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Abstract

We construct some codes, designs and graphs that have the first
or second Janko group, J1 or J2, respectively, acting as an automor-
phism group. We show computationally that the full automorphism
group of the design or graph in each case is J1, J2 or J̄2, the extension
of J2 by its outer automorphism, and we show that for some of the
codes the same is true.

1 Introduction

Error-correcting codes that have large automorphism groups whose prop-
erties are extensively studied can be useful in applications as the group can
help in determining the code’s properties, and can be useful in decoding
algorithms: see Huffman [8] for a discussion of possibilities, including the
question of the use of permutation decoding by searching for PD-sets.

We consider here the primitive representations of the simple Janko
groups J1 and J2, as described, for example, in [6]. For each group, us-
ing Magma [3], we constructed designs and graphs that have the group
acting primitively on points as automorphism group, and, for a selection of
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2 TERMINOLOGY AND NOTATION 2

small primes, codes over that prime field derived from the designs or graphs
that also have the group acting as automorphism group. In each case we
found codes with good parameters. For each code, the code automorphism
group at least contains the associated Janko group, but in fact we did not
find any in which it was bigger (unless the code was the full space, or of
codimension 1 in the full space).

A sample of our results is attached in the appendix, but the full set can
be obtained at a web site (address given in the text). The appendix includes
the Magma code that was used to obtain the designs and codes. Some small
but interesting cases where we could determine the full automorphism group
of the code and the full weight enumerator, are given in Section 6.

We looked into the possibility of finding strongly regular graphs amongst
the graphs obtained from this primitive action, although such a study has
been conducted independently elsewhere.

2 Terminology and notation

Our notation will be standard, and as in [1]. An incidence structure D =
(P,B, I), with point set P, block set B and incidence I is a t-(v, k, λ)
design, if |P| = v, every block B ∈ B is incident with precisely k points,
and every t distinct points are together incident with precisely λ blocks.
The dual structure of D is Dt = (B,P, I). Thus the transpose of an
incidence matrix for D is an incidence matrix for Dt. We will say that the
design is symmetric if it has the same number of points and blocks, and
self-dual if it is isomorphic to its dual.

The code CF of the design D over the finite field F is the space spanned
by the incidence vectors of the blocks over F . We take F to be a prime field
Fp, in which case we write also Cp for CF , and refer to the dimension of Cp

as the p-rank of D. In the general case of a 2-design, the prime must divide
the order of the design, i.e. r−λ, where r is the replication number for the
design, that is, the number of blocks through a point. If the point set of D
is denoted by P and the block set by B, and if Q is any subset of P, then
we will denote the incidence vector of Q by vQ. Thus CF =

〈
vB |B ∈ B

〉
,

and is a subspace of FP , the full vector space of functions from P to F .
For any code C of length n over the field F , the dual or orthog-

onal code C⊥ is the orthogonal under the standard inner product, i.e.
C⊥ = {v ∈ Fn|(v, c) = 0 for all c ∈ C}. A code C is self-orthogonal if
C ⊆ C⊥ and is self-dual if C = C⊥. The hull of a design’s code over some
field is the intersection C ∩ C⊥. If a linear code over a field of order q is
of length n, dimension k, and minimum weight d, then we write [n, k, d]q
to show this information. If c is a codeword then the support of c is the
set of non-zero coordinate positions of c. A constant word in the code
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is a codeword, all of whose coordinate entries are either 0 or 1. The all-
one vector will be denoted by , and is the constant vector of weight the
length of the code. Two linear codes of the same length and over the same
field are equivalent if each can be obtained from the other by permut-
ing the coordinate positions and multiplying each coordinate position by a
non-zero field element. They are isomorphic if they can be obtained from
one another by permuting the coordinate positions. An automorphism
of a code C is any permutation of the coordinate positions that maps code-
words to codewords. An automorphism thus preserves each weight class
of C. Notice that if C is the code from an incidence structure, then any
automorphism of the incidence structure will induce an automorphism of
the code; the converse need not be true.

Terminology for graphs is standard: our graphs are undirected, the
valency of a vertex is the number of edges containing the vertex; the
girth of a graph is the number of edges in the smallest cycle in the graph,
and the diameter of a graph is the length of the longest path in the graph.
A graph is regular if all the vertices have the same valence, and a regular
graph is strongly regular of type (n, k, λ, µ) if it has n vertices, valence k,
and if any two adjacent vertices are together adjacent to λ vertices, while
any two non-adjacent vertices are together adjacent to µ vertices.

