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Abstract

We consider the problem of optimally maintaining a stochastically degrading, single-unit

system using heterogeneous spares of varying quality. The system’s failures are unannounced;

therefore, it is inspected periodically to determine its status (functioning or failed). The system

continues in operation until it is either preventively or correctively maintained. The available

maintenance options include perfect repair, which restores the system to an as-good-as-new

condition, and replacement with a randomly-selected unit from the supply of heterogeneous

spares. The objective is to minimize the total expected discounted maintenance costs over an

infinite time horizon. We formulate the problem using a mixed observability Markov decision

process (MOMDP) model in which the system’s age is observable but its quality must be inferred.

We show, under suitable conditions, the monotonicity of the optimal value function in the belief

about the system quality and establish conditions under which finite preventive maintenance

thresholds exist. A detailed computational study reveals that the optimal policy encourages

exploration when the system’s quality is uncertain; the policy is more exploitive when the

quality is highly certain. The study also demonstrates that substantial cost savings are achieved

by utilizing our MOMDP-based method as compared to more näıve methods of accounting for

heterogeneous spares.
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1 Introduction

Operations and maintenance activities constitute a significant proportion of the operational bud-

gets of many organizations [6]. Consequently, companies are employing increasingly sophisticated

methods to improve system reliability, ensure safety, and reduce costs. A common assumption in

maintenance models is that available spares (components or sub-systems) originate from a homoge-

neous population in which each spare has identical degradation characteristics. However, in reality,

replacement parts may exhibit significant unit-to-unit variability in their quality characteristics.

For instance, micro-electro-mechanical systems (MEMS) are known to suffer from a variety of local

defects including particulate, ionic, organic, and isolated defects (e.g., voids and stringers) that

can cause substantial unit-to-unit variability [9]. More generally, multiple device qualities can stem

from manufacturing processes that are still in early stages of development and, therefore, highly

variable [31]. Irrespective of the source of heterogeneity, ignoring this variability can reduce overall

system reliability and lead to economic losses [4].

In this paper, we consider the problem of optimally maintaining a stochastically degrading,

single-unit system with heterogeneous spare parts. Specifically, the spare parts originate from Y

distinct and heterogeneous subpopulations, each of which has its own time-to-failure distribution.

Failures are not self-announcing; therefore, the system is inspected periodically to determine its

status (functioning or failed). The system continues in operation until it is either preventively or

correctively maintained. The available maintenance options include perfect repair, which restores

the system to an as-good-as-new condition, or replacement of the system with a randomly-selected

unit from the lot of heterogeneous spares. The primary advantage of this framework is that over

time, as a system remains in operation, the subpopulation from which it originates becomes more

apparent. Consequently, we are able to make better-informed maintenance decisions, thereby reduc-

ing long-run maintenance costs. In contrast to other models that consider spare part heterogeneity,

we are able to update our beliefs, even in the absence of detailed condition monitoring information,

based on the system’s age alone. Assuming an intuitive cost structure that includes inspection, pre-

ventive maintenance, and corrective maintenance costs, our objective is to obtain a cost-minimizing

policy that accounts for preventive and corrective maintenance decisions. To this end, we formulate

an infinite-horizon, discounted mixed observability Markov decision process (MOMDP) model and

establish important properties of the cost function and optimal policy.

Within the applied probability and operations research communities, maintenance optimization

models have been studied extensively over the last five decades. Many existing surveys highlight

the most prevalent models for both single- and multi-component systems [1, 6, 13, 18, 19, 21, 22,

23, 25, 27]. Particularly relevant to our work here is the survey of Valdez-Flores and Feldman [25],

which reviews the maintenance optimization literature of single-unit systems and includes models

for inspection, minimal repair, shock, and replacement. Over the past two decades, reliability

and maintenance models have increasingly addressed the problem of population heterogeneity. A

common method for handling heterogeneous populations is to eliminate low-quality subpopulations

before they enter field service through burn-in procedures. Burn-in procedures are tests engineered

to stress and detect devices that are likely to incur early failures (infant mortality). For a general

background on burn-in procedures and models, the reader is referred to [10, 11] and references

contained therein. Mi [14, 15] explores the joint problems of burn-in, maintenance, and repair
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when a system exhibits a bathtub-shaped failure rate function and characterizes the optimal burn-

in times and maintenance policies. While early burn-in models focused on lifetime-based burn-in

(discarding units that have failed before the end of the burn-in period), recent models are concerned

with degradation-based burn-in (discarding units that have a particular degradation level at the end

of the burn-in period). For example, Ye et al. [32] consider a joint burn-in and maintenance problem

when the degradation processes of two different subpopulations are modeled as Weiner processes

with distinct drift parameters. Optimal burn-in and replacement policies are characterized for age-

and block-replacement and shown to be effective as compared to traditional lifetime-based burn-in

approaches. Xiang et al. [30] investigate the more general case of joint burn-in and preventive

replacement when there are n subpopulations subject to stochastic degradation. Their framework

is extended to the case of burn-in under accelerated conditions (e.g., elevated voltage, humidity,

and temperature) with condition-based maintenance (CBM).

