associated with this adjacency matrix. In addition, binary codes from some line graphs have been found to be good candidates for permutation decoding: see [6, 12, 16, 14, 15, 22].

In this paper we consider the lattice graph, where, for any n, the lattice graph is defined to be the line graph of the complete bipartite graph $K_{n,n}$. It is a strongly regular graph on $v = n^2$ vertices. The binary codes from the span of adjacency matrices of lattice graphs have been examined by various authors: see [3, 4, 9, 23], and with a view to permutation decoding in [16, 22]. We extend these results now to p-ary codes for all primes p; the p-rank of these and related graphs was examined in [20]. Taking the complete bipartite graph $K_{n,n}$ to have vertices from two disjoint sets $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$, the vertices of the lattice graph L_n are the n^2 pairs (a_i, b_j) with (a_i, b_j) and (a_k, b_m) adjacent if $i = k$ or $j = m$. If A_n denotes an adjacency matrix for L_n then $B_n = J - I - A_n$, where J is the all-one and I the identity $n^2 \times n^2$ matrix, will be an adjacency matrix for the the graph \bar{L}_n on the same vertices with adjacency defined by (a_i, b_j) adjacent to (a_k, b_m) if $i \neq k, j \neq m$. We examine the neighbourhood designs and p-ary codes, for any prime p, from A_n, $A_n + I$, B_n, $B_n + I$ and show that all the codes are inside the code or its dual obtained from an incidence matrix M_n for the graph $K_{n,n}$, noting that $M_n^T M_n = A_n + 2I$. Thus the codes from the row span of M_n, and some subcodes of codimension 1, are the ones that we examine for permutation decoding. Note that $A_n + I$ and $B_n + I$ are adjacency matrices for the graphs L_n^R and \bar{L}_n^R obtained from L_n and \bar{L}_n, respectively, by including all loops, and thus referred to as reflexive graphs.
2 BACKGROUND AND TERMINOLOGY

We summarize our results below in a theorem; the specific results relating to the codes from $L_n, \tilde{L}_n, L_n^R, \tilde{L}_n^R$ are given as propositions and lemmas in the following sections. The notation is as explained in the paragraph above.

Theorem 1 Let C_n be the p-ary code of an incidence matrix M_n for the complete bipartite graph $K_{n,n}$ where p is a prime and $n \geq 3$. The vertex set of $K_{n,n}$ is $A \cup B$, where $A = \{a_1, \ldots, a_n\}$, $B = \{b_1, \ldots, b_n\}$ and the edges are the pairs (a_i, b_j) where $a_i \in A$, $b_j \in B$. Then C_n is a $[n^2, 2n-1, n]_p$ code with information set

$$I_n = \{(a_i, b_n) \mid 1 \leq i \leq n\} \cup \{(a_n, b_i) \mid 1 \leq i \leq n-1\}.$$

For $n \geq 3$, the minimum words are the scalar multiples of the rows r_i of M_n, and $\text{Aut}(C_n) = S_n \wr S_2$, where $\text{Aut}(C_n)$ denotes the automorphism group of C_n. The set

$$S = \{(t_{n,i}, t_{n,i}) \mid 1 \leq i \leq n\},$$

of elements of $S_n \times S_n$, where $t_{i,j} = (i, j) \in S_n$ is a transposition and $t_{k,k} = (k, k)$ is the identity of S_n, is a PD-set of size n for C_n using I_n.

Let $E_n = \langle r_i - r_j \mid r_i, r_j \text{ rows of } M_n \rangle$. Then for $n \geq 3$, E_n is an $[n^2, 2n-2n, 2n-2]_p$ code and the minimum words are the scalar multiples of the $r_i - r_j$. Further, $I_n^* = I_n \setminus \{(a_1, b_n)\}$ is an information set, and

$$S^* = \{(t_{n,i}, t_{n,j}) \mid 1 \leq i, j \leq n\},$$

a PD-set of size n^2 for E_n using I_n^*.

The p-ary codes from $L_n, \tilde{L}_n, L_n^R, \tilde{L}_n^R$ are either $\mathbb{F}_p^{n^2}, \langle 1 \rangle^\perp, C_n^\perp, E_n^\perp, C_n$ or E_n.

We note that the binary code from the lattice graph is E_n; see Result 2 in Section 2.

The proof of the theorem follows from propositions and lemmas in the following sections. The full details about the codes from $L_n, \tilde{L}_n, L_n^R, \tilde{L}_n^R$ are in Proposition 8. Background definitions are given in Section 2, and notation for the graphs, designs and codes that we consider here is given in Section 3. Computations leading to these results were all done with Magma [5, 2].

2 Background and terminology

Notation for designs and codes is as in [1, Chapters 1,2]. An incidence structure $D = (\mathcal{P}, \mathcal{B}, \mathcal{J})$, with point set \mathcal{P}, block set \mathcal{B} and incidence \mathcal{J} is a t-(v, k, λ) design, if $|\mathcal{P}| = v$, every block $B \in \mathcal{B}$ is incident with precisely k points, and every t distinct points are together incident with precisely λ blocks. The design is symmetric if it has the same number of points and blocks. The code $C_F(D)$ of the design D over the finite field F is the space spanned by the incidence vectors of the blocks over F. If Q is any subset of \mathcal{P}, then we will denote the incidence vector of Q by v^Q, and if $Q = \{P\}$ where $P \in \mathcal{P}$, then we will write v^P instead of $v(\mathcal{P})$. Thus $C_F(D) = \langle v^B \mid B \in \mathcal{B} \rangle$, and is a subspace of $F^\mathcal{P}$, the full vector space of functions from \mathcal{P} to F. For any $w \in F^\mathcal{P}$ and $P \in \mathcal{P}$, $w(P)$ denotes the value of w at P. If $F = \mathbb{F}_p$ then the p-rank of the design, written rank$_p(D)$, is the dimension of its code $C_F(D)$, which we usually write as $C_p(D)$.