3 The construction

Our computations are based on the following construction:

Proposition 1 Let G be a finite primitive permutation group acting on the
set Ω of size n. Let α ∈ Ω, and let ∆ 6= {α} be an orbit of the stabilizer
Gα of α. If

B = {∆g : g ∈ G}

and, given δ ∈ ∆,
E = {{α, δ}g : g ∈ G},

then B forms a self-dual 1-(n, |∆|, |∆|) design with n blocks, and E forms
the edge set of a regular connected graph of valency |∆|, with G acting as
an automorphism group on each of these structures, primitive on vertices
of the graph, and on points and blocks of the design.

Proof: We have |G| = |∆G||G∆|, and clearly G∆ ⊇ Gα. Since G is prim-
itive on Ω, Gα is maximal in G, and thus G∆ = Gα, and |∆G| = |B| = n.
This proves that we have a 1-(n, |∆|, |∆|) design.

For the graph we notice that the vertices adjacent to α are the vertices
in ∆. Now as we orbit these pairs under G, we get the nk ordered pairs, and
thus nk/2 edges, where k = ∆. Since the graph has G acting, it is clearly
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regular, and thus the valency is k as required, i.e. the only vertices adjacent
to α are those in the orbit ∆. The graph must be connected, as a maximal
connected component will form a block of imprimitivity, contradicting the
group’s primitive action.

Now notice that an adjacency matrix for the graph is simply an incidence
matrix for the 1-design, so that the 1-design is necessarily self-dual. This
proves all our assertions. 2

Note that if we form any union of orbits of the stabilizer of a point,
including the orbit consisting of the single point, and orbit this under the
full group, we will still get a self-dual symmetric 1-design with the group
operating. Thus the orbits of the stabilizer can be regarded as “building
blocks”. Since the complementary design (i.e. taking the complements of
the blocks to be the new blocks) will have exactly the same properties, we
will assume that our block size is at most v/2.

In fact this will give us all possible designs on which the group acts
primitively on points and blocks:

Lemma 2 If the group G acts primitively on the points and the blocks of a
symmetric 1-design D, then the design can be obtained by orbiting a union
of orbits of a point-stabilizer, as described in the proposition.

Proof: Suppose that G acts primitively on points and blocks of the 1-
(v, k, k) design D. Let B be the block set of D; then if B is any block of D,
B = BG. Thus |G| = |B||GB |, and since G is primitive, GB is maximal and
thus GB = Gα for some point. Thus Gα fixes B, so this must be a union
of orbits of Gα. 2

It is well known, and easy to see, that if the group is rank-3, i.e. the
stabilizer of a point has exactly three orbits, then the graph formed as
described in Proposition 1 will be strongly regular. In case the group is not
of rank 3, this might still happen, and we examined this question also.

We took G to be J1 and J2, the first and second Janko groups, respec-
tively: see [9]. Note that J1 has no outer automorphisms, and thus is its
own automorphism group, whereas J2 has an involutary outer automor-
phism, so its automorphism group, which we will denote by J̄2, is a split
extension of J2 by Z2, with double the order.

We looked first at J1, which is of order 175560, and its maximal sub-
groups and primitive permutation representations via the coset action on
these subgroups: see [6, 7]. There are seven distinct primitive representa-
tion, of degree 266, 1045, 1463, 1540, 1596, 2926, and 4180, respectively.
We then looked at J2, of order 604800, which has nine primitive repre-
sentations, of degree 100, 280, 315, 525, 840, 1008, 1800, 2016 and 10080,
respectively. The last degree is a little large to compute with comfortably.
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For each of these groups, using Magma [3], we found the designs and
graphs as described in Proposition 1, and found the p-rank of the designs for
some small set of values of the prime p. To aid in the classification, we also
found the dimension of the hull of the design for each of these primes. We
also looked for strongly regular graphs for each group, and found three for
J2, all of which are known: see Brouwer and van Lint [4], and Brouwer [5].
We then also took a closer look at some of the more interesting codes
that arose, asking what the basic coding properties were, and if the full
automorphism group could be established. We did not find any that had
automorphism group properly between the symmetric group and J1, J2 or
J̄2, but we were in fact only able to compute a few. Nevertheless, it seems
likely that this might always be the case for these groups: see, however, the
comment in Section 7. Our results are listed in Section 6.

4 The computations for J1

For each of the seven primitive representations, using Magma, we con-
structed the permutation group and formed the orbits of the stabilizer of a
point. For each of the non-trivial orbits, we formed the symmetric 1-design
as described in Proposition 1. Note that because of the maximality of the
point stabilizer, there is only the one orbit of length 1: for suppose G is the
group, and suppose that Gα fixes also β. Then Gα = Gβ . Since G is transi-
tive, there exists g ∈ G such that αg = β. Then (Gα)g = Gαg = Gβ = Gα,
and thus g ∈ NG(Gα) = N , the normalizer of Gα in G. Since Gα is maxi-
mal in G, we have N = G or N = Gα. But G is simple, so we must have
N = Gα, so that g ∈ Gα and so β = α. Since these 1-designs do not by
their parameters give any indication of what primes might give codes that
are likely to be of any use either for applications or for characterization
purposes, we took a small set of the lowest primes, i.e. {2, 3, 5, 7, 11}, and
found the dimension of the code and its hull for each of these primes. Note
also that since 19 is a divisor of the order of J1, in some of the smaller
cases it is worthwhile also to look at codes over the field of order 19. We
also found the automorphism group of each design, which will be the same
as the automorphism group of the regular graph. Where computationally
possible we also found the automorphism group of the code.

