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Abstract

Consider a two-station, heterogeneous parallel queueing system in which each station oper-

ates as an independent M/M/1 queue with its own infinite-capacity buffer. The input to the

system is a Poisson process that splits among the two stations according to a Bernoulli split-

ting mechanism. However, upon arrival, a strategic customer initially joins one of the queues

selectively and decides at subsequent arrival and departure epochs whether to jockey (or switch

queues) with the aim of reducing her own sojourn time. There is a holding cost per unit time,

and jockeying incurs a fixed nonnegative cost while placing the customer at the end of the other

queue. We examine individually optimal joining and jockeying policies that minimize the strate-

gic customer’s total expected discounted (or undiscounted) costs over finite and infinite time

horizons. The main results reveal that, if the strategic customer is in station 1 with ` customers

in front of her, and q1 and q2 customers in stations 1 and 2, respectively (excluding herself),

then the incentive to jockey increases as either ` increases or q2 decreases. Numerical examples

reveal that it may not be optimal to join, and/or jockey to, the station with the shortest queue

or the fastest server.
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1 Introduction

This paper examines a two-station, heterogeneous parallel queueing system in which each station

possesses a single server and an infinite-capacity buffer. Customers arrive to the system according

to a Poisson process with rate λ (λ > 0) and split among the two stations according to a Bernoulli

splitting mechanism, i.e., an arriving customer joins station i with probability λi/λ, i = 1, 2,

where λ = λ1 + λ2. Service times at station i are independent and identically distributed (i.i.d.)

exponential random variables with rate µi (µi > 0), and it is assumed that λi < µi for i = 1, 2 (i.e.,

both queueing stations are stable). Consider now a strategic customer who, upon arrival, must

decide which station to join initially and, once there, may decide to switch (or jockey) to the other

queue an indefinite number of times. Whenever the jockeying option is exercised, the strategic

customer must join the end of the other queue. Additionally, there is a fixed, bounded cost cij
(cij ≥ 0, j 6= i) associated with jockeying from station i to j, as well as a bounded cost per unit

time h (h ≥ 0) of being held in the system.

The queueing model is motivated by stochastic service systems in which a customer can fully

observe the system state – namely her position in the queue and the queue lengths and service

rates of all stations – and utilize this information to minimize the time spent in the system. A

quintessential example is that of an individual customer checking out of a supermarket. Once

shopping is completed, the customer must decide which waiting line to join initially. Subsequently,

while waiting to receive service, the customer may choose to join a different waiting line if it is

perceived that the waiting time can be reduced by switching lines. However, if the jockeying

option is taken, the customer must join the end of the other queue and forfeit her position in the

current queue. Other motivating examples are prevalent in the telecommunications setting. For

instance, Zhao and Grassman [22] and Xu and Zhao [20] (among others) described the jockeying

phenomenon in multi-beam satellite systems. In these systems, ground-based stations that are

organized in disjoint regions of the earth relay data packets to overhead satellites for processing

and/or transmission. The packets can join one of (possibly) several buffers to await processing by

the satellite, which uses multiple beams to transmit packets to other destinations. Packets can

be moved to buffers with shorter queues in an effort to reduce transmission delays and/or prevent

buffer overflow (in the case of finite-capacity buffers).

The study of queueing systems with jockeying has a long history dating back to the 1950s;

however, most prior work has focused on the performance analysis of parallel queueing stations in

which a queue joining and/or jockeying rule is assumed – the vast majority of existing models do

not prescribe either socially or individually optimal policies. One of the earliest papers dealing with

jockeying in a two-station, parallel system is due to Haight [7] who analyzed a system in which

arriving customers always join the shortest queue initially. The author then provides a steady

state analysis for two distinct cases: (1) when jockeying is not allowed; and (2) when jockeying is

allowed, but only for the customer at the end of the waiting line. In this case, jockeying only occurs

when the other line is shorter. Similar models involving the performance analysis of systems with

two (or more) parallel stations have appeared in the applied probability and operations research

literature. Some notable contributions are due to Kingman [12], Koenigsberg [13], Disney and

Mitchell [2], Gertsbakh [5], Elsayed and Bastani [4], Kao and Lin [11], Zhao and Grassman [21, 22],

Adan et al. [1] and, more recently, Tarabia [17]. The majority of these models consider two-station,
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parallel Markovian queueing stations wherein a customer is transferred from one queue to another

when the difference between the two queue lengths exceeds a certain threshold. Subsequently, the

steady state distribution of the number of customers in the system, and other standard performance

parameters, are derived.

The problem of determining which queue to join initially has been studied in some depth over

the past few decades. Weber [18] considered a queueing system with multiple identical servers, each

with its own queue. Customers arrive according to a general stochastic process, and upon arrival,

each customer is assigned to one of the queues. Once assigned, no jockeying is allowed. Weber

showed that, if the service times have a nondecreasing hazard rate, then the policy of assigning an

arriving customer to the shortest queue maximizes the number of customers served by a certain

time (a socially optimal consideration). Later, Whitt [19] illustrated by way of counterexamples

that the strategy of joining the shortest queue may be suboptimal for either social or individual

objectives if the service time condition of Weber [18] is not met. In fact, Whitt shows that joining

the longer queue can actually decrease the total expected sojourn time for an individual customer.

Glazer and Hassin [6] studied a multi-station queueing system with i.i.d. exponential service times

to which customers arrive according to a Poisson process. Upon arrival, the number of customers

in each station is unobservable, so an arriving customer must visit a station (without necessarily

joining the queue) to determine the number of customers present at that station. However, visiting

a station consumes time and incurs a certain cost. Once the customer decides to join a station,

switching stations is not permitted. Assuming the number of stations is large, the authors determine

the customer’s optimal search behavior that minimizes the total costs incurred. Haviv and Hassin

[8] consider a two-station Markovian system with homogeneous servers. Neither queue length is

observable to an arriving customer; however, information about which queue is shorter can be

purchased at a fixed cost. Informed customers join the shortest queue, and uninformed customers

(i.e., those who do not purchase information) join one of the queues at random. Information can be

acquired once, and only upon arrival. Customers (whether informed or uninformed) jockey from the

last position of one line to the end of the other line (without cost) whenever the difference between

two queue lengths reaches a given threshold. The customers’ costs include the cost of purchasing

information upon arrival and the holding cost in the system. Because the decision of one customer

influences the decisions of others, it is shown how to obtain Nash-equilibrium policies. Hassin

and Haviv [9] provide a comprehensive survey of equilibrium behavior of servers and customers in

queueing systems.