The codes here are linear codes, and the notation $[n, k, d]_q$ will be used for a q-ary code C of length n, dimension k, and minimum weight d, where the weight, $\text{wt}(v)$, of a vector v is the number of non-zero coordinate entries. A generator matrix for C is a $k \times n$ matrix made up of
a basis for C, and the dual code C^\perp is the orthogonal under the standard inner product $(,)$, i.e. $C^\perp = \{ v \in F^n | (v, c) = 0 \text{ for all } c \in C \}$. A code is self-orthogonal if $C \subseteq C^\perp$. A self-orthogonal binary code is doubly even if all the codewords have weight divisible by 4. If $C = C_p(D)$, where D is a design, then $C \cap C^\perp$ is the hull of D at p, or simply the hull of D or C if p and D are clear from the context. A check matrix for C is a generator matrix for C^\perp. The all-one vector will be denoted by 1, and is the vector with all entries equal to 1. We call two linear codes isomorphic if they can be obtained from one another by permuting the coordinate positions. An automorphism of a code C is an isomorphism from C to C. The automorphism group will be denoted by Aut(C).

Any code is isomorphic to a code with generator matrix in so-called standard form, i.e. the form $[I_k \mid A]$; a check matrix then is given by $[-A^T \mid I_{n-k}]$. The first k coordinates in the standard form are the information symbols and the last $n-k$ coordinates are the check symbols.

The graphs, $\Gamma = (V,E)$ with vertex set V and edge set E, discussed here are undirected with no loops, apart from the case where all loops are included, in which case the graph is called reflexive. The order of $\Gamma = (V,E)$ is $|V|$. A graph is regular if all the vertices have the same valency. An adjacency matrix A of a graph of order $|V| = n$ is an $n \times n$ matrix with entries a_{ij} such that $a_{ij} = 1$ if vertices v_i and v_j are adjacent, and $a_{ij} = 0$ otherwise. An incidence matrix of Γ is an $n \times |E|$ matrix B with $b_{ij} = 1$ if the vertex labelled by i is on the edge labelled by j, and $b_{ij} = 0$ otherwise. If Γ is regular with valency k, then the $1-((|E|,k,2)$ design with incidence matrix B is called the incidence design of Γ. The neighbourhood design of a regular graph is the 1-design formed by taking the points to be the vertices of the graph and the blocks to be the sets of neighbours of a vertex, for each vertex. The line graph of a graph $\Gamma = (V,E)$ is the graph $L(\Gamma)$ with E as vertex set and where adjacency is defined so that e and f in E, as vertices, are adjacent in $L(\Gamma)$ if e and f as edges of Γ share a vertex in Γ. A strongly regular graph Γ of type (n,k,λ,μ) is a regular graph on $n = |V|$ vertices, with valency k which is such that any two adjacent vertices are together adjacent to λ vertices and any two non-adjacent vertices are together adjacent to μ vertices.

The complete bipartite graph $K_{n,n}$ on $2n$ vertices, $A \cup B$, where $A = \{a_1, \ldots, a_n\}$, $B = \{b_1, \ldots, b_n\}$, with n^2 edges, has for line graph, the lattice graph L_n, which has vertex set the set of ordered pairs $\{(a_i, b_j) \mid 1 \leq i, j \leq n\}$, where two pairs are adjacent if and only if they have a common coordinate. L_n is a strongly regular graph of type $(n^2, 2(n-1), n-2, 2)$.

The code of a graph Γ over a finite field F is the row span of an adjacency matrix A over the field F, denoted by $C_F(\Gamma)$ or $C_F(A)$. The dimension of the code is the rank of the matrix over F, also written rank$_p(A)$ if $F = F_p$, in which case we will speak of the p-rank of A or Γ, and write $C_p(\Gamma)$ or $C_p(A)$ for the code.

Permutation decoding, first developed by MacWilliams [18], involves finding a set of automorphisms of a code called a PD-set. The method is described fully in MacWilliams and Sloane [19, Chapter 16, p. 513] and Huffman [10, Section 8]. In [11] and [17] the definition of PD-sets was extended to that of s-PD-sets for s-error-correction:

Definition 1 If C is a t-error-correcting code with information set I and check set C, then a PD-set for C is a set S of automorphisms of C which is such that every t-set of coordinate positions is moved by at least one member of S into the check positions C.

For $s \leq t$ an s-PD-set is a set S of automorphisms of C which is such that every s-set of coordinate positions is moved by at least one member of S into C.

The algorithm for permutation decoding is given in [10] and requires that the generator matrix is in standard form. Furthermore, there is a bound on the minimum size that the set S may have, due to Gordon [8] from a counting argument in [21], and quoted and proved in [10]:
Result 1 If S is a PD-set for a t-error-correcting $[n,k,d]_q$ code C, and $r = n - k$, then

$$|S| \geq \left\lceil \frac{n}{r} \left\lceil \frac{n - 1}{r - 1} \left\lceil \cdots \left\lceil \frac{n - t + 1}{r - t + 1} \cdots \right\rceil \right\rceil \cdots \right\rceil \right\rceil.$$

PD-sets for binary codes from the lattice graphs were found in [16], in which the main result was as follows:

Result 2 For $n \geq 5$, let C be the binary code from the row span of an adjacency matrix for the lattice graph of $K_{n,n}$ with vertices $A \times B$ where $A = \{a_1, \ldots, a_n\}$, $B = \{b_1, \ldots, b_n\}$. Then C is a $[n^2, 2(n-1), 2(n-1)]_2$ code and the set

$$I = \{(a_i, b_n) \mid 2 \leq i \leq n-1\} \cup \{(a_n, b_i) \mid 1 \leq i \leq n\}$$

is an information set. The set

$$S = \{(t_{i,n}, t_{j,n}) \mid 1 \leq i \leq n, 1 \leq j \leq n\}$$

of permutations in $S_n \times S_n$ forms a PD-set of size n^2 for C for I.

Note: Here, and in what follows, $t_{i,j}$ denotes the transposition $(i,j) \in S_n$, and $t_{k,k}$ denotes the identity element of S_n. This notation is used since we are using ordered pairs for the edges of $K_{n,n}$. The code C in the result is the code E_n of Theorem 1 for $p = 2$.

3 The graphs, designs and codes

In all the following sections, p will denote any prime. We set up our notation for the graphs, designs and codes that we will be examining.