Conclusions from our results are summarized below. In brief, we found
that there are 245 designs formed in this manner from single orbits and
that none of them is isomorphic to any other of the designs in this set. In
every case the full automorphism group of the design or graph is J1. In
all but 34 of the designs, the dimensions of the code or the hull over the
set of primes given above distinguished the designs. For the 34 remaining,
these occurred in 17 pairs in which the set of dimensions for each pair was
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Degree # length
266 5 132 110 12 11
1045 11 168(5) 56(3) 28 8
1463 22 120(7) 60(9) 20(2) 15(2) 12
1540 21 114(9) 57(6) 38(4) 19
1596 19 110(13) 55(2) 22(2) 11
2926 67 60(34) 30(27) 15(5)
4180 107 42(95) 21(6) 14(4) 7

Table 1: Orbits of a point-stabilizer of J1

identical, but distinct from all the other pairs. For these we tried a few more
primes but got no distinction, possibly, but not necessarily, indicating that
the codes are isomorphic. This could not be tested with Magma as the
codes have block length that is too long. However, for these 17 pairs we
simply used Magma to test the design isomorphism, and thus obtained the
stated conclusion.

In Table 1, the first column gives the degree, the second the number of
orbits, and the remaining columns give the length of the orbits of length
greater than 1, with the number of that length in parenthesis behind the
length in case there is more than one of that length. The pairs that had
the same code dimensions occurred as follows: for degrees 266, 1045 and
1596, there were no such pairs; for degree 1463 there were two pairs, both
for orbit size 60; for degree 1540, there were two pairs, for orbit size 57 and
114 respectively; for degree 2926 there was one pair for orbit size 60; for
degree 4180 there were 12 pairs, for orbit size 42.

We make the general comment that for each one of these 245 designs
(or graphs) there was at least one prime from our small set that gave an
“interesting code”, i.e. a code that is not the full space or of codimension
1. Full details of the numbers obtained can be found at the web site:

http://www.ces.clemson.edu/~keyj

under the file “Janko groups and designs”. We include a few sample results
and the related Magma code in the appendix.

In summary then, we have the following:

Proposition 3 If G is the first Janko group J1, there are precisely 245
non-isomorphic self-dual 1-designs obtained by taking all the images under
G of the non-trivial orbits of the point stabilizer in any of G’s primitive
representations, and on which G acts primitively on points and blocks. In
each case the full automorphism group is J1. Every primitive action on
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Degree # length
100 3 63 36
280 4 135 108 36
315 6 160 80 32(2) 10
525 6 192(2) 96 32 12
840 7 360 240 180 24 20 15
1008 11 300 150(2) 100(2) 60(2) 50 25 12
1800 18 336 168(6) 84(3) 42(3) 28 21 14(2)
2016 18 300(2) 150(6) 75(5) 50(2) 25 15

Table 2: Orbits of a point-stabilizer of J2 (of degree ≤ 2016)

symmetric 1-designs can be obtained by taking the union of such orbits and
orbiting under G.

We tested the graphs for strong regularity in the cases of the smaller
degree, and did not find any that were strongly regular. We have not
however, as yet, tested all the graphs. We also found the designs and their
codes for some of the unions of orbits in some cases. We found that some
of the codes were the same for some primes, but not for all.

5 The computations for J2

This group has nine primitive representations, as already mentioned, but
we did not compute with the largest degree. Thus our results cover only
the first eight. Our results for J2 are different from those for J1, due to the
existence of an outer automorphism. The main difference is that usually the
full automorphism group is J̄2, and that in the cases where it was only J2,
there would be another orbit of that length that would give an isomorphic
design, and which, if the two orbits were joined, would give a design of
double the block size and automorphism group J̄2. A similar conclusion
held if some union of orbits was taken as a base block.

From these eight primitive representations, we obtained in all 51 non-
isomorphic symmetric designs on which J2 acts primitively. Table 2 gives
the same information for J2 that Table 1 gives for J1. The automorphism
group of the design in each case was J2 or J̄2. Where J2 was the full group,
there is another copy of the design for another orbit of the same length.
This occurred in the following cases: degree 315, orbit length 32; degree
1008, orbit lengths 60, 100 and 150; degree 1800, orbit lengths 42, 42, 84
and 168; degree 2016, orbit lengths 50, 75, 75, 150, 150, and 300. We note
again that the p-ranks of the design and their hulls gave an initial indication
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of possible isomorphisms and clear non-isomorphisms, so that only the few
mentioned needed be tested. This reduced the computations tremendously.