As for individually optimal policies, Mandelbaum and Yechiali [15] considered a strategic cus-

tomer seeking service at an M/G/1 queue. General (or non-strategic) customers join the system

immediately; however, a strategic customer chooses among three alternatives: (1) enter the system

(join); (2) leave the system (balk); or (3) wait outside of the system and observe. The strategic

customer incurs a cost associated with each action. If she enters or leaves the system, the decision

is final and no further actions are taken. If the strategic customer chooses to wait and observe,

another decision is made at the next service completion epoch. Assuming linear holding time

costs, the authors show that for any finite n-period horizon, the customer’s (individually) optimal

strategy is a three-region policy. Specifically, it is optimal for the strategic customer to enter a

short queue, balk from a large queue and wait when the queue size is intermediate. Necessary

and sufficient conditions for waiting are also provided. Hlynka et al. [10] examined a queueing
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system comprised of two heterogeneous, exponential servers with respective rates µ1 and µ2. The

input to the system is a renewal process, and no customer jockeying is allowed. General customers

join the shortest queue upon arrival, but a strategic customer, who cannot observe service rates,

may delay joining the system and instead choose to observe the system’s operation for some time.

The authors obtain sufficient conditions for which the strategic customer can reduce her expected

sojourn time by waiting rather than immediately joining the shortest queue. However, they do not

prescribe an optimal policy as was done in [15]. Lippman and Stidham [14] studied a single-server

Markovian queueing system with a state-dependent service rate, i.e., the service rate is µi when

there are i customers in the system, and µi is a bounded, non-decreasing, concave function of

i. Associated with each arriving customer is a nonnegative reward r, and rewards of successive

customers are i.i.d. random variables. The system is controlled by accepting or rejecting arriving

customers. An arriving customer receives the reward r immediately if accepted into the system

and receives nothing if rejected. An accepted customer joins the system and incurs a waiting cost

h per unit time until departure. Lippman and Stidham [14] established that under both the total

expected discounted and undiscounted reward criteria (over both finite and infinite horizons), the

individually optimal policy calls for the customer to enter the system whenever the socially optimal

policy does (i.e., individual and optimal policies coincide).

The literature related to the optimal control of parallel queueing stations with jockeying is

relatively sparse. Specifically, most contributions are focused on socially optimal policies, i.e., those

considering system-wide objectives. Most relevant to our work here, Xu and Zhao [20] investigated

dynamic routing and jockeying policies in a two-station parallel queueing system with the objective

of minimizing the total expected (holding plus jockeying) costs of the system, and established the

optimality of monotone threshold policies for routing and jockeying. In their model, a controller

makes routing and jockeying decisions, and they proved the optimality of a threshold routing policy,

i.e., it is optimal to route to station 2 if the number in station 2 is less than a nondecreasing function

of the number in station 1. The optimal jockeying policy is similarly a threshold policy. That is, if it

is optimal for the controller to move a job from one station to the other in a given state, then it must

also be optimal to move the job when the other station is less congested. The policy is symmetric

(i.e., it holds for whichever queue the job is located). Additionally, they proved that, under some

general conditions, these thresholds have finite asymptotes. Another model examining socially-

optimal policies is due to Down and Lewis [3] who considered an N -station, parallel queueing

system with independent arrivals streams at each queue. A controller may move customers from

one queue to another, and each time customers are moved, a fixed cost and a variable cost (that

depends on the number of customers moved) are incurred. They examined conditions for stability

and instability, and for stable systems it was shown that, for a two-station system, it is optimal to

store customers in the least-cost queue (under the long-run average cost criterion). Their model

is more general than that of Xu and Zhao [20] in that it considers multiple stations and general

arrival and service processes.

The primary objective of our work is to analyze the optimal, dynamic behavior of an individual,

strategic customer who seeks service at a two-station, parallel queueing system. To that end, we

present a classical Markov decision process (MDP) model in which, at each arrival and departure

epoch of either station, the strategic customer has the option of either remaining in the current

queue or jockeying to the other queue. Within the MDP framework, we additionally characterize
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the optimal joining policy for the strategic customer at the time of arrival to the system. The

objective is to minimize the total expected discounted (or undiscounted) jockeying and holding

costs over both finite and infinite time horizons. The main contributions of our work are as follows.

First, we prove that, given the two queue lengths, there exists a threshold number of customers

ahead of the strategic customer above which it is optimal to jockey to the other station. Likewise,

there exists a threshold number of customers in the other queue below which it is optimal to jockey.

For both cases, the monotonicity of the thresholds is established. Second, we show that the joining

policy is also a monotone threshold policy, namely that for each number of customers in station 2,

there exists a threshold number of customers in station 1 above which it is optimal to join station

2. Interestingly, numerical results reveal that, for individual optimization, it may not be optimal

to join, and/or jockey to, the station with the shortest queue or the fastest server. Finally, we

establish that the optimal joining and jockeying policies are valid under the total (undiscounted)

cost criterion for both finite and infinite time horizons.

The remainder of the paper is organized as follows. Section 2 provides a detailed description of

the queueing model, and Section 3 presents the Markov decision process model. In Section 4, we

establish the optimality of threshold jockeying and joining policies, as well as the monotonicity of the

thresholds. Section 5 demonstrates that the same results are valid under the total (undiscounted)

cost criterion over an infinite horizon. Finally, in Section 6 we illustrate the main results by way

of two numerical examples that reveal interesting insights, namely that it may not be optimal join,

and/or jockey to, the station with the shortest queue or the fastest server.

2 Queueing Model Description

Consider a queueing system comprised of two parallel, heterogeneous stations, each with its own

dedicated infinite waiting room. External customers arrive to the system according to a Poisson

process with rate λ (λ > 0), and customers can be processed at either station. The primary arrival

stream splits according to a Bernoulli splitting mechanism, i.e., there exist positive rates λ1 and

λ2 such that λ = λ1 + λ2, and an arbitrary arrival elects to join station i with probability λi/λ,

i = 1, 2. The service times at station i are i.i.d. exponential random variables with rate parameter

µi (µi > 0); therefore, each station operates as an M/M/1 queue in which customers are served in

the order that they arrive to the system. Figure 1 depicts the two-station, parallel system.

Figure 1: Graphical depiction of the two-station queueing system.

Consider now a strategic customer who joins one of the queues selectively at the time of arrival.

Subsequently, at the arrival and departure epochs of either queue, the strategic customer may

choose to jockey (or join the other queue) at a nonnegative fixed cost; however, the customer must
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join the end of the other queue if the jockeying option is selected. If the customer is currently in

station i, then the cost of jockeying to station j (j 6= i) is cij (cij ≥ 0). (It is assumed that the time

needed to jockey is negligible.) In addition to the fixed jockeying cost, the customer also incurs a

holding cost h (h ≥ 0) per unit of time spent in the system (either in queue or in service). Both

cij and h are bounded. It is assumed that preemption is allowed, i.e., if the strategic customer is

currently being served, the customer may choose to stop service and join the end of the other queue.