For any $n \geq 2$, let G_n denote the incidence design of the complete bipartite graph $K_{n,n}$. Thus G_n is a $1-(n^2, n, 2)$ design. The point set of G_n will be denoted by $P_n = A \times B$, where $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$. This is the point set for all the classes of designs here. Writing $\Omega = \{1, \ldots, n\}$, we take for incidence matrix M_n where the first n rows are labelled by the vertices of $K_{n,n}$ in A, and the next n rows by B. The columns are labelled

$$(a_1, b_1), \ldots, (a_1, b_n), (a_2, b_1) \ldots (a_2, b_n), \ldots, (a_n, b_1), \ldots, (a_n, b_n). \quad (1)$$

For $a_i \in A$ the block of G_n defined by the row a_i will be written as

$$\overline{a_i} = \{(a_i, b_j) \mid 1 \leq j \leq n\}, \quad (2)$$

and for $b_i \in B$ the block of G_n defined by the row b_i will be written as

$$\overline{b_i} = \{(a_j, b_i) \mid 1 \leq j \leq n\}. \quad (3)$$

The code of G_n over \mathbb{F}_p will be denoted by C_n, assuming the prime p is clear from the context. Thus

$$C_n = \langle v^x \mid x \in A \cup B \rangle, \quad (4)$$

where the span is taken over \mathbb{F}_p. Furthermore

$$E_n = \langle v^x - v^y \mid x, y \in A \cup B \rangle, \quad (5)$$
The lattice graph L_n is the line graph $L(K_{n,n})$. The rows of an adjacency matrix A_n for L_n give the blocks of the neighbourhood design \overline{D}_n of L_n. It is clear that $M_n^2M_n = A_n + 2I$. The blocks of \overline{D}_n are

$$\overline{(a_i, b_j) = \{(a_i, b_k) \mid k \neq j\} \cup \{(a_k, b_j) \mid k \neq i\}}$$

for each point $(a_i, b_j) \in P_n$. Thus \overline{D}_n is a symmetric 1-$(n^2, 2(n-1), 2(n-1))$ design for $n \geq 3$. We write

$$\overline{C}_n = \langle v(a_i, b_j) \mid (a_i, b_j) \in P_n \rangle.$$

(7)

For the reflexive lattice graph L_n^R, we get the 1-$(n^2, 2n - 1, 2n - 1)$ design \overline{D}_n with blocks

$$\overline{(a_i, b_j) = (a_i, b_j) \cup \{(a_i, b_j)\}}$$

for each point $(a_i, b_j) \in P_n$, and p-ary code

$$\overline{C}_n = \langle v(a_i, b_j) \mid (a_i, b_j) \in P_n \rangle.$$

(9)

The graph \overline{L}_n is the complement of L_n and gives a symmetric 1-$(n^2, (n - 1)^2, (n - 1)^2)$ design \overline{D}_n with blocks

$$\overline{(a_i, b_j) = \{(a_k, b_m) \mid k \neq i, m \neq j\} = P_n \setminus \{(a_i, b_j)\}}$$

for each point $(a_i, b_j) \in P_n$, and p-ary code

$$\overline{C}_n = \langle v(a_i, b_j) \mid (a_i, b_j) \in P_n \rangle.$$

(11)

Finally, from the reflexive graph L_n^R we get a 1-$(n^2, n^2 - 2n + 2, n^2 - 2n + 2)$ design \overline{D}_n (for $n \geq 3$) with blocks

$$\overline{(a_i, b_j) = \{(a_i, b_j) \cup \{(a_i, b_j)\}}$$

for each point $(a_i, b_j) \in P_n$, and p-ary code

$$\overline{C}_n = \langle v(a_i, b_j) \mid (a_i, b_j) \in P_n \rangle.$$

(13)

Note also that if \mathbf{j} denotes the all-one vector of length n^2, then, for all $(a, b) \in P_n$,

$$\overline{v(a,b)} + v(a,b) = \mathbf{j} = v(a,b) + \overline{v(a,b)}.$$

(14)

The group $G = S_n \wr S_2$ is the automorphism group of $K_{n,n}$. It acts on the edge set $P_n = A \times B$ by its construction as an extension of the group $H = S_n \times S_n$ by $S_2 = \{1, \tau\}$, where $\tau = (1, 2)$. The element τ then acts on H via $(\alpha, \beta)^\tau = (\beta, \alpha)$, for $\alpha, \beta \in S_n$. Then G acts as a rank-3 group on P_n as follows:

$$(a_i, b_j)^{(\alpha, \beta)} = (a_{\alpha i}, b_{\beta j}), \text{ and } (a_i, b_j)^\tau = (a_{j}, b_i).$$

(15)

Furthermore, G acts on each of these graphs, designs and codes. We will establish when it is the full automorphism group.
4 Codes from G_n

We obtain now the basic properties of $C_n = C_p(G_n) = C_p(M_n)$. We first need a lemma. The notation is as established in the last section.

Lemma 1 For $n \geq 2$, if $\{i, j, k, m\} \subseteq \Omega$ where $i \neq k$, and $j \neq m$, then the vector

$$u = u((a_i, b_j), (a_k, b_m)) = v((a_i, b_j)) + v((a_k, b_m)) - v((a_i, b_m)) - v((a_k, b_j))$$

(16)

is in C_n^\perp.

Proof: This is clear since $(\pi, u) = 0$ for all choices of $x \in A \cup B$. □

Proposition 1 For $n \geq 2$, the code C_n over \mathbb{F}_p of the incidence design G_n of the complete bipartite graph $K_{n,n}$ is a $[n^2, 2n-1, n]_p$ code. For $n \geq 3$, the minimum-weight vectors are the scalar multiples of the incidence vectors of the blocks of G_n.

Proof: It is easy to see that the matrix M_n has rank $2n - 1$ over any field, and that the minimum weight is at most n.

Now let B_n be the set of supports of the vectors $u((a_i, b_j), (a_k, b_m))$ as defined in Equation (16). Then (P_n, B_n) is a 1-$(n^2, 4, r)$ design, where $r = (n-1)^2$.

Let $w \in C_n$ and $\text{Supp}(w) = S$, where $|S| = s$. Let $P \in S$. We first count the number of blocks of B_n through P and another point Q. Suppose $P = (a_i, b_j)$. Then

1. if $Q = (a_i, b_k)$ then $P, Q \in \text{Supp}(u((a_i, b_j), (a_m, b_k)))$ for all $m \neq i$, giving $n-1$ such blocks;
2. if $Q = (a_m, b_j)$ then P, Q are on $n-1$ blocks again;
3. if $Q = (a_m, b_k)$ where $m \neq i, k \neq j$, then $P, Q \in \text{Supp}(u((a_i, b_j), (a_m, b_k)))$ only, giving one block.