We also found three strongly regular graphs (all of which are known:
see Brouwer [5]): that of degree 100 from the rank-3 action, of course,
and two more of degree 280 from the orbits of length 135 and 36, giving
strongly regular graphs with parameters (280,135,70,60) and (280,36,8,4)
respectively. The full automorphism group is J̄2 in each case. We have not
checked all the other representations but note that this is the only one with
point stabilizer having exactly four orbits. Note that Bagchi [2] found a
strongly regular graph with J2 acting.

6 Automorphism groups of the codes

Clearly the automorphism group of any of the codes will contain the auto-
morphism group of the design from which it is formed. We looked at some
of the codes that were computationally feasible to find out if the groups J1

and J̄2 formed the full automorphism group in any of the cases when the
code was not the full vector space. We first mention the following lemma:

Lemma 4 Let C be the linear code of length n of an incidence structure
I over a field F. Then the automorphism group of C is the full symmetric
group if and only if C = Fn or C = F ⊥.

Proof: Suppose Aut(C) is Sn. C is spanned by the incidence vectors of
the blocks of I; let B be such a block and suppose it has k points, and
so it gives a vector of weight k in C. Clearly C contains the incidence
vector of any set of k points, and thus, by taking the difference of two such
vectors that differ in just two places, we see that C contains all the vectors
of weight 2 having as non-zero entries 1 and −1. Thus C = F ⊥ or Fn.
The converse is clear. 2

Huffman [8] has more on codes and groups, and in particular, on the
possibility of the use of permutation decoding for codes with large groups
acting. See also Knapp and Schmid [10] for more on codes with prescribed
groups acting.

Most of the codes we looked at were too large to find the automorphism
group, but we did find, through computation with Magma, the list given
below. Note that we could in some cases look for the full group of the hull,
and from that deduce the group of the code, since Aut(C) = Aut(C⊥) ⊆
Aut(C ∩ C⊥). In the few cases where the group of the design was known
only to be the simple group J2, we could construct the extended group J̄2

and check to see if the basis of the code of the design was mapped into the
code by the outer automorphism. In all cases we did get the full extended
group.
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In each of the following we consider the primitive action of J1 or J2 on
a design formed as described in Proposition 1 from an orbit or a union of
orbits, and the codes are the codes of the associated 1-design.

Full automorphism groups of the codes

1. For J2 of degree 100, J̄2 is the full automorphism group of the design
with parameters 1-(100, 36, 36), and it is the automorphism group
of the self-orthogonal doubly-even [100, 36, 16]2 binary code of this
design.

2. For J2 of degree 280, J̄2 is the full automorphism group of the design
with parameters 1-(280, 108, 108), and it is the automorphism group
of the self-orthogonal doubly-even [280, 14, 108]2 binary code of this
design. The weight distribution of this code is

<0, 1>, <108, 280>, <128, 1575>, <136, 2520>, <140, 7632>,

<144, 2520>, <152, 1575>, <172, 280>, <280, 1>

Thus the words of minimum weight (i.e. 108) are the incidence vectors
of the design.

3. For J2 of degree 315, J̄2 is the full automorphism group of the design
with parameters 1-(315, 64, 64) (by taking the union of the two orbits
of length 32), and it is the automorphism group of the self orthogo-
nal doubly-even [315, 28, 64]2 binary code of this design. The weight
distribution of the code is as follows:

<0, 1>,<64, 315>,<96, 6300>,<104, 25200>,<112, 53280>,

<120, 242760>,<124, 201600>,<128, 875700>,<132, 1733760>,

<136, 4158000>,<140, 5973120>,<144, 12626880>,<148, 24232320>,

<152, 35151480>,<156, 44392320>,<160, 53040582>,

<164, 41731200>,<168, 28065120>,<172, 13023360>,<176, 2129400>,

<180, 685440>,<184, 75600>,<192, 10710>,<200, 1008>

Thus the words of minimum weight (i.e. 64) are the incidence vectors
of the blocks of the design.