In addition to burn-in methods, another fruitful research area related to heterogeneous popula-

tions is the modeling of degradation in the presence of unit-to-unit variability. A common strategy

is to augment a standard degradation model by allowing for some (or all) of the model’s parame-

ters to be random (i.e., to differ between systems within the population). This strategy has been

employed when the degradation is modeled as a Brownian motion process [2, 17, 29], a gamma

process [12, 24], or when it assumes an exponential form [8]. For each of these model types, the

aim is to provide some measure of remaining useful life. Although these frameworks find wide

applicability in CBM applications, they typically require that the system deteriorates with time,

the deterioration level is observable at any time, and the device fails when the degradation level

reaches a specified threshold [28].

Some recent papers consider CBM strategies with heterogeneous populations. Chen et al. [5]

consider a system whose degradation evolves as an inverse Gaussian process with random effects.

Similarly, Elwany et al. [8] consider a random effects model with a system degrading according to an

exponential form with sensors monitoring the system’s degradation. For both models, conditions

are provided under which monotone control-limit policies are optimal. In lieu of a true burn-in

procedure or CBM strategy, Zhang et al. [33] propose a joint inspection-replacement policy. Each

system is allowed to enter service, but an early inspection is conducted to determine its health state,

at which point the unit is either replaced (if it appears to be defective) or a preventive replacement

time is determined based on the health state. They show that this inspection-replacement policy

outperforms a joint burn-in and age-based replacement policy. More recently, and most relevant to

our work here, van Oosterom et al. [26] study a Markov deteriorating system (i.e., one with finitely

many condition states) that originates from a population of heterogeneous spares. Assuming finitely

many system qualities, they provide a set of conditions under which the optimal maintenance policy

is a threshold-type policy. We extend the model in [26] by removing restrictions on the system’s

time-to-failure distribution and consider both repair and replacement actions.

Specifically, our problem setting is unique in that (i) we do not impose a finite-state Markovian

structure on the degradation process; (ii) we cannot directly observe degradation (or a degradation

signal); rather, we can only determine if the system is failed or working upon inspection; and (iii)

we consider unit-to-unit variability in repairable systems. Within this framework, knowledge about

the system’s quality can be learned and leveraged without a well-defined notion of degradation or

failure threshold, or even an observable degradation signal of any kind. That is, as the system
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continues in operation and undergoes repairs over time, we are able to glean valuable information

about its population of origin based on its age alone. By way of Bayesian inference procedures,

we update our understanding of the system’s quality and make better-informed decisions that

lead to demonstrable cost savings. Our main contributions include a novel MOMDP framework

for accounting for spare part heterogeneity; providing conditions under which the optimal value

function is monotone in the belief space; providing conditions under which the optimal policy calls

for preventive maintenance; characterizing the optimal policy; and executing a computational study

that demonstrates the utility of our proposed framework and provides additional insights into the

optimal policy as an exploration/exploitation type policy.

The remainder of this paper is organized as follows. In Section 2, we present the maintenance

problem when unit-to-unit variability is significant and formulate a mathematical model of the

corresponding sequential decision-making process. Section 3 discusses attributes of the value func-

tion and the optimal policy. Finally, in Section 4, we provide a detailed computational study that

illustrates the importance of accounting for heterogeneity, demonstrates the effectiveness of our

modeling framework, and highlights some interesting properties of the optimal maintenance policy.

2 Model Formulation

Consider a single-unit, repairable system that begins operation in an as-good-as-new condition,

that is, with an operating age of 0. The system continues functioning until it fails, i.e., when its

operating age exceeds a probabilistically determined time-to-failure, or until a maintenance action

is taken preventively. In what follows, all random variables are defined on a common, complete

probability space (Ω,F ,P).