Suppose that in S there are k points of the type (a_i, b_k) or (a_m, b_j), and ℓ of the type (a_m, b_k) where $m \neq i, k \neq j$. Then $s = k + \ell + 1$. Counting blocks of B_n through the point P, suppose that there are z_i that meet S in i points. Then $z_0 = z_1 = z_i = 0$ for $i \geq 5$, since w cannot meet a block of B_n only once. Thus $r = z_2 + z_3 + z_4$ and $z_2 + 2z_3 + 3z_4 = (n-1)x + \ell = (n-1)(s-\ell-1) + \ell = (n-1)(s-1) - \ell(n-2)$. Thus $r = (n-1)^2 \leq (n-1)(s-1) - \ell(n-2) \leq (n-1)(s-1)$ for $n \geq 2$. So $s \geq n$ for $n \geq 2$, giving the minimum weight as stated.

Now we show that for $n \geq 3$ the vectors of weight n must be scalar multiples of the blocks of G_n. Suppose $s = n$ with the same notation as above. Putting $s = n$ in the equations above, we get $(n-1)^2 \leq z_2 + 2z_3 + 3z_4 = (n-1)^2 - (n-2)\ell$. Since $n - 2 > 0$ this implies that $\ell = 0$, and $r = z_2 + z_3 + z_4 = z_2 + 2z_3 + 3z_4$. Thus $z_3 = z_4 = 0$, $k = n - 1$ and $S \setminus \{P\}$ consists of at least $n - 1 \geq 2$ points and they are all of the form (a_i, b_k) or (a_m, b_j). Suppose there are k_1 of the form (a_i, b_k) and k_2 of the form (a_m, b_j). If $k_1 = 0$ or $k_2 = 0$ then $S = a_i$ or b_j. If $k_1, k_2 \geq 1$ then we can make the same counting argument using the point (a_i, b_k) for P and get a contradiction for $\ell = 0$. Thus $S = a_i$, say. If $w \neq a_i\pi$ for some $\alpha \in \mathbb{F}_p$ then $wt(w + \beta a_i\pi) < n$ for some $\beta \in \mathbb{F}_p$, contradicting the minimum weight being n. Thus we have our result. □

Note: For $n = 2$ there are words of weight 2 in C_n for all odd p that are not scalar multiples of the incidence vectors of the blocks of G_n, viz., for example, $w = j - v_{\pi j} - v_{\pi i}$.

Proposition 2 For \(n \geq 2 \), and \(C_n = C_p(G_n) \),
\[
\mathcal{U} = \{u((a_i, b_j), (a_{i+1}, b_{j+1})) \mid 1 \leq i \leq n - 1, 1 \leq j \leq n - 1\}
\]
is a basis for \(C_n^\perp \).

Proof: We consider \(\mathcal{U} \) as a sequence ordered first through fixing \(i \), and allowing \(j \) to take the values 1 to \(n - 1 \) within each fixed \(i \). Thus the sequence is
\[
[u((a_1, b_1), (a_2, b_2)), u((a_1, b_2), (a_2, b_3)), \ldots, u((a_{n-1}, b_{n-1}), (a_n, b_n))].
\]

If the points of \(\mathcal{P}_n \) are ordered as described for \(M_n \) in Equation (1), then the array of vectors from \(\mathcal{U} \) is in echelon form. Since \(|\mathcal{U}| = (n - 1)^2 = n^2 - (2n - 1) = \dim(C_n^\perp) \), we have the result. \(\blacksquare\)

Proposition 3 For \(n \geq 3 \), and \(C_n = C_p(G_n) \), \(\Aut(G_n) = \Aut(C_n) = S_n \rtimes S_2 \).

Proof: From Whitney’s theorem [24] it is clear that \(\Aut(L_n) = \Aut(K_{n,n}) = S_n \rtimes S_2 \) and thus \(S_n \rtimes S_2 \subseteq \Aut(G_n) \). For the reverse inclusion, suppose that \(\sigma \in \Aut(G_n) \). To show that \(\sigma \in \Aut(L_n) \), suppose \(P \) and \(Q \) are adjacent in \(L_n \). Then \(P = (a_i, b_j) \) and \(Q = (a_i, b_k) \) or \((a_k, b_j)\), so \(P, Q \in \overline{i} \) or \(\overline{j} \). Thus \(P\sigma, Q\sigma \in \pi \) for some \(x \in A \cup B \), and so \(P\sigma \) and \(Q\sigma \) are adjacent in \(L_n \) and hence \(\sigma \in \Aut(L_n) \).

For \(n \geq 3 \), by Proposition 1, the words of weight \(n \) are the scalar multiples of the blocks of \(G_n \). Since weight classes are preserved by any \(\sigma \in \Aut(C_n) \), we see that \(\sigma \in \Aut(G_n) = S_n \rtimes S_2 \), and thus \(\Aut(C_n) = S_n \rtimes S_2 \) for \(n \geq 3 \). \(\blacksquare\)

Proposition 4 For \(n \geq 3 \), and \(C_n = C_p(G_n) \),
\[
\mathcal{I}_n = \{(a_i, b_n) \mid 1 \leq i \leq n\} \cup \{(a_n, b_i) \mid 1 \leq i \leq n - 1\}
\]
is an information set for \(C_n \) and the set
\[
S = \{(t_{n,i}, t_{n,i}) \mid 1 \leq i \leq n\},
\]
of elements of \(S_n \times S_n \), is a PD-set for \(C_n \) of size \(n \) for the information set \(\mathcal{I}_n \).