Furthermore, the designs from the two orbits of length 32 in this case,
i.e. 1-(315, 32, 32) designs, each have J2 as their automorphism group.
Their binary codes are equal, and are [315, 188]2 codes, with hull the
28-dimensional code described above. The automorphism group of
this 188-dimensional code is again J̄2. The minimum weight is at
most 32. This is also the binary code of the design from the orbit of
length 160.
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4. For J2 of degree 315, J̄2 is the full automorphism group of the design
with parameters 1-(315, 160, 160) and it is the automorphism group
of the [315, 265]5 5-ary code of this design. This code is also the 5-ary
code of the design obtained from the orbit of length 10, and from that
of the orbit of length 80, so we can deduce that the minimum weight
is at most 10. The hull is a [315, 15, 155]5 code and again with J̄2 as
full automorphism group.

5. For J2 of degree 315, J̄2 is the full automorphism group of the
design with parameters 1-(315, 80, 80) from the orbit of length 80,
and it is the automorphism group of the self-orthogonal doubly-even
[315, 36, 80]2 binary code of this design. The minimum words of this
code are precisely the 315 incidence vectors of the blocks of the design.

7 Deductions

We could use these computations to conjecture that the automorphism
groups of the designs obtained in this way from a primitive representation
of a simple group G will have the automorphism group Aut(G) as its auto-
morphism group, unless the design is isomorphic to another one constructed
in this way, in which case the automorphism group of the design will be a
proper subgroup of the Aut(G) containing G.

For the automorphism group of the codes, we have not found a code
that has automorphism group bigger than J1 or J̄2 but not equal to the
full symmetric group. However, examples certainly do exist where the
automorphism group of the code is bigger than that of the design, but
still not the full symmetric group: if D is the 2-(28,4,1) hermitian unital,
the automorphism group is the unitary group PΓU3(F9), while its binary
code, a [28, 21, 4]2, has automorphism group the symplectic group Sp6(2)
(see [1, page 301] for a detailed discussion).
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8 Appendix

Some results for J1

Loading "/applic/magma2.4

/libs/simgps/simgps"

g:=SimGroup("J1");

re:=SimRecord("J1");

ma:=re‘Max;

//J1 of degree 266

g1:=ma[1];

a1,a2,a3:=CosetAction(g,g1);

pr:=[2,3,5,7,11];

st:=Stabilizer(a2,1);

orbs:=Orbits(st);#orbs;

5

lo:=[#orbs[i]: i in [1..#orbs]];

lo;

[ 1, 132, 110, 11, 12 ]

v:=Index(a2,st);

for j:=2 to #lo do

"orbs no",j,"of length",

#orbs[j];

edg:={1,Setseq(orbs[j])[1]}^a2;

gr:=Graph<v|edg>;

"no of edges=",#edg;

"valence=",Valence(gr),

"girth=",Girth(gr),

"diameter=",Diameter(gr);

Order(AutomorphismGroup(gr));

blox:=Setseq(orbs[j]^a2);

des:=Design<1,v|blox>;

Order(AutomorphismGroup(des));

for i:=1 to 5 do

p:=pr[i];

dc:=LinearCode(des,GF(p));

d1:=Dim(dc);d2:=Dim(Dual(dc));

d3:=Dim(dc meet Dual(dc));

p,"dim=",d1,

"dual=",d2,"dh=",d3;

end for;

end for;

orbs no 2 of length 132

no of edges= 17556

valence= 132 girth= 3 diameter= 2

175560

175560

2 dim= 112 dual= 154 hull= 0

3 dim= 153 dual= 113 hull= 0

5 dim= 266 dual= 0 hull= 0

7 dim= 266 dual= 0 hull= 0

11 dim= 209 dual= 57 hull= 0

orbs no 3 of length 110

no of edges= 14630

valence= 110 girth= 3 diameter= 2

175560

175560

2 dim= 188 dual= 78 hull= 0

3 dim= 266 dual= 0 hull= 0

5 dim= 56 dual= 210 hull= 56

7 dim= 266 dual= 0 hull= 0

11 dim= 209 dual= 57 hull= 0

orbs no 4 of length 11

no of edges= 1463

valence= 11 girth= 5 diameter= 4

175560

175560

2 dim= 190 dual= 76 hull= 0

3 dim= 266 dual= 0 hull= 0

5 dim= 266 dual= 0 hull= 0

7 dim= 266 dual= 0 hull= 0

11 dim= 209 dual= 57 hull= 0

orbs no 5 of length 12

no of edges= 1596

valence= 12 girth= 5 diameter= 3

175560

175560

2 dim= 112 dual= 154 hull= 0

3 dim= 153 dual= 113 hull= 0

5 dim= 266 dual= 0 hull= 0

7 dim= 266 dual= 0 hull= 0

11 dim= 266 dual= 0 hull= 0

---------------------------------

//J1 of degree 1045

orbs:=Orbits(st);#orbs;