It is assumed that the system originates from a lot of spare systems that, despite being visually

indistinguishable, have distinct time-to-failure distributions. The lot of spare systems is composed

of Y (Y > 1) distinct qualities, and we denote the finite set of system types by Y := {1, 2, . . . , Y }.
To ensure that the proportion of each type of system remains constant, we assume that the lot of

spare systems is infinitely large. Additionally, we assume that the proportion of systems is known

a priori and given by the vector ρ := (ρ1, ρ2, . . . , ρY ), where ρy denotes the proportion of systems

of quality y ∈ Y and ∑
y∈Y

ρy = 1.

When a system is placed into service, it is able to operate until its (random) time-to-failure

T . We denote the distribution function (d.f.) of T by F (t) := P(T ≤ t), t ≥ 0, and define F̄ (t)

as the complementary d.f., or survival function F̄ (t) = 1 − F (t). Additionally, we assume that

each quality has its own (known) failure distribution. We let Q denote the (random) quality of

the system; hence, ρy = P(Q = y). Define Ty = [T |Q = y] as the conditional time-to-failure,

given Q = y, with distribution function Fy(t) = P(T ≤ t|Q = y) and survival function F̄y = 1−Fy.

Hence, whenever a new system enters service, the time-to-failure distribution is given by the mixture

distribution

F (t) =
∑
y∈Y

ρyFy(t), t ≥ 0.
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The system is inspected periodically with fixed period τ (τ > 0), that is, the system is inspected

at the times in the set {τ, 2τ, 3τ, . . .}. At each inspection epoch, the system is observed to be in

one of two states in the set O = {0, 1}, where state 0 means the system is failed, and state 1 means

the system is functioning. If the system is found to be in state 1, three actions are feasible: do

nothing, repair, or replace. We define the set of feasible actions by A = {0, 1, 2}, where 0, 1, and 2

denote do nothing, repair, and replace the system, respectively. On the other hand, if the system

is found to be in state 0, only repair or replacement are permitted. Whenever a system is repaired,

the same system reenters service with a virtual age of 0, and its quality type remains unaltered. If

a system is replaced, a new system is randomly selected from the lot of spare systems and enters

service.

Due to the indistinguishable nature of the systems, the system quality is not known with

certainty. Therefore, we define a vector b = (b1, b2, . . . , bY ), where by denotes the current belief,

or probability, that Q = y. In other words, b is a probability distribution on the support Y.

When a new system first enters service, b = ρ, and the vector b is updated over time as the

system operates. Thus, at each inspection epoch, the state of the system is described by the tuple

(x, b) = (x, b1, . . . , bY ), where xτ is the current age of the system. For convenience, we write

x = ∞ when the system is failed. Hence, the complete state space is given by S = X × Y, where

X := N ∪ {0,∞}.
Denote the (random) virtual age, quality, observation, and action taken at the nth inspection

time by Xn, Yn, On, and An, respectively. At each inspection, the system is in state Sn = (Xn, Yn) ∈
S, action An ∈ A is taken, the state transitions to (Xn+1, Yn+1), and the observation On ∈ O is

received (corresponding to the new state). A cost C(Sn, An) is incurred and the process repeats

indefinitely. The cost function, C, accounts for any pertinent maintenance and downtime costs

associated with taking action An while being in state Sn; for the moment, we leave the cost

function unspecified. We seek to minimize the total expected discounted costs over an infinite

time horizon. Because the state is factorable into a fully observable (age) and partially observable

(quality) component, we formulate our sequential decision problem using a mixed-observability

Markov decision process (MOMDP) model [16].

More formally, the MOMDP is specified by the tuple (X ,Y,A,O, PX , PY , Z, C, α), where α ∈
(0, 1) is the per-period discount factor and PX , PY , and Z are functions describing the transition

dynamics of the system. Specifically,

PX (x, y, a, x′) = P(Xn+1 = x′ | Xn = x, Yn = y,An = a)

is the probability that the virtual age transitions to x′ when action a is taken starting in state

(x, y),

PY(x, y, a, x′, y′) = P(Yn+1 = y′ | Xn = x, Yn = y,An = a,Xn+1 = x′)

gives the probability that the partially observable (quality) state transitions to y′ when action a is

taken from state (x, y) and the fully observable state transitions to state x′, and

Z(x′, y′, a, o) = P(On = o|Xn+1 = x′, Yn+1 = y′, An = a)

gives the probability that we receive observation o if the system transitions to state (x′, y′) after

taking action a. Next, we define several functions that play critical roles in describing the problem’s
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structure. Let ḡ(t, y; τ) = P(Ty ≥ t+ τ |Ty ≥ t), then

ḡ(t, y; τ) =
P(Ty ≥ t+ τ, Ty ≥ t)

P(Ty ≥ t)
=
F̄y(t+ τ)

F̄y(t)
.