Proof: That \(\mathcal{I}_n \) is an information set follows from Proposition 2. Let \(C_n \) be the corresponding check set. To prove that \(S \) is a PD-set for \(C_n \), note that \(C_n \) can correct \(t = \lceil \frac{n-1}{2} \rceil \) errors. Let
\[
T = \{(a_{i_1}, b_{j_1}), \ldots, (a_{i_t}, b_{j_t})\}
\]
be a set of \(t \) points of \(\mathcal{P}_n \), and \(\Omega_1 = \{i_1, \ldots, i_t\}, \Omega_2 = \{j_1, \ldots, j_t\}, O = \Omega_1 \cup \Omega_2 \). Then since \(t \leq \frac{n-1}{2} \), \(|O| \leq 2t \leq n - 1 \). If \(n \notin O \) then we use the identity \(\iota \). If \(n \in O \) then there is a \(k \in O \), \(k \neq n \), such that \(k \notin O \) and the element \((t_{n,k}, t_{n,k})\) will move \(T \) into \(C_n \). Thus we have a PD-set. \(\blacksquare\)

Note: Result 1 gives the bounds \(\frac{n}{2} \) for \(n \) even, and \(\frac{n+3}{2} \) for \(n \) odd for the smallest size possible for a PD-set. Our set has size \(n \).

Recall that the code \(E_n \) is defined in Equation (5).
Proposition 5 For \(n \geq 3 \), let \(E_n = \langle v^{x^i} - v^{y^j} | x, y \in A \cup B \rangle \) over \(\mathbb{F}_p \). Then \(E_n \) is a \([n^2, 2n-2, 2n-2]_p \) code and the words of weight \(2n-2 \) are the scalar multiples of \(v^{x^i} - v^{y^j} \), for \(1 \leq i, j \leq n \).

Proof: It is clear that \(E_n = \langle v^{x^i} - v^{y^j} | x \in A \cup B \rangle \) has codimension at most 1 in \(C_n \). In \(C_n \) we have \(\sum_{i=1}^n v^{x^i} = \sum_{i=1}^n v^{y^i} = j \), and so \(\sum_{i=1}^n (v^{x^i} - v^{y^i}) = \sum_{i=1}^n (v^{x^i} - v^{y^i}) \), showing that \(E_n \) has dimension at most \(2n-2 \), and thus exactly \(2n-2 \).

For the minimum weight, \(E_n \neq C_n \) so if \(w \in E_n \) and \(w \neq 0 \), it must follow that \(\text{wt}(w) \geq n+1 \), since the words of weight \(n \) in \(C_n \) are the scalar multiples of the \(v^x \), for \(x \in A \cup B \). Further, \(\text{wt}(v^{x^i} - v^{y^j}) = 2(n-1) \). Suppose \(\text{wt}(w) = n + j = s \) where \(1 \leq j \leq n - 3 \), and show we have a contradiction. Let \(S = \text{Supp}(w) \). Count as in Proposition 1, considering intersections of \(S \) with weight-4 vectors in \(C_n^4 \leq E_n^4 \).

For \(P = (a_1, b_1) \in S \) let

- \(K_P = \{ Q \mid Q \in S, Q = (a_1, b_j) \text{ or } (a_k, b_1), j, k \neq 1 \} \), \(k_P = |K_P| \);
- \(L_P = \{ Q \mid Q \in S, Q = (a_j, b_k), j, k \neq 1 \} \), \(\ell_P = |L_P| \).

If \(Q \in L_P \), \(Q = (a_2, b_2) \) say, then \(K_P \cap K_Q \subseteq \{(a_1, b_2), (a_2, b_1)\} \), so \(|K_P \cap K_Q| \leq 2 \).

We have \(s = |S| = n + j = k_P + \ell_P + 1 \) for any \(P \in S \). Fix some \(P \in S \) and write \(k = k_P \) and \(\ell = \ell_P \). Counting as in Proposition 1, we get

\[(n-1)^2 \leq (n-1)k + \ell = (n-1)(n-j+1) + \ell = (n-1)^2 + (n-1)j - \ell(n-2), \]

which gives

\[\ell \leq \frac{(n-1)j}{(n-2)} \quad \text{and} \quad k \geq n - 1 - \frac{j}{n-2}. \] (17)

We remark that if \(\ell_P = 0 \) for \(P = (a_1, b_1) \), then \(S = K_P \cup \{P\} \). Since \(s \geq n+1 \), by assumption, \(k_P \geq n \geq 2 \), \(K_P \) must contain points of the form \((a_1, b_j) \) and \((a_k, b_1) \), \(k, j \neq 1 \) and thus we can always find two points \(P \) and \(Q \) such that \(Q \in L_P \), and then also \(P \in L_Q \).

So suppose \(Q \in L_P \). Then \(|K_P \cap K_Q| = t \leq 2 \). Since also then \(P \in L_Q \), we get that \(|K_P \cup K_Q| = k_P + k_Q - t \). Thus

\[s = n + j \geq k_P + k_Q - t + 2 = (n + j - \ell_P) + (n + j - \ell_Q) - t + 2, \]

so that

\[\ell_P + \ell_Q \geq n + j - t. \]

Together with Equation (17) for \(\ell = \ell_P, \ell_Q \), this implies \(2(n-1)j \geq (n+j)(n-2) \) and hence

\[j \geq n - (t + 2) + \frac{2t}{n}. \] (18)

If \(t = 2 \) we get \(j \geq n - 3 \), and if \(t = 1 \) or \(t = 0 \) we get \(j \geq n - 2 \) or \(n - 1 \) respectively, which is impossible since \(j \leq n - 3 \). Thus we must have \(j = n - 3 \), \(s = 2n - 3 \) and \(k \geq n - 1 - \frac{n-3}{n-2} \), so \(k \geq n - 1 \) for all points. But if \(t = 2 \) then \(s = 2n - 3 = 2(n-3) + 2 + 2 = 2n - 2 \), which is impossible. So there are no words of \(C_n \) in this range, and the minimum weight of \(E_n \) is \(2n-2 \).

Now to show that the words of weight \(2n-2 \) are the scalar multiples of the words \(v^{x^i} - v^{y^j} \), we put \(s = 2n - 2 \) in the above argument and obtain \(k \geq n - 2 \) for all points. Again we take \(P, Q \) such that \(P \in L_Q, Q \in L_P \), and we get the following possibilities:
1. \(k_P = k_Q = n - 1, t = 2 \);
2. \(k_P = n - 2, k_Q = n, t = 2 \);
3. \(k_P = n - 2, k_Q = n - 1, t = 1, 2 \);
4. \(k_P = k_Q = n - 2, t = 0, 1, 2 \).

We show that the only possibility is the last case with \(t = 0 \), and that this has to be of the form stated. The main argument used will be that, taking \(P = (a_1, b_1), Q = (a_2, b_2) \), the weight-4 word \(u((a_1, b_1), (a_k, b_m)) \) for \(k, m \geq 3 \) must meet \(S = \text{Supp}(w) \) again.