11

[ 1, 28, 168, 168, 168, 56, 168,

168, 56, 56, 8 ]

orbs no 2 of length 28

no of edges= 14630

valence= 28 girth= 3 diameter= 3

175560
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175560

2 dim= 572 dual= 473 hull= 0

3 dim= 1045 dual= 0 hull= 0

5 dim= 1045 dual= 0 hull= 0

7 dim= 770 dual= 275 hull= 0

11 dim= 962 dual= 83 hull= 49

orbs no 3 of length 168

no of edges= 87780

valence= 168 girth= 3 diameter= 3

175560

175560

2 dim= 856 dual= 189 hull= 0

3 dim= 702 dual= 343 hull= 0

5 dim= 1045 dual= 0 hull= 0

7 dim= 684 dual= 361 hull= 89

11 dim= 1045 dual= 0 hull= 0

orbs no 4 of length 168

no of edges= 87780

valence= 168 girth= 3 diameter= 2

175560

175560

2 dim= 968 dual= 77 hull= 0

3 dim= 360 dual= 685 hull= 0

5 dim= 856 dual= 189 hull= 56

7 dim= 924 dual= 121 hull= 0

11 dim= 968 dual= 77 hull= 0

orbs no 5 of length 168

no of edges= 87780

valence= 168 girth= 3 diameter= 2

175560

175560

2 dim= 758 dual= 287 hull= 134

3 dim= 702 dual= 343 hull= 0

5 dim= 1045 dual= 0 hull= 0

7 dim= 791 dual= 254 hull= 0

11 dim= 1045 dual= 0 hull= 0

orbs no 6 of length 56

no of edges= 29260

valence= 56 girth= 3 diameter= 3

175560

175560

2 dim= 968 dual= 77 hull= 0

3 dim= 1045 dual= 0 hull= 0

5 dim= 1045 dual= 0 hull= 0

7 dim= 924 dual= 121 hull= 0

11 dim= 1045 dual= 0 hull= 0

orbs no 7 of length 168

no of edges= 87780

valence= 168 girth= 3 diameter= 2

175560

175560

2 dim= 856 dual= 189 hull= 0

3 dim= 493 dual= 552 hull= 133

5 dim= 912 dual= 133 hull= 56

7 dim= 924 dual= 121 hull= 0

11 dim= 1045 dual= 0 hull= 0

orbs no 8 of length 168

no of edges= 87780

valence= 168 girth= 3 diameter= 3

175560

175560

2 dim= 758 dual= 287 hull= 134

3 dim= 702 dual= 343 hull= 0

5 dim= 1045 dual= 0 hull= 0

7 dim= 684 dual= 361 hull= 89

11 dim= 968 dual= 77 hull= 0

orbs no 9 of length 56

no of edges= 29260

valence= 56 girth= 3 diameter= 3

175560

175560

2 dim= 968 dual= 77 hull= 0

3 dim= 836 dual= 209 hull= 133

5 dim= 1045 dual= 0 hull= 0

7 dim= 924 dual= 121 hull= 0

11 dim= 968 dual= 77 hull= 0

orbs no 10 of length 56

no of edges= 29260

valence= 56 girth= 4 diameter= 3

175560

175560

2 dim= 512 dual= 533 hull= 152

3 dim= 1045 dual= 0 hull= 0

5 dim= 1045 dual= 0 hull= 0

7 dim= 924 dual= 121 hull= 0

11 dim= 1045 dual= 0 hull= 0

orbs no 11 of length 8

no of edges= 4180

valence= 8 girth= 5 diameter= 5

175560

175560

2 dim= 968 dual= 77 hull= 0
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3 dim= 836 dual= 209 hull= 133

5 dim= 1045 dual= 0 hull= 0

7 dim= 1045 dual= 0 hull= 0

11 dim= 1045 dual= 0 hull= 0

---------------------------------

Some results for J_2:

//J2 of degree 100

no. of orbs= 3

[ 1, 63, 36 ]

degree= 100

orbs no 2 of length 63

no of edges= 3150

valence= 63 girth= 3 diameter= 2

1209600

1-(100, 63, 63) Design with

100 blocks

1209600

2 dim= 100 dual= 0 hull= 0

3 dim= 36 dual= 64 hull= 0

5 dim= 100 dual= 0 hull= 0

7 dim= 63 dual= 37 hull= 0

11 dim= 100 dual= 0 hull= 0

orbs no 3 of length 36

no of edges= 1800

valence= 36 girth= 3 diameter= 2

1209600

1-(100, 36, 36) Design with

100 blocks

1209600

2 dim= 36 dual= 64 hull= 36

3 dim= 63 dual= 37 hull= 0

5 dim= 100 dual= 0 hull= 0

7 dim= 100 dual= 0 hull= 0

11 dim= 100 dual= 0 hull= 0

--------------------------------

//J2 of degree 280

Order = 604800

no. of orbs= 4

[ 1, 135, 108, 36 ]