Because the inter-inspection time τ is fixed, we can ignore the dependence of ḡ on τ and simply

write ḡ(t, y). Additionally, we define g(t, y) = 1− ḡ(t, y), Ḡ(t, b) = P(T ≥ t+ τ |T ≥ t, Q ∼ b), and

G(t, b) = 1− Ḡ(t, b), where the notation Q ∼ b means that the quality type follows the probability

distribution b. By the law of total probability, we see that

Ḡ(t, b) =
∑
y∈Y

P(Ty ≥ t+ τ |Ty ≥ t)P(Q = y|Q ∼ b) =
∑
y∈Y

ḡ(t, y)by.

If no maintenance action is taken on a system in state (x, y) with x < ∞, it is clear that the

virtual age will transition to (x+1)τ if Ty > (x+1)τ ; otherwise, it will transition to∞. Therefore,

for x <∞,

PX (x, y, 0, x′) =


ḡ(xτ, y), x′ = x+ 1,

g(xτ, y), x′ =∞,
0, otherwise.

However, if the system is repaired or replaced, then the age is returned to 0; hence,

PX (x, y, 1, x′) = PX (x, y, 2, x′) =

1, x′ = 0,

0, otherwise.

If the system is allowed to continue operating, or it is repaired, then its quality remains unaltered.

However, if it is replaced, the new quality is again distributed according to ρ. Consequently,

PY(x, y, 0, x′, y′) = PY(x, y, 1, x′, y′) =

1, y = y′,

0, y 6= y′,

and

PY(x, y, 2, x′, y′) = ρy′ .

Lastly, we note that On = 1 if and only if Xn+1 < ∞; hence, Z(x′, y′, a, 1) = I(x′ < ∞) =

1 − Z(x′, y′, a, 0). Upon taking action a and receiving observation o, we update the belief vector

using Bayes’ theorem as follows:

b′(y′|x, b, x′, a, o) = P(Qn+1 = y′|Xn = x,Qn ∼ b, Xn+1 = x′, An = a,On = o)

= ηZ(x′, y′, a, o)
∑
y∈Y

PY(x, y, a, x′, y′)PX (x, y, a, x′)by,

where, for any fixed (x, b, x′, a, o), η is a normalizing constant. Of particular interest, for x ∈ N, we

have

B̄y(x, b) = b′(y|x, b, x+ 1, 0, 1) =
(
Ḡ(xτ, b)

)−1
ḡ(xτ, y)by, (1)

and

By(x, b) = b′(y|x, b,∞, 0, 0) = (G(xτ, b))−1 g(xτ, y)by,
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for the cases when a working component is allowed to continue operating and either survives or fails,

respectively. We then let B̄(x, b) := (B̄1(x, b), . . . , B̄Y (x, b)) and B(x, b) := (B1(x, b), . . . , BY (x, b))

as the updated belief vectors when the system survives or fails, respectively.

We assume that at each inspection, a fixed inspection cost cI is incurred regardless of the

action taken. If the system is repaired, a fixed cost cR is incurred, but if it is replaced, a cost of

cP > cR is incurred. Lastly, if the maintenance is corrective, i.e., x =∞, an additional penalty of

cF is incurred. This additional cost, cF , reflects the fact that corrective maintenance may include

additional costs such as lost production or overtime labor. The optimal total expected discounted

cost, starting in belief state (x, b) and denoted by V (x, b), is given as a solution to the Bellman

optimality equations

V (x, b) =



min

cI + cF + cP + αV (0,ρ),

cI + cF + cR + αV (0, b),
x =∞,

min


cI + cP + αV (0,ρ),

cI + cR + αV (0, b),

cI + α[Ḡ(xτ, b)V (x+ 1, B̄(x+ 1, b))

+G(xτ, b)V (∞, B(x+ 1, b))],

x <∞.

(2)

The optimal action (or decision) in state (x, b) is denoted by d∗(x, b) so that d∗(x, b) = 0 if it is

optimal to do nothing, d∗(x, b) = 1 if it is optimal to repair, and d∗(x, b) = 2 if it is optimal to

replace.