Thus in Case (1) we have \(S = K_P \cup K_Q \cup \{P, Q\}, \) leaving \(n - 3 \) points available in \(K_P \setminus K_Q \), but at least \(n - 2 \) are needed to meet all the weight-4 words. Case (2) is the same, as is Case (3) with \(t = 1 \). In Case (3) with \(t = 2, S = K_P \cup K_Q \cup \{P, Q, R\} \) where \(R \in L_P \cap L_Q \). The same argument then eliminates this possibility.

In Case (4), if \(t = 2 \) there are two more points, both in \(L_P \cap L_Q \), and if \(t = 1 \) there is one more point. In both cases the same argument can be used. This leaves only the Case (4) with \(t = 0 \). Here there are \((n-2)^2 \) words of weight 4 that must meet \(K_P \) again and unless \(K_P = \overline{\alpha} \setminus \{(a_1, b_1), (a_1, b_2)\} \) or \(\overline{\beta} \setminus \{(a_1, b_1), (a_2, b_1)\} \) this will not be possible. Similarly for \(K_Q \). If \(K_P = \overline{\alpha} \setminus \{(a_1, b_1), (a_1, b_2)\} \) and \(K_Q = \overline{\beta} \setminus \{(a_2, b_2), (a_2, b_1)\} \) then for \(R = (a_1, b_3) \) we have \(k_R = n - 1 \), which we have already shown to be impossible. So \(\text{Supp}(w) = \text{Supp}(v^{\overline{\alpha}} - v^{\overline{\beta}}) \), and, from the intersections with the weight-4 words in \(E_n^\perp \), we have \(w((a_1, b_1)) = -w((a_2, b_2)), w((a_1, b_1)) = w((a_1, b_j)) \) for \(j \geq 3 \) and \(w((a_2, b_2)) = w((a_j, b_2)) \) for \(j \geq 3 \). Thus \(w = \alpha(v^{\overline{\alpha}} - v^{\overline{\beta}}) \) for some \(\alpha \in \mathbb{F}_p \).

Proposition 6 For \(n \geq 3 \), let \(E_n = \langle v^x - v^y \mid x, y \in A \cup B \rangle \). Then

\[
\mathcal{I}_n = \{(a_i, b_n) \mid 1 \leq i \leq n\} \cup \{(a_n, b_i) \mid 1 \leq i \leq n - 1\} \setminus \{(a_1, b_n)\}
\]

is an information set for \(E_n \) and

\[
S = \{(t_{n,i}, t_{n,j}) \mid 1 \leq i, j \leq n\},
\]

(19)
of elements of \(S_n \times S_n \) is a PD-set of size \(n^2 \) for \(E_n \) using \(\mathcal{I}_n^* \).

Proof: That \(\mathcal{I}_n^* \) is an information set follows from Proposition 2. Let \(C_n \) be the corresponding check set. To prove that \(S \) is a PD-set for \(E_n \), note that \(E_n \) can correct \(n - 2 \) errors. Let

\[
\mathcal{T} = \{(a_{i_1}, b_{j_1}), \ldots, (a_{i_t}, b_{j_t})\}
\]

be a set of \(t \leq n - 2 \) points of \(\mathcal{P}_n \), and \(\Omega_1 = \{i_1, \ldots, i_t\}, \Omega_2 = \{j_1, \ldots, j_t\}, \mathcal{O} = \Omega_1 \cup \Omega_2 \). If \(n \notin \mathcal{O} \) then we use the identity \(\iota \). Since \(t \leq n - 2 \) there is a \(k \neq n, k \notin \Omega_1 \) and an \(\ell \neq n, \ell \notin \Omega_2 \), and \((t_{n,k}, t_{n,\ell}) \) will move \(\mathcal{T} \) into \(C_n \). Thus we have a PD-set.

Note: This is the same PD-set as was used in the binary case in [16]. In that paper it was shown that Result 1 gives a bound linear in \(n \). Our set has size \(n^2 \).

When \(p \) divides \(n \), a further class of codes with a larger minimum weight than \(E_n \) and correcting \(n - 1 \) errors, can be obtained.
Proposition 7 If \(n \geq 3 \), \(p \) divides \(n \), and
\[
E_n^* = \{ v^i - v^{i+1} - v^j | i \in \{1, \ldots, n\} \},
\]
then \(E_n^* \) is a self-orthogonal \([n^2, 2n - 3, d]_p \) code, where \(d = 2n - 1 \) or \(2n \). An information set for \(E_n^* \) is \(\mathcal{I}_n^* \setminus \{(a_n, b_n)\} \).

If \(p \) is odd then \(E_n^* = \text{Hull}(E_n) \). If \(p = 2 \) then \(E_n^* \subset \text{Hull}(E_n) = E_n \) and \(E_n^* \) is a doubly-even \([n^2, 2n - 3, 2n]_2 \) code.

Proof: Since \(\sum^n_{i=1} (v^i - v^{i+1}) = j + nv^0 \) and \(\sum^n_{i=1} (v^i - v^0) = j + nv^0 \), we have
\[
j = \sum^n_{i=1} (v^i - v^{i+1}) - n v^0 = \sum^n_{i=1} (v^i - v^{i+1}) - n v^0,
\]
and so \(n(v^i - v^{i+1}) \in E_n^* \), so that if \(p \nmid n \), then \(E_n^* = E_n \).

So suppose \(p \mid n \). Then \((v^i - v^{i+1}, v^j) = 0 \) for all \(x \in A \cup B \), and similarly for \((v^i - v^{i+1}, v^j) \), so that \(E_n^* \subseteq C_n^+ \subseteq C_n^* \). But \(E_n \not\subseteq C_n^+ \), so \(E_n^* \neq E_n \), \(E_n^* \subseteq \text{Hull}(E_n) \) and \([E_n : E_n^*] = 1 \). Since \(E_n^* \neq E_n \) and has vectors of weight \(2n \), its minimum weight is \(2n - 1 \) or \(2n \). Also, looking at inner products, we see that with \(p \mid n \) then \(E_n \subseteq E_n^* \) only if \(p = 2 \), i.e. \(E_n^* = \text{Hull}(E_n) \) if \(p = 2 \), and \(\text{Hull}(E_n) = E_n \) if \(p = 2 \). So if \(p = 2 \), \(E_n \) and \(E_n^* \) are self-orthogonal, \(E_n^* \) is doubly-even, and hence its minimum weight must be \(2n \).