The terminal cost (whether service is completed or not) is assumed to be zero. The objective is

to determine optimal joining and jockeying policies that minimize the strategic customer’s total

expected discounted holding and jockeying costs. Additionally, we extend the results to the total

(undiscounted) cost criterion. Considered are both finite and infinite time horizons. Section 3

presents the main problem formulation, as well as the optimality equations. Our main results are

stated in Section 4.

3 Discounted Markov Decision Process Model

In this section, we first analyze the problem of optimally jockeying between the two stations

and then use this framework to decide which line the strategic customer should initially join upon

arriving to the system. To this end, we formulate the control problem as a Markov decision process

(MDP) model. The majority of the results will be developed under the discounted cost criterion,

and these will be shown to carry over to the total (undiscounted) cost criterion as well.

The state of the system at time t is the vector X(t) = (Q1(t), Q2(t), L(t)), where Qi(t) denotes

the number of customers in station i at time t (in the queue or being served and excluding the

strategic customer), and L(t) denotes the number of customers ahead of the strategic customer,

irrespective of the station currently occupied by the strategic customer. (To distinguish the strategic

customer’s location, we later introduce separate notation for the value function corresponding to

each case.) Denote the state space of {X(t) : t ≥ 0} by the denumerable set S. Because arrivals

occur according to a Poisson process, and service times are i.i.d. exponential random variables at

both stations, it is clear that {X(t) : t ≥ 0} is a continuous-time Markov chain on S. By employing

the method of uniformization, we convert the continuous-time model to an equivalent discrete-time

MDP model to solve the problem of minimizing the strategic customer’s discounted holding and

jockeying costs over both finite and infinite horizons. The decision epochs are customer arrival

and departure times (service completion epochs) in either queue, and the time period between any

two consecutive decision epochs is referred to as a period. Specifically, period n refers to the time

interval between decision epochs n− 1 and n. At decision epochs, the strategic customer observes

a state x = (q1, q2, `) ∈ S, where qi is the total number of customers in station i, including any

in service but excluding the so-called strategic customer, and ` is the number of customers ahead

of the strategic customer in her current queue. Obviously, it must be the case that ` ≤ qi if the

strategic customer is currently in queue i.

The strategic customer, whether in station 1 or station 2, can choose at each arrival and

departure epoch (of either station) to either remain in the current station or jockey to the other

station. Denote the finite action set by A ≡ {0, 1}, where 0 means ‘remain in the current queue’

and 1 means ‘jockey to the other queue’. Recall that, if the decision to jockey is made, the customer

must join the end of the line in the other station. The total jockeying (cij) and holding (h) costs
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are continuously discounted at rate α (α > 0) over the time horizon. The objective is to determine

optimal joining and jockeying strategies that minimize the strategic customer’s total expected

discounted jockeying and holding costs over finite and infinite time horizons.

We now define the cost functions. Starting in state (q1, q2, `), let Vn (q1, q2, `) be the minimal

total expected discounted cost with n periods remaining in the time horizon when the strategic

customer is in station 1. The initial condition is V0 (q1, q2, `) = 0. Moreover, when the customer

is in station 1, let Vn [(q1, q2, `) , a] be the minimal total expected n-period discounted cost with

initial state (q1, q2, `) when action a ∈ A is taken. To help facilitate our proofs later, if the strategic

customer is in station 2, let V
′
n (q1, q2, `) be the minimal total expected n-period discounted cost

starting in state (q1, q2, `), where in this case ` refers to the number of customers ahead of the

strategic customer in station 2. Additionally, let V
′
n[(q1, q2, `) , a] be defined in a manner similar to

Vn[(q1, q2, `) , a]. For the sake of convenience, let Λ = µ1 + µ2 + λ1 + λ2 +α and y+ = max {y, 0} is

the positive part of y ∈ R. Then for (q1, q2, `) ∈ S, the dynamic programming optimality equations

are given by

Vn (q1, q2, `) = min
a∈A

{Vn [(q1, q2, `) , a]} , (1)

V
′
n (q1, q2, `) = min

a∈A
{V ′

n [(q1, q2, `) , a]}, (2)

where for ` = 0 and a = 0,

Vn [(q1, q2, 0) , 0] = Λ−1
[
h+ µ2Vn−1

(
q1, (q2 − 1)+ , 0

)
+ λ1Vn−1 (q1 + 1, q2, 0)

+λ2Vn−1 (q1, q2 + 1, 0)] , (3)

V
′
n [(q1, q2, 0) , 0] = Λ−1

[
h+ µ1V

′
n−1

(
(q1 − 1)+ , q2, 0

)
+ λ1V

′
n−1 (q1 + 1, q2, 0)

+λ2V
′
n−1 (q1, q2 + 1, 0)

]
, (4)

for ` ≥ 1 and a = 0,

Vn [(q1, q2, `) , 0] = Λ−1
[
h+ µ1Vn−1 (q1 − 1, q2, `− 1) + µ2Vn−1

(
q1, (q2 − 1)+ , `

)

+ λ1Vn−1 (q1 + 1, q2, `) + λ2Vn−1 (q1, q2 + 1, `)] , (5)

V
′
n [(q1, q2, `) , 0] = Λ−1

[
h+ µ1V

′
n−1

(
(q1 − 1)+ , q2, `

)
+ µ2V

′
n−1 (q1, q2 − 1, `− 1)

+λ1V
′
n−1 (q1 + 1, q2, `) + λ2V

′
n−1 (q1, q2 + 1, `)

]
, (6)

and for ` ≥ 0 and a = 1,

Vn [(q1, q2, `) , 1] = c12 + V
′
n [(q1, q2, q2) , 0] , (7)

V
′
n [(q1, q2, `) , 1] = c21 + Vn [(q1, q2, q1) , 0] . (8)

Equations (4), (6) and (8) correspond to equations (3), (5) and (7) for the states in which the

strategic customer is in station 2. Clearly, Vn is a nonnegative function and, using an induction
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argument, it can be shown that Vn (q1, q2, `) is nondecreasing in q1, q2 and `. For convenience, we

additionally introduce the following incremental cost of Vn (q1, q2, `):

∆Vn (q1, q2, `) = Vn (q1, q2 + 1, `)− Vn (q1, q2, `) .

That is, ∆Vn represents the incremental cost of adding one customer to station 2 when the strategic

customer is in station 1.