degree= 280

orbs no 2 of length 135

no of edges= 18900

valence= 135 girth= 3 diameter= 2

1209600

1-(280, 135, 135) Design with

280 blocks

1209600

2 dim= 280 dual= 0 hull= 0

3 dim= 216 dual= 64 hull= 0

5 dim= 42 dual= 238 hull= 42

7 dim= 280 dual= 0 hull= 0

11 dim= 280 dual= 0 hull= 0

orbs no 3 of length 108

no of edges= 15120

valence= 108 girth= 3 diameter= 2

1209600

1-(280, 108, 108) Design with

280 blocks

1209600

2 dim= 14 dual= 266 hull= 14

3 dim= 216 dual= 64 hull= 0

5 dim= 280 dual= 0 hull= 0

7 dim= 280 dual= 0 hull= 0

11 dim= 280 dual= 0 hull= 0

orbs no 4 of length 36

no of edges= 5040

valence= 36 girth= 3 diameter= 2

1209600

1-(280, 36, 36) Design with

280 blocks

1209600

2 dim= 62 dual= 218 hull= 62

3 dim= 279 dual= 1 hull= 0

5 dim= 280 dual= 0 hull= 0

7 dim= 280 dual= 0 hull= 0

11 dim= 280 dual= 0 hull= 0

---------------------------------

//J2 of degree 315

no. of orbs= 6

[ 1, 80, 160, 10, 32, 32 ]

degree= 315

orbs no 2 of length 80

no of edges= 12600

valence= 80 girth= 3 diameter= 2

1209600

1-(315, 80, 80) Design with

315 blocks

1209600
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2 dim= 36 dual= 279 hull= 36

3 dim= 315 dual= 0 hull= 0

5 dim= 265 dual= 50 hull= 15

7 dim= 315 dual= 0 hull= 0

11 dim= 315 dual= 0 hull= 0

orbs no 3 of length 160

no of edges= 25200

valence= 160 girth= 3 diameter= 2

1209600

1-(315, 160, 160) Design with

315 blocks

1209600

2 dim= 188 dual= 127 hull= 28

3 dim= 279 dual= 36 hull= 0

5 dim= 265 dual= 50 hull= 15

7 dim= 155 dual= 160 hull= 36

11 dim= 279 dual= 36 hull= 0

orbs no 4 of length 10

no of edges= 1575

valence= 10 girth= 3 diameter= 4

1209600

1-(315, 10, 10) Design with

315 blocks

1209600

2 dim= 154 dual= 161 hull= 0

3 dim= 225 dual= 90 hull= 0

5 dim= 265 dual= 50 hull= 15

7 dim= 315 dual= 0 hull= 0

11 dim= 315 dual= 0 hull= 0

orbs no 5 of length 32

no of edges= 5040

valence= 32 girth= 3 diameter= 3

604800

1-(315, 32, 32) Design with

315 blocks

604800

2 dim= 188 dual= 127 hull= 28

3 dim= 315 dual= 0 hull= 0

5 dim= 315 dual= 0 hull= 0

7 dim= 315 dual= 0 hull= 0

11 dim= 301 dual= 14 hull= 0

orbs no 6 of length 32

no of edges= 5040

valence= 32 girth= 3 diameter= 3

604800

1-(315, 32, 32) Design with

315 blocks

604800

2 dim= 188 dual= 127 hull= 28

3 dim= 315 dual= 0 hull= 0

5 dim= 315 dual= 0 hull= 0

7 dim= 315 dual= 0 hull= 0

11 dim= 301 dual= 14 hull= 0

> des5:

=Design<1,v|Setseq(orbs[5]^a2)>;

> des6:

=Design<1,v|Setseq(orbs[6]^a2)>;

>IsIsomorphic(des5,des6);

true

> bl:=orbs[5] join orbs[6];

> des56:=

Design<1,v|Setseq(bl^a2)>;

> des56;

1-(315, 64, 64) Design with

315 blocks

> #(AutomorphismGroup(des56));

1209600

---------------------------------

//J2 of degree 525

no. of orbs= 6

[ 1, 96, 192, 12, 192, 32 ]

degree= 525

orbs no 2 of length 96

no of edges= 25200

valence= 96 girth= 3 diameter= 2

1209600

1-(525, 96, 96) Design with

525 blocks

1209600

2 dim= 98 dual= 427 hull= 62

3 dim= 126 dual= 399 hull= 0

5 dim= 525 dual= 0 hull= 0

7 dim= 525 dual= 0 hull= 0

11 dim= 525 dual= 0 hull= 0

orbs no 3 of length 192

no of edges= 50400

valence= 192 girth= 3 diameter= 2

1209600

1-(525, 192, 192) Design with

525 blocks

1209600
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2 dim= 112 dual= 413 hull= 112