That \(\mathcal{I}_n^* \setminus \{(a_n, b_n)\} \) is an information set is clear from the matrix \(M_n \). ■

Corollary 2 For \(n \geq 3 \), the set \(S \) of Equation (19) is a PD-set for \(E_n^* \) for the information set \(\mathcal{I}_n^* \setminus \{(a_n, b_n)\} \).

Proof: The proof is almost identical to that for \(E_n \), except that we are taking a set of size \(n - 1 \). Thus
\[
\mathcal{T} = \{(a_{i_1}, b_{j_1}), \ldots, (a_{i_t}, b_{j_t})\}
\]
is a set of \(t \leq n - 1 \) points of \(\mathcal{P}_n \), and \(\Omega_1 = \{i_1, \ldots, i_t\}, \Omega_2 = \{j_1, \ldots, j_t\}, \mathcal{O} = \Omega_1 \cup \Omega_2 \). If \(n \not\in \mathcal{O} \) then we use the identity \(\iota \). So suppose \(n \in \mathcal{O} \). If there is a \(k \neq n, k \not\in \Omega_1 \) and an \(\ell \neq n, \ell \not\in \Omega_2 \), and \((t_{n,k}, t_{n,\ell})\) will move \(\mathcal{T} \) into \(\mathcal{C}_n \). Otherwise, if \(n \in \Omega_1 \) and \(\Omega_2 = \{1, \ldots, n - 1\} \), then there is a \(k \not\in \Omega_1 \), \(k \neq n \), and \((t_{n,k}, t_{n,n})\) will move \(\mathcal{T} \) into \(\mathcal{C}_n \). Thus we have a PD-set. ■

5 The codes \(\overline{C}_n, \overline{C}_n, \overline{C}_n, \overline{C}_n \)

We show now that none of the \(p \)-ary codes from the lattice graph nor its complementary graph, nor from the reflexive graphs, give any interesting new codes beyond the codes \(C_n \) and \(E_n \) that we have already examined.

We use the notation established in Section 3.

Lemma 2 For \(n \geq 2 \), \(p \) an odd prime, the weight-4 vectors \(u((a_i, b_j), (a_k, b_m)) \) of Equation (16) are in all \(\overline{C}_n, \overline{C}_n, \overline{C}_n, \overline{C}_n \). For \(p = 2 \), \(u \in \overline{C}_n, \overline{C}_n \).
Proof: It can be verified easily that if \(u = u((a_i, b_j), (a_k, b_m)) \), then
\[
v^{(a_i, b_j)} + v^{(a_k, b_m)} - v^{(a_i, b_m)} - v^{(a_k, b_j)} = -2u.
\]
It then follows from Equations (8) and (14) that
\[
\begin{align*}
v^{(a_i, b_j)} + v^{(a_k, b_m)} - v^{(a_i, b_m)} - v^{(a_k, b_j)} &= -u \\
v^{(a_i, b_j)} + v^{(a_k, b_m)} - v^{(a_i, b_m)} - v^{(a_k, b_j)} &= u \\
v^{(a_i, b_j)} + v^{(a_k, b_m)} - v^{(a_i, b_m)} - v^{(a_k, b_j)} &= 2u,
\end{align*}
\]
which gives the result. ■

Proposition 8 For \(n \geq 2, p \) an odd prime,

1. if \(n \equiv 2 \pmod{2} \) then \(\overline{C}_n = E_n^\perp \); if \(n \not\equiv 2 \pmod{2} \) then \(\overline{C}_n = \mathbb{F}_p^{n^2} \) if \(n \not\equiv 1 \pmod{2} \), and \(\overline{C}_n = \langle j \rangle^\perp \) for \(n \equiv 1 \pmod{2} \);

2. if \(n \equiv 1 \pmod{2} \) then \(\overline{C}_n = E_n^\perp \); if \(n \not\equiv 1 \pmod{2} \) then \(\overline{C}_n = \mathbb{F}_p^{n^2} \) if \(2n \not\equiv 1 \pmod{2} \), and \(\overline{C}_n = \langle j \rangle^\perp \) for \(2n \equiv 1 \pmod{2} \);

3. if \(n \equiv 1 \pmod{2} \) then \(\sim C_n = C_n^\perp \); if \(n \not\equiv 1 \pmod{2} \) then \(\sim C_n = \mathbb{F}_p^{n^2} \);

4. if \(n \equiv 2 \pmod{2} \) then \(\sim C_n = E_n^\perp \); if \(n \not\equiv 2 \pmod{2} \) then \(\sim C_n = \mathbb{F}_p^{n^2} \).

For \(p = 2 \), \(\overline{C}_n = E_n ; \overline{C}_n = E_n^\perp \) if \(n \) is odd, \(\overline{C}_n = \mathbb{F}_2^{n^2} \) if \(n \) is even; \(\sim C_n = C_n^\perp \) if \(n \) is odd, \(\sim C_n = \mathbb{F}_2^{n^2} \) if \(n \) is even; \(\overline{C}_n = E_n \) for \(n \) even, \(\overline{C}_n = C_n \) for \(n \) odd.

Proof: First take \(p \) odd. Let \(u(1, 2) = \sum_{i \neq 1}^n u((a_1, b_1), (a_2, b_i)) = \sum_{i \neq 1}^n (v^{(a_1, b_1)} + v^{(a_2, b_i)} - v^{(a_1, b_i)} - v^{(a_2, b_1)}) \). Then it follows that
\[
u(1, 2) = (n - 1)(v^{(a_1, b_1)} - v^{(a_2, b_1)}) - \sum_{i \neq 1} (v^{(a_2, b_i)} - v^{(a_1, b_i)}),
\]
and \(u(1, 2) \in \overline{C}_n, \overline{C}_n, \sim C_n, C_n \) by Lemma 2. Now we consider the four classes of codes, the proofs being similar.