Finally, define V (q1, q2, `) and V
′
(q1, q2, `) as the infinite-period costs corresponding to Vn and

V
′
n, respectively. Because V0(q1, q2, `) = V

′
0 (q1, q2, `) = 0, by Proposition 3.1 of Ross [16, Chapter

II, Section 3], we can assert that

V (q1, q2, `) = lim
n→∞Vn(q1, q2, `),

V
′
(q1, q2, `) = lim

n→∞V
′
n(q1, q2, `).

Therefore, the results in Section 4 that hold for Vn and V
′
n also hold for V and V

′
.

The next section sets out to establish the optimality of threshold jockeying and joining policies.

That is, it will be proved that the strategic customers optimal behavior is dictated by monotone

thresholds that are a function of the number of customers ahead of the strategic customer in the

current queue, and the number of customers present in the other station.

4 Structure of the Optimal Policy

This section aims to characterize the optimal jockeying (and joining) policies by analyzing

the optimal cost functions Vn(q1, q2, `) and V
′
n (q1, q2, `). Specifically, Lemma 1 asserts several

inequalities that are needed to establish the existence and monotonicity of an optimal threshold-

type policy.

Lemma 1 For all n ∈ N0, q1 ≥ 0, q2 ≥ 0, and ` ≥ 0, the following inequalities hold simultaneously:

∆Vn (q1, q2, `) ≤ ∆Vn (q1, q2, `+ 1) , (9)

∆Vn (q1, q2, q1) ≤ V
′
n (q1, q2 + 1, q2 + 1)− V

′
n (q1, q2, q2) , (10)

∆Vn (q1, q2, `) ≤ V
′
n (q1, q2 + 1, q2 + 1)− V

′
n (q1, q2, q2) , (11)

V
′
n (q1, q2 + 1, `+ 2)− V

′
n (q1, q2, `+ 1) ≤ V

′
n (q1, q2 + 1, `+ 1)− V

′
n (q1, q2, `) , (12)

∆Vn (q1, q2, q1) ≤ V
′
n (q1, q2 + 1, `+ 1)− V

′
n (q1, q2, `) , (13)

∆Vn (q1, q2 + 1, `) ≤ V
′
n (q1, q2 + 2, q2 + 1)− V

′
n (q1, q2 + 1, q2) , (14)

Vn+1 [(q1, q2, `) , 1] − Vn+1 [(q1, q2, `) , 0] ≤ Vn+1 [(q1, q2 + 1, `) , 1] − Vn+1 [(q1, q2 + 1, `) , 0] , (15)

V
′
n+1 [(q1, q2 + 1, `+ 1) , 1]− V

′
n+1 [(q1, q2 + 1, `+ 1) , 0]

≤ V
′
n+1 [(q1, q2, `) , 1]− V

′
n+1 [(q1, q2, `) , 0] , (16)

Vn+1 [(q1, q2, `+ 1) , 1] − Vn+1 [(q1, q2, `+ 1) , 0] ≤ Vn+1 [(q1, q2, `) , 1] − Vn+1 [(q1, q2, `) , 0] . (17)
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The proof of Lemma 1 is provided in the Appendix. Some useful insights are provided by a few

of these inequalities. Let us first consider inequality (9), which asserts the supermodularity of

Vn (q1, q2, `) with respect to (q2, `). Suppose the strategic customer is in station 1 at the arrival

time of a new customer in station 2. Then (9) asserts that the marginal increase in cost induced

by the new arrival in station 2 is nondecreasing in the number of customers ahead of the strategic

customer (`). Furthermore, inequalities (15) and (17) show that Vn [(q1, q2, `) , 0]− Vn [(q1, q2, `) , 1]

is nonincreasing in q2 and nondecreasing in `. These facts will help establish that jockeying is only

optimal if the other queue length is sufficiently short, or if the number of customers ahead of the

strategic customer is sufficiently large. Specifically, it can be inferred from (15) and (17) that, if

the strategic customer is in station 1 with ` customers in front of her, and q1 and q2 customers in

stations 1 and 2, respectively (excluding herself), then the incentive to jockey from station 1 to

2 increases, all else being equal, as either ` increases or q2 decreases. Theorem 1 formalizes these

assertions.

Theorem 1 Suppose the strategic customer is currently in station 1. Then the optimal jockeying

policy is one of monotone thresholds. That is,

(i) For given values of q1 and `, there exists a number q∗(q1, `) such that if q2 < q∗(q1, `), then it

is optimal for the customer to jockey to station 2. Otherwise, the customer should remain in

station 1. Furthermore, the threshold q∗(q1, `) is nondecreasing in `.

(ii) For given values of q1 and q2, there exists a number `∗(q1, q2) such that if ` ≥ `∗(q1, q2), then
it is optimal for the customer to jockey to station 2. Otherwise, the customer should remain

in station 1. Furthermore, the threshold `∗(q1, q2) is nondecreasing in q2.

Proof. To prove part (i), define

q∗(q1, `) = min
q2∈N0

{Vn [(q1, q2, `) , 0]− Vn [(q1, q2, `) , 1] ≤ 0} (18)

If the set defined on the right-hand side of (18) is empty, then set q∗(q1, `) = −∞. By the definition

of q∗(q1, `), for any state (q1, q2, `) with q2 < q∗(q1, `),

Vn [(q1, q2, `) , 0]− Vn [(q1, q2, `) , 1] > 0,

i.e., it is optimal to jockey to station 2. Furthermore, using inequality (15), it is seen that if

q2 ≥ q∗(q1, `), then

Vn [(q1, q2, `) , 0]− Vn [(q1, q2, `) , 1] ≤ Vn [(q1, q
∗(q1, `), `) , 0]− Vn [(q1, q

∗(q1, `), `) , 1]

≤ 0.

Thus, the optimal jockeying policy is a threshold policy with respect to the number of customers in

station 2. It remains to prove that the threshold is nondecreasing in `. Based on (17), it is evident

that

Vn [(q1, q
∗(q1, `+ 1), `) , 0]− Vn [(q1, q

∗(q1, `+ 1), `) , 1]

≤ Vn [(q1, q
∗(q1, `+ 1), `+ 1) , 0]− Vn [(q1, q

∗(q1, `+ 1), `+ 1) , 1]

≤ 0.

9



Therefore, we conclude that q∗(q1, `) ≤ q∗(q1, `+ 1), i.e., the threshold is nondecreasing in `.