3 dim= 63 dual= 462 hull= 0

5 dim= 525 dual= 0 hull= 0

7 dim= 525 dual= 0 hull= 0

11 dim= 525 dual= 0 hull= 0

orbs no 4 of length 12

no of edges= 3150

valence= 12 girth= 3 diameter= 4

1209600

1-(525, 12, 12) Design with

525 blocks

1209600

2 dim= 364 dual= 161 hull= 0

3 dim= 260 dual= 265 hull= 134

5 dim= 365 dual= 160 hull= 90

7 dim= 365 dual= 160 hull= 36

11 dim= 365 dual= 160 hull= 0

orbs no 5 of length 192

no of edges= 50400

valence= 192 girth= 3 diameter= 2

1209600

1-(525, 192, 192) Design with

525 blocks

1209600

2 dim= 112 dual= 413 hull= 112

3 dim= 260 dual= 265 hull= 134

5 dim= 365 dual= 160 hull= 90

7 dim= 365 dual= 160 hull= 36

11 dim= 365 dual= 160 hull= 0

orbs no 6 of length 32

no of edges= 8400

valence= 32 girth= 3 diameter= 4

1209600

1-(525, 32, 32) Design with

525 blocks

1209600

2 dim= 160 dual= 365 hull= 0

3 dim= 462 dual= 63 hull= 0

5 dim= 525 dual= 0 hull= 0

7 dim= 525 dual= 0 hull= 0

11 dim= 525 dual= 0 hull= 0

> lo;

[ 1, 96, 192, 12, 192, 32 ]

> des3:=

Design<1,v|Setseq(orbs[3]^a2)>;

> des5:=

Design<1,v|Setseq(orbs[5]^a2)>;

> IsIsomorphic(des3,des5);

false

---------------------------------

//J2 of degree 840

no. of orbs= 7

[ 1, 180, 240, 20, 15, 360, 24 ]

degree= 840

orbs no 2 of length 180

no of edges= 75600

valence= 180 girth= 3 diameter= 2

1209600

1-(840, 180, 180) Design with

840 blocks

1209600

2 dim= 280 dual= 560 hull= 120

3 dim= 216 dual= 624 hull= 0

5 dim= 517 dual= 323 hull= 42

7 dim= 602 dual= 238 hull= 0

11 dim= 602 dual= 238 hull= 0

orbs no 3 of length 240

no of edges= 100800

valence= 240 girth= 3 diameter= 2

1209600

1-(840, 240, 240) Design with

840 blocks

1209600

2 dim= 120 dual= 720 hull= 120

3 dim= 378 dual= 462 hull= 90

5 dim= 692 dual= 148 hull= 42

7 dim= 714 dual= 126 hull= 0

11 dim= 714 dual= 126 hull= 0

orbs no 4 of length 20

no of edges= 8400

valence= 20 girth= 3 diameter= 4

1209600

1-(840, 20, 20) Design with

840 blocks

1209600

2 dim= 350 dual= 490 hull= 230

3 dim= 714 dual= 126 hull= 90

5 dim= 692 dual= 148 hull= 42

7 dim= 714 dual= 126 hull= 0

11 dim= 714 dual= 126 hull= 0

orbs no 5 of length 15



8 APPENDIX 16

no of edges= 6300

valence= 15 girth= 3 diameter= 4

1209600

1-(840, 15, 15) Design with

840 blocks

1209600

2 dim= 680 dual= 160 hull= 0

3 dim= 504 dual= 336 hull= 0

5 dim= 692 dual= 148 hull= 42

7 dim= 840 dual= 0 hull= 0

11 dim= 840 dual= 0 hull= 0

orbs no 6 of length 360

no of edges= 151200

valence= 360 girth= 3 diameter= 2

1209600

1-(840, 360, 360) Design with

840 blocks

1209600

2 dim= 350 dual= 490 hull= 266

3 dim= 216 dual= 624 hull= 0

5 dim= 307 dual= 533 hull= 132

7 dim= 455 dual= 385 hull= 0

11 dim= 455 dual= 385 hull= 0

orbs no 7 of length 24

no of edges= 10080

valence= 24 girth= 3 diameter= 3

1209600

1-(840, 24, 24) Design with

840 blocks

1209600

2 dim= 350 dual= 490 hull= 266

3 dim= 350 dual= 490 hull= 134

5 dim= 455 dual= 385 hull= 90

7 dim= 455 dual= 385 hull= 0

11 dim= 455 dual= 385 hull= 0

> bl:=orbs[1] join orbs[7];

> blox:=Setseq(bl^a2);

> #blox;

840

> des17:=Design<1,v|blox>;

> des17;

1-(840, 25, 25) Design with

840 blocks

>Order(AutomorphismGroup(des17));

1209600
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