1. For \(\overline{C}_n \):
\[
v^{(a_1, b_1)} - v^{(a_2, b_1)} = (n - 1)(v^{(a_1, b_1)} - v^{(a_2, b_1)}) - u(1, 2) - (v^{(a_1, b_1)} - v^{(a_2, b_1)}) = (n - 2)(v^{(a_1, b_1)} - v^{(a_2, b_1)}) - u(1, 2)
\]
is in \(\overline{C}_n \).

If \(n \not\equiv 2 \pmod{2} \) then \(v^{(a_1, b_1)} - v^{(a_2, b_1)} \in \overline{C}_n \), and this will hold for any pairs of points, so \(\langle j \rangle^\perp \subseteq \overline{C}_n \). But \(j \in \overline{C}_n^\perp \) only if \(n \equiv 1 \pmod{2} \), so we have the stated result for \(n \not\equiv 2 \pmod{2} \).

If \(n \equiv 2 \pmod{2} \), then since \((v^x, v^{(y,z)}) = 1 \) if \(x \neq y, z \) and \(n - 1 \) if \(x = y \) or \(z \), it follows that \(\overline{C}_n \subseteq E_n^\perp \). Now from Proposition 2, the weight-4 vectors span \(C_n^\perp \), so \(C_n^\perp \subseteq \overline{C}_n \). Clearly we cannot have equality, and since \([E_n^\perp : C_n^\perp] = 1 \), we have \(\overline{C}_n = E_n^\perp \).
2. For \overline{C}_n:

$$v(a_1, b_1) - v(a_2, b_1) = v(a_1, b_1) - v(a_2, b_1) + v(a_1, b_1) - v(a_2, b_1) = (n - 1)(v(a_1, b_1) - v(a_2, b_1)) - u(1, 2),$$

from the previous case, is in \overline{C}_n.

If $n \not\equiv 1 \pmod{p}$ then $v(a_1, b_1) - v(a_2, b_1) \in \overline{C}_n$, and this will hold for any pairs of points, so $\langle \mathbf{j} \rangle^\perp \subseteq \overline{C}_n$. But $\mathbf{j} \notin \overline{C}_n$ only if $2n \equiv 1 \pmod{p}$, so we have the stated result for $n \not\equiv 1 \pmod{p}$.

If $n \equiv 1 \pmod{p}$, then since $(v^x, v^{(y, z)}) = 1$ if $x \neq y, z$ and n if $x = y$ or z, it follows that $\overline{C}_n \subseteq E_n^\perp$. Now from Proposition 2, the weight-4 vectors span C_n^\perp, so $C_n^\perp \subseteq \overline{C}_n$. Clearly we cannot have equality, and since $[E_n^\perp : C_n^\perp] = 1$, we have $\overline{C}_n = E_n^\perp$.

3. For \overline{C}_n:

$$v(a, b) + v(a, b) = \mathbf{j}, \text{ so}$$

$$v(a_1, b_1) - v(a_2, b_1) = -v(a_1, b_1) + v(a_2, b_1) = -(n - 1)(v(a_1, b_1) - v(a_2, b_1)) + u(1, 2),$$

from the previous case, is in \overline{C}_n.

If $n \not\equiv 1 \pmod{p}$ then $v(a_1, b_1) - v(a_2, b_1) \in \overline{C}_n$, and this will hold for any pairs of points, so $\langle \mathbf{j} \rangle^\perp \subseteq \overline{C}_n$. But $\mathbf{j} \notin \overline{C}_n$ for $n \not\equiv 1 \pmod{p}$, so we have the stated result for $n \not\equiv 1 \pmod{p}$.

If $n \equiv 1 \pmod{p}$, then since $(v^x, v^{(y, z)}) = n - 1$ if $x \neq y, z$ and 0 if $x = y$ or z, it follows that $\overline{C}_n \subseteq C_n^\perp$. Now from Proposition 2, the weight-4 vectors span C_n^\perp, so we have equality.

4. For $\overline{\overline{C}}_n$:

$$v(a, b) = v(a, b) + v(a, b), \text{ so}$$

$$v(a_1, b_1) - v(a_2, b_1) = v(a_1, b_1) - v(a_2, b_1) + v(a_1, b_1) - v(a_2, b_1) = -(n - 2)(v(a_1, b_1) - v(a_2, b_1)) + u(1, 2),$$

from the previous case, is in $\overline{\overline{C}}_n$.

If $n \not\equiv 2 \pmod{p}$ then $v(a_1, b_1) - v(a_2, b_1) \in \overline{\overline{C}}_n$, and this will hold for any pairs of points, so $\langle \mathbf{j} \rangle^\perp \subseteq \overline{\overline{C}}_n$. But $\mathbf{j} \notin \overline{\overline{C}}_n$ so we have the stated result for $n \not\equiv 2 \pmod{p}$.

If $n \equiv 2 \pmod{p}$, then since $(v^x, v^{(y, z)}) = n - 1$ if $x \neq y, z$ and 1 if $x = y$ or z, it follows that $\overline{\overline{C}}_n \subseteq E_n^\perp$. Now from Proposition 2, the weight-4 vectors span C_n^\perp, so $C_n^\perp \subseteq \overline{\overline{C}}_n$. Clearly we cannot have equality, and since $[E_n^\perp : C_n^\perp] = 1$, we have $\overline{\overline{C}}_n = E_n^\perp$.

This completes all the cases for p odd.

Now take $p = 2$. That $\overline{C}_n = E_n$ follows from the observation that $M_n^T M_n = A_n$ (in the notation of Section 3), or from Result 2.
For \overline{C}_n, from Lemma 2, $u(1,2) \in \overline{C}_n$, and the same argument as in the case of odd p can be used; similarly for \widetilde{C}_n.

For \widetilde{C}_n, since $v(a,b) = j + v(a,b) = j + v^5 + v^5$, $\sum_{i=1}^n v(a,b) = n j + \sum_{i=1}^n v^5 + n v^5 = j$ for n even, and equal to v^5 for n odd, and so $\widetilde{C}_n = C_n$ for n odd. For n even, $\sum_{i=1}^n v(a,b) = j$, so for n even, $\widetilde{C}_n = \overline{C}_n = E_n$.

This completes the proof of all the cases. □

The proof of Theorem 1 now follows from the results in this and the last section.

Acknowledgement

The authors thank the Department of Mathematics and Applied Mathematics at the University of the Western Cape for their hospitality.

References

REFERENCES