Next, to prove (ii), define

`∗(q1, q2) = min
`∈N0

{Vn [(q1, q2, `) , 0]− Vn [(q1, q2, `) , 1] > 0} . (19)

If the set defined on the right-hand side of (19) is empty, then set `∗(q1, q2) = +∞. It follows from

the definition of `∗(q1, q2) that, for any state (q1, q2, `) with ` < `∗(q1, q2),

Vn [(q1, q2, `) , 1]− Vn [(q1, q2, `) , 0] ≥ 0,

i.e., it is optimal to remain in station 1. Conversely, if ` ≥ `∗(q1, q2), then by (17) and (19), it

follows that

Vn [(q1, q2, `) , 1]− Vn [(q1, q2, `) , 0] ≤ Vn [(q1, q2, `
∗(q1, q2)) , 1]− Vn [(q1, q2, `

∗(q1, q2)) , 0]

< 0,

i.e., it is optimal to jockey to station 2. To show that `∗(q1, q2) is nondecreasing in q2, note that

by inequality (15) and the definition of `∗(q1, q2 + 1), we have

Vn [(q1, q2, `
∗(q1, q2 + 1)) , 1]− Vn [(q1, q2, `

∗(q1, q2 + 1)) , 0]

≤ Vn [(q1, q2 + 1, `∗(q1, q2 + 1)) , 1]− Vn [(q1, q2 + 1, `∗(q1, q2 + 1)) , 0]

< 0.

By the definition of `∗(q1, q2), it follows that `∗(q1, q2) ≤ `∗(q1, q2 + 1).

Theorem 1 characterizes the structure of the optimal jockeying policy; however, it does not

prescribe the optimal joining policy for the strategic customer. Specifically, which of the two queues

should the customer join initially? Intuitively, if joining station 1 is preferred to joining queue 2,

then joining station 1 is also preferred if the number in station 1 is smaller (or the number in station

2 is larger). Suppose that upon arrival of the strategic customer, the number in stations 1 and 2 are

q1 and q2, respectively. If the customer joins station 1 or 2 and then follows the optimal jockeying

policy of Theorem 1, the expected costs are, Vn [(q1, q2, q1) , 0] and V
′
n [(q1, q2, q2) , 0], respectively.

Consequently, the customer joins station 1 if

Vn [(q1, q2, q1) , 0] ≤ V
′
n [(q1, q2, q2) , 0] ;

otherwise, the customer joins station 2. According to (7), we have

Vn [(q1, q2, q1) , 0]− V
′
n [(q1, q2, q2) , 0] = Vn [(q1, q2, q1) , 0]− Vn [(q1, q2, q1) , 1] + c12. (20)

On the basis of (15), and due to the problem’s symmetry, equation (20) is nonincreasing in q2 and

nondecreasing in q1. Using an approach similar to that used in the proof of Theorem 1, we next

establish the optimality of a threshold-type joining policy. The result is formalized in Theorem 2.

Theorem 2 Suppose that, upon arrival, the strategic customer observes q1 and q2 customers in

stations 1 and 2, respectively. Then, for a given q2, there is a number ε(q2) such that if q1 ≥ ε(q2),

it is optimal to initially join station 2; otherwise, the customer should join station 1. Moreover,

the threshold ε(q2) is monotone nondecreasing in q2.

10



Before concluding this section, we pause here briefly to comment on models involving three

or more parallel stations. For such cases, we conjecture that the optimal jockeying and joining

policies will mirror those described in Theorems 1 and 2, respectively. Consider the case of three

parallel stations. Let qi denote the number of customers in station i, excluding the strategic

customer, and suppose the strategic customer is located in station 1. The state is described by the

four-dimensional vector (q1, q2, q3, `). We conjecture that, for given values (q1, q3, `), there exists a

number q∗2(q1, q3, `) such that jockeying to station 2 is optimal if and only if its queue length is below

this number. Similarly, for given values (q1, q2, `), there exists a number q∗3(q1, q2, `) so that it is

optimal to jockey to station 3 if its queue length is below this threshold. With regard to the number

of customers ahead of the strategic customer, we conjecture that, for given values (q1, q2, q3), there

exists a number `∗(q1, q2, q3) such that jockeying is optimal if and only if ` ≥ `∗(q1, q2, q3). For

joining, we conjecture that it is optimal to initially join station j if and only if qj ≤ ε(qi, qk) for

i, k 6= j. The verification of these conjectures is left for future work.

Finally, we conclude this section by summarizing insights gained from Lemma 1 and Theorems

1 and 2. If the strategic customer is in station 1, Lemma 1 characterizes how the strategic cus-

tomer should react to arrivals or departures at station 2. Inequality (15) asserts that the arrival

(departure) of a customer at station 2 may diminish (enhance) the strategic customer’s incentive

to jockey to station 2. Furthermore, by inequality (16), service completions at station 1 incentivize

the strategic customer to remain in station 1. However, these results do not characterize how the

strategic customer should behave when new customers join station 1 (behind the customer). Intu-

itively, one expects the strategic customer to be indifferent to these arrivals. On the other hand,

it may be the case that the strategic customer is interested in maintaining the current position in

station 1 rather than forfeiting this position by jockeying to station 2. The current model does not

provide a definitive answer for the strategic customer’s behavior under these circumstances, so it

will be instructive to pursue such a characterization in future work. The next section demonstrates

that the optimal policies described here carry over to the total cost criterion in a natural way.

5 Total (Undiscounted) Cost Criterion

Here, we discuss the structure of the optimal jockeying and joining policies under the total cost

criterion (i.e., when the costs are not discounted). For the sake of brevity, we provide only a sketch

of the analysis. This section emphasizes the dependence of the optimal cost functions Vn and V
′
n

on the discount factor α by writing V α
n (q1, q2, `) and V

′α
n (q1, q2, `), respectively. Now, denote by

V 0
n (q1, q2, `) (respectively V

′0
n (q1, q2, `)), the minimum total expected cost with n periods remaining

in the time horizon (cf. Ross [16, Chapter III] for a formal definition). It is clear that, for each

n ≥ 0, V 0
n (q1, q2, `) and V

′0
n (q1, q2, `) are well-defined with α = 0 in equations (1) through (8).

Moreover, the proof of Lemma 1 is valid with α = 0; therefore, Theorems 1 and 2 are valid under

the total expected cost criterion. Additionally, if we consider the infinite-horizon version of the

problem under the total expected cost criterion, an optimal stationary policy exists by Theorems

1.1 and 1.2 of Ross [16, Chapter III, Section 1] since the jockeying and holding costs (cij and h,

respectively) are non-negative and bounded. Denoting the infinite-horizon optimal cost function

11



by V 0(q1, q2, `), it follows that for each (q1, q2, `) ∈ S,

V 0(q1, q2, `) = lim
n→∞V 0

n (q1, q2, `) and V
′0(q1, q2, `) = lim

n→∞V
′0
n (q1, q2, `)

by Theorem 4.2 of Ross [16, Chapter III, Section 4]. Hence, the monotone threshold structures

proved in Theorems 1 and 2 hold under the total expected cost criterion over an infinite horizon as

well.

6 Numerical Examples

This section illustrates the main results of Section 4 and reveals that individually optimal join-

ing and/or jockeying policies may be somewhat counterintuitive. Specifically, for certain parameter

values, it may not be optimal for the strategic customer to join the shortest queue upon arrival, or

to join the station with the fastest server.

Example 1. Consider a two-station, parallel queueing system in which customers arrive ac-

cording to a Poisson process with rate λ = 8. Normal customers join station 1 (station 2) with

probability 0.5 (0.5), so the arrival rate to station 1 (station 2) is λ1 = 4 (λ2 = 4). Station 1

(Station 2) serves customers in an exponentially distributed amount of time with parameter µ1 = 8

(µ2 = 7.5). Therefore, the traffic intensities at stations 1 and 2 are ρ1 = 0.500 and ρ2 = 0.533,

respectively. The holding cost per unit time is h = 1, and the jockeying costs are, respectively,

c12 = 0.15 and c21 = 0.002. The discount factor is α = 1, and to illustrate the optimal jockeying

policy, we fix the number ahead of the strategic customer at ` = 9.

Figure 2 graphically depicts the optimal joining policy for the strategic customer. In this

example, if the strategic customer arrives to find station 1 empty, then this station should be

joined, irrespective of the number in station 2. However, the policy is not intuitive for some states

in which q1 > 0. For instance, when q1 = 4 and q2 = 5, it is optimal for the strategic customer to

initially join station 2, despite the fact that it is more congested and has a slower server. Therefore,

when (q1, q2) = (4, 5), we observe that joining the station with the longer queue and the slower

server is optimal. This may be attributed to the fact that the fixed cost of jockeying from station 2

to station 1 (c21) is relatively small as compared to the holding cost rate h and the jockeying cost

c12.
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Figure 2: Optimal joining policy in Example 1.

Figure 3 illustrates the optimal jockeying policy when the strategic customer is in station 1 and

` = 9. We fix the number of customers ahead of the strategic customer in order to graphically depict

the optimal jockeying policy in two dimensions; hence, values of q1 less than 9 are not displayed.

Given that the strategic customer is in station 1 with ` = 9 customers ahead of her, she should

jockey to station 2 if q2 ≤ 2. The optimal policy in this example reveals that the incentive to jockey

from station 1 to station 2 is not strong. This may be the case because: (a) jockeying from station

1 to 2 is relatively costly, and (b) station 1 possesses a faster server; therefore, switching to station

2 is not justified unless its queue length is relatively small.
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Figure 3: Optimal jockeying policy in Example 1 (` = 9).

Example 2. Now consider the same system with Poisson arrival rate λ = 14. Arriving customers

join station 1 (station 2) with probability 5/14 (9/14), so the corresponding arrival rate is λ1 = 5

(λ2 = 9). The station 1 (station 2) service rate is µ1 = 20 (µ2 = 10); therefore, the traffic intensities

at stations 1 and 2 are ρ1 = 0.25 and ρ2 = 0.90, respectively. The holding cost per unit time is

h = 1, and the jockeying costs are c12 = 0.005 and c21 = 0.001. The discount factor is α = 1, and

we fix ` = 12 to illustrate the jockeying policy in Figure 5.
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Figure 4: Optimal joining policy in Example 2.

Figure 4 graphically depicts the optimal joining policy for the strategic customer. As in the

first example, it is optimal to join station 1 if it is empty upon arrival, irrespective of the number of

customers in station 2. However, it may be optimal to join station 1 even when it is more congested

than station 2, e.g. when (q1, q2) = (6, 4). This behavior may be attributed to the fact that the

service rate in station 1 is twice that of station 2 and the holding cost is relatively high.

Finally, the optimal jockeying policy of Example 2 is illustrated in Figure 5. It is interesting to

note that, when ` = 12, the strategic customer should always jockey to station 2 if q2 ≤ 4, despite

the fact that µ1 = 2µ2. However, if the number in station 2 is at least as high as 7, then the

strategic customer is better off maintaining her current position in station 1. This example serves

to illustrate the point that it may not be optimal to remain at the station with the fastest server

if the other queue length is sufficiently short.
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Figure 5: Optimal jockeying policy in Example 2 (` = 12).
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Appendix: Proof of Lemma 1

Before proceeding to the proof of Lemma 1, we first state Lemma 2, which will be used in the

proof that follows.

Lemma 2 If a1, a2, b1, b2 ∈ R and a2 − a1 ≤ b2 − b1, then,

(a2 ∧ b2)− (a1 ∧ b1) ≤ b2 − b1,

where a ∧ b = min{a, b}.
Proof. (Lemma 1). The lemma will be proved using an induction argument. First note that

inequalities (9)–(17) certainly hold for n = 0. For the induction hypothesis, assume they hold for

some n− 1 > 0. To prove (9), by equation (1), we need to establish that

min {Vn [(q1, q2 + 1, `) , 0] , Vn [(q1, q2 + 1, `) , 1]} −min {Vn [(q1, q2, `) , 0] , Vn [(q1, q2, `) , 1]}
≤ min {Vn [(q1, q2 + 1, `+ 1) , 0] , Vn [(q1, q2 + 1, `+ 1) , 1]}

−min {Vn [(q1, q2, `+ 1) , 0] , Vn [(q1, q2, `+ 1) , 1]} (21)

We focus on combinations of optimal actions in the right-hand side (r.h.s.) of inequality (21).

Specifically, an optimal combination of the form (a, b) implies that action a is optimal in the

first minimum on the r.h.s., and action b is optimal in the second minimum. For example,

if the optimal combination on the r.h.s. of (21) is (0, 0), then the minimum in the first ex-

pression is Vn [(q1, q2 + 1, `+ 1) , 0], and the minimum in the second expression of the r.h.s. is

Vn [(q1, q2, `+ 1) , 0]. We employ this convention throughout the remainder of the proof.

Case (9a): The optimal combination of the r.h.s. is (0, 0). By the induction hypothesis for (17),

the optimal combination of the left-hand side (l.h.s.) of inequality (21) is (0, 0). By expanding

Vn [(q1, q2 + 1, `) , 0], Vn [(q1, q2, `) , 0], Vn [(q1, q2 + 1, `+ 1) , 0], and Vn [(q1, q2, `+ 1) , 0] using equa-

tions (3) and (5), and applying the induction hypothesis for (9), it follows that inequality (21) holds

for this case.

Case (9b): The optimal combination of the r.h.s. is (0, 1). Using the induction hypothesis for

(17), the optimal combination of the l.h.s. could be (0, 0) or (0, 1). By the induction hypothesis on

(9), it is seen that

Vn [(q1, q2 + 1, `) , 0]− Vn [(q1, q2, `) , 0] ≤ Vn [(q1, q2 + 1, `+ 1) , 0]− Vn [(q1, q2, `+ 1) , 0]

≤ Vn [(q1, q2 + 1, `+ 1) , 0]−min {Vn [(q1, q2, `+ 1) , 0] , Vn [(q1, q2, `+ 1) , 1]}
≤ Vn [(q1, q2 + 1, `+ 1) , 0]− Vn [(q1, q2, `+ 1) , 1] , (22)

and it follows from (7), and the fact that Vn [(q1, q2 + 1, `) , 0] is nondecreasing in `, that

Vn [(q1, q2 + 1, `) , 0]− Vn [(q1, q2, `) , 1] ≤ Vn [(q1, q2 + 1, `+ 1) , 0]− Vn [(q1, q2, `+ 1) , 1] . (23)

Combining inequalities (22) and (23), we conclude that

Vn [(q1, q2 + 1, `) , 0]−min {Vn [(q1, q2, `) , 0] , Vn [(q1, q2, `) , 1]}
≤ Vn [(q1, q2 + 1, `+ 1) , 0]− Vn [(q1, q2, `+ 1) , 1] .
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Case (9c): The optimal combination of the r.h.s. is (1, 1). Using Lemma 2 and the induction

hypothesis for inequality (15), we have

min {Vn [(q1, q2 + 1, `) , 0] , Vn [(q1, q2 + 1, `) , 1]} −min {Vn [(q1, q2, `) , 0] , Vn [(q1, q2, `) , 1]}
≤ Vn [(q1, q2 + 1, `) , 1]− Vn [(q1, q2, `) , 1]

= Vn [(q1, q2 + 1, `+ 1) , 1]− Vn [(q1, q2, `+ 1) , 1] ,

where the last equality follows from (7).

Case (9d): The optimal combination of the r.h.s. is (1, 0). This combination is not feasible by

the induction hypothesis of (15). Therefore, the proof of inequality (9) is hereby complete.

Next, to establish inequality (10), it must be shown by equations (1) and (2) that

min {Vn [(q1, q2 + 1, q1) , 0] , Vn [(q1, q2 + 1, q1) , 1]} −min {Vn [(q1, q2, q1) , 0] , Vn [(q1, q2, q1) , 1]}
≤ min

{
V

′
n [(q1, q2 + 1, q2 + 1) , 0] , V

′
n [(q1, q2 + 1, q2 + 1) , 1]

}

−min
{
V

′
n [(q1, q2, q2) , 0] , V

′
n [(q1, q2, q2) , 1]

}
. (24)

Similar to the proof of inequality (21), we examine optimal combinations on the r.h.s of (24).

Case (10a): The optimal combination of the r.h.s. is (0,0). By the induction hypothesis for (15)

and Lemma 2, we have

min {Vn [(q1, q2 + 1, q1) , 0] , Vn [(q1, q2 + 1, q1) , 1]} −min {Vn [(q1, q2, q1) , 0] , Vn [(q1, q2, q1) , 1]}
≤ Vn [(q1, q2 + 1, q1) , 1]− Vn [(q1, q2, q1) , 1]

= V
′
n [(q1, q2 + 1, q2 + 1) , 0]− V

′
n [(q1, q2, q2) , 0] ,

where the last equality follows from (7).

Case (10b): The optimal combination of the r.h.s. is (0,1). Such a combination is not feasible

since, by the induction hypothesis for (16),

V
′
n [(q1, q2 + 1, q2 + 1) , 0] − V

′
n [(q1, q2 + 1, q2 + 1) , 1] ≥ V

′
n [(q1, q2, q2) , 0] − V

′
n [(q1, q2, q2) , 1] .

Case (10c): The optimal combination of the r.h.s. is (1,1). As a consequence of equations (7) and

(8), and the fact that the jockeying costs c12 and c21 are non-negative, the optimal combination of

the l.h.s. of inequality (24) must be (0,0). By (8), it follows that

Vn [(q1, q2 + 1, q1) , 0]− Vn [(q1, q2, q1) , 0]

=
(
V

′
n [(q1, q2 + 1, q2 + 1) , 1]− c21

)
−

(
V

′
n [(q1, q2, q2) , 1]− c21

)

= V
′
n [(q1, q2 + 1, q2 + 1) , 1]− V

′
n [(q1, q2, q2) , 1] .

16



Case (10d): The optimal combination of the r.h.s. is (1,0). By equations (7) and (8), the optimal

combination of the l.h.s of inequality (24) could be (0, 0) or (0, 1). Moreover, it follows from (8)

that

Vn [(q1, q2 + 1, q1) , 0]− Vn [(q1, q2, q1) , 0] = V
′
n [(q1, q2 + 1, q2 + 1) , 1]− V

′
n [(q1, q2, q2) , 1]

≤ V
′
n [(q1, q2 + 1, q2 + 1) , 1]− V

′
n [(q1, q2, q2) , 0] , (25)

and

Vn [(q1, q2 + 1, q1) , 0]− Vn [(q1, q2, q1) , 1]

=
(
V

′
n [(q1, q2 + 1, q2 + 1) , 1]− c21

)
−

(
V

′
n [(q1, q2, q2) , 0] + c12

)

≤ V
′
n [(q1, q2 + 1, q2 + 1) , 1]− V

′
n [(q1, q2, q2) , 0] , (26)

where the last inequality follows from the fact that jockeying costs are non-negative. Inequalities

(25) and (26) imply that

Vn [(q1, q2 + 1, q1) , 0]−min {Vn [(q1, q2, q1) , 0] , Vn [(q1, q2, q1) , 1]}
≤ V

′
n [(q1, q2 + 1, q2 + 1) , 1]− V

′
n [(q1, q2, q2) , 0] ,

and thus, inequality (10) is established.

We now establish inequality (11). By inequality (9), and using the fact that ` ≤ q1, it follows

that

∆Vn (q1, q2, `) ≤ ∆Vn (q1, q2, q1) , (27)

and by inequality (10), it follows that

∆Vn (q1, q2, q1) ≤ V
′
n (q1, q2 + 1, q2 + 1)− V

′
n (q1, q2, q2) . (28)

The result follows immediately by comparing inequalities (27) and (28).

To prove inequality (12), by equation (2), it must be shown that

min
{
V

′
n [(q1, q2 + 1, `+ 2) , 0] , V

′
n [(q1, q2 + 1, `+ 2) , 1]

}

−min
{
V

′
n [(q1, q2, `+ 1) , 0] , V

′
n [(q1, q2, `+ 1) , 1]

}

≤ min
{
V

′
n [(q1, q2 + 1, `+ 1) , 0] , V

′
n [(q1, q2 + 1, `+ 1) , 1]

}

−min
{
V

′
n [(q1, q2, `) , 0] , V

′
n [(q1, q2, `) , 1]

}
. (29)

Similar to the proof for inequality (21), we examine optimal combinations of the r.h.s of (29).
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Case (12a): The optimal combination of the r.h.s is (0,0). Using Lemma 2 and the induction

hypothesis for (16), we have

min
{
V

′
n [(q1, q2 + 1, `+ 2) , 0] , V

′
n [(q1, q2 + 1, `+ 2) , 1]

}

−min
{
V

′
n [(q1, q2, `+ 1) , 0] , V

′
n [(q1, q2, `+ 1) , 1]

}

≤ V
′
n [(q1, q2 + 1, `+ 2) , 0]− V

′
n [(q1, q2, `+ 1) , 0] . (30)

Moreover,

V
′
n [(q1, q2 + 1, `+ 2) , 0]−V

′
n [(q1, q2, `+ 1) , 0] ≤ V

′
n [(q1, q2 + 1, `+ 1) , 0]−V

′
n [(q1, q2, `) , 0] , (31)

where we have made use of the expansion of V
′
n [(q1, q2 + 1, `+ 2) , 0], V

′
n [(q1, q2, `+ 1) , 0],

V
′
n [(q1, q2 + 1, `+ 1) , 0], and V

′
n [(q1, q2, `) , 0] by using equations (4) and (6), and the induction

hypothesis for (12). The result follows by comparing inequalities (30) and (31).

Case (12b): The optimal combination of the r.h.s is (0,1). This combination is not feasible due

to the induction hypothesis for inequality (16).

Case (12c): The optimal combination of the r.h.s could be (1, 0) or (1, 1). By the induction

hypothesis (17), the possible optimal combinations of the l.h.s of inequality (29) are (1, 0) and

(1, 1), and by equation (7), we have

V
′
n [(q1, q2 + 1, `+ 2) , 1] = V

′
n [(q1, q2 + 1, `+ 1) , 1] . (32)

Note that V
′
n (q1, q2, `) is nondecreasing in `, i.e.,

V
′
n (q1, q2, `) ≤ V

′
n (q1, q2, `+ 1) . (33)

Equation (32) and inequality (33) imply that

V
′
n [(q1, q2 + 1, `+ 2) , 1]− V

′
n (q1, q2, `+ 1) ≤ V

′
n [(q1, q2 + 1, `+ 1) , 1]− V

′
n (q1, q2, `) ;

therefore, the proof of inequality (12) is hereby complete.

Now, we establish inequality (13). By inequality (12), and the fact that ` ≤ q2, we have

V
′
n (q1, q2 + 1, q2 + 1)− V

′
n (q1, q2, q2) ≤ V

′
n (q1, q2 + 1, `+ 1)− V

′
n (q1, q2, `) . (34)

Moreover, it follows from inequality (10), that

∆Vn (q1, q2, q1) ≤ V
′
n (q1, q2 + 1, q2 + 1)− V

′
n (q1, q2, q2) . (35)

The result follows immediately by comparing inequalities (34) and (35).

Next, we establish inequality (14). By inequality (11), we have

∆Vn (q1, q2 + 1, `) ≤ V
′
n (q1, q2 + 2, q2 + 2)− V

′
n (q1, q2 + 1, q2 + 1) , (36)
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and by inequality (12), we have

V
′
n (q1, q2 + 2, q2 + 2)− V

′
n (q1, q2 + 1, q2 + 1) ≤ V

′
n (q1, q2 + 2, q2 + 1)− V

′
n (q1, q2 + 1, q2) . (37)

Therefore, the result is proved.

Next, we will establish inequality (15). For this part of the proof, suppose that ` ≥ 1 and

q2 ≥ 1. For either ` = 0 or q2 = 0, the proof technique is similar, except that in some places, we

appeal to the nonnegativity of Vn in lieu of the induction hypothesis. Due to inequality (11), and

the fact that µ1, µ2, λ1 and λ2 are all positive, the following inequalities hold:

µ1∆Vn (q1 − 1, q2, `− 1) ≤ µ1

(
V

′
n (q1 − 1, q2 + 1, q2 + 1)− V

′
n (q1 − 1, q2, q2)

)
, (38)

µ2∆Vn (q1, q2 − 1, `) ≤ µ2

(
V

′
n (q1, q2, q2)− V

′
n (q1, q2 − 1, q2 − 1)

)
, (39)

λ1∆Vn (q1 + 1, q2, `) ≤ λ1

(
V

′
n (q1 + 1, q2 + 1, q2 + 1)− V

′
n (q1 + 1, q2, q2)

)
. (40)

Moreover, by inequality (14), we have

λ2∆Vn (q1, q2 + 1, `) ≤ λ2

(
V

′
n (q1, q2 + 2, q2 + 1)− V

′
n (q1, q2 + 1, q2)

)
. (41)

The result follows by summing the right- and left-hand sides of (38)–(41) and simplifying each side

using their equivalents in equations (5) through (8).

The proof of inequality (16) mirrors that of (15). Assume that ` ≥ 1 and q2 ≥ 1. It follows

from (13) that

µ1∆Vn (q1 − 1, q2, q1 − 1) ≤ µ1

(
V

′
n (q1 − 1, q2 + 1, `+ 1)− V

′
n (q1 − 1, q2, `)

)
, (42)

µ2∆Vn (q1, q2 − 1, q1) ≤ µ2

(
V

′
n (q1, q2, `)− V

′
n (q1, q2 − 1, `− 1)

)
, (43)

λ2∆Vn (q1, q2 + 1, q1) ≤ λ2

(
V

′
n (q1, q2 + 2, `+ 1)− V

′
n (q1, q2 + 1, `)

)
. (44)

Moreover, inequalities (9) and (13) imply that

λ1∆Vn (q1 + 1, q2, q1) ≤ λ1

(
V

′
n (q1 + 1, q2 + 1, `+ 1)− V

′
n (q1 + 1, q2, `)

)
. (45)

By summing inequalities (42)–(45) and replacing the l.h.s and r.h.s of the derived inequality by

their equivalents in equations (5) through (8), the result is derived.

Finally, we establish inequality (17). By equation (7), it is clear that

Vn+1 [(q1, q2, `) , 1] = Vn+1 [(q1, q2, `+ 1) , 1] . (46)

Note that Vn is nondecreasing in `, i.e.,

Vn+1 [(q1, q2, `) , 0] ≤ Vn+1 [(q1, q2, `+ 1) , 0] . (47)

Therefore, inequality (17) follows directly from (46) and (47).
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