3 Structural Results

In this section, we examine the attributes of the value function and optimal policy of the MOMDP

model formulated in Section 2. We begin by reviewing several stochastic orders that are used

throughout our exposition. The following three definitions are adopted from the comprehensive

text by Shaked and Shanthikumar [20].

Definition 1 (Usual Stochastic Order) For two random variables X and Y , we say X is smaller

than Y in the usual stochastic order (denoted X ≤st Y ) if, for all x ∈ (−∞,∞),

P(X > x) ≤ P(Y > x).

It should be noted that, given a nondecreasing function φ, and assuming existence of the expecta-

tions, X ≤st Y implies E[φ(X)] ≤ E[φ(Y )].

Definition 2 (Hazard Rate Order) For two random variables X and Y , we say X is smaller

than Y in the hazard rate order (denoted X ≤hr Y ) if

P(X > x)P(Y > y) ≥ P(X > y)P(Y > x)

for all real numbers x and y with x ≤ y.
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Definition 3 (Likelihood Ratio Order) For two random variables X and Y , we say X is smaller

than Y in the likelihood ratio order (denoted X ≤lr Y ) if

P(X ∈ A)P(Y ∈ B) ≥ P(X ∈ B)P(Y ∈ A)

for all measurable sets A and B such that A ≤ B, where A ≤ B means that x ∈ A and y ∈ B imply

that x ≤ y.

The relationships between the usual stochastic, hazard rate and likelihood ratio orders are well-

known and summarized as follows (see Chapter 1 of [20]): X ≤lr Y ⇒ X ≤hr Y ⇒ X ≤st Y . For

convenience, if X and Y are discrete random variables with respective probability mass functions

p and q, and if X and Y are ordered in a particular sense, we also say that p and q are ordered in

the same sense. Furthermore, we take the converse of the statement to be true, e.g., X ≤hr Y , if,

and only if, p ≤hr q. Next, we define the n-simplex, i.e., the space of probability mass functions on

n outcomes.

Definition 4 (n-Simplex) The standard n-simplex ∆n is the simplex formed from the n standard

unit vectors. That is,

∆n =

{
(x1, . . . , xn) ∈ Rn :

n∑
i=1

xi = 1, xi ≥ 0 for all i

}
.

We also refer to ∆n as the n-dimensional probability simplex.

Using this definition, the belief state space is Γ := X ×∆Y .

The results of this section require that various conditions be met. We next present these

conditions and their interpretations before proceeding to the main structural results.

Condition 1 The function ḡ(t, y) is jointly monotone nonincreasing in t and y.

Requiring ḡ(t, y) to be monotone in y is necessary for meaningfully comparing the performance of

systems of different qualities. Specifically, when i < j at any decision epoch, a system of quality

i is more likely to survive until the next decision epoch than a system of quality j. In this sense,

a system from lot 1 may be regarded as being of the highest quality, and a system from lot Y of

the lowest quality. This condition is equivalent to requiring that Ty ≥hr Ty+1 by the equivalence of

(1.B.4) and (1.B.7) in [20]. Requiring ḡ(t, y) to be monotone in t means that for a fixed quality, as

a system ages, its remaining life (stochastically) decreases. This is equivalent to saying that Ty is

increasing failure rate (IFR).

Condition 2 For each y ∈ Y,

lim
x→∞

ḡ(xτ, y) = 0.

Condition 2 is a type of short-tail condition. In particular, it says that regardless of the system

quality, as the system ages, it will eventually become so degraded that it will have zero probability

of surviving the inter-inspection period.

Condition 3 For each y 6= 1,

lim
x→∞

ḡ(xτ, y)

ḡ(xτ, 1)
= 0.
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Condition 3 can be interpreted to mean that (in an asymptotic sense) lower-quality systems degrade

more rapidly than the highest quality system.

We are now prepared to state our first result. It asserts that (under Condition 1), if the system

survives an inter-inspection period, then the updated belief state is smaller, in the likelihood ratio,

than the initial belief state. Similarly, if the system fails during an inter-inspection period, then

the updated belief state is larger in the likelihood ratio than the initial belief state.

Proposition 1 Under Condition 1, for x ∈ X and b ∈ ∆Y

B̄(x, b) ≤lr b ≤lr B(x, b).

Proof. First, we show that B̄(x, b) ≤lr b. To this end, we must show by/B̄y(x, b) is

nondecreasing in y ∈ Y. By equation (1), we have

by
B̄y(x, b)

=
Ḡ(xτ, b)by
ḡ(xτ, y)by

=
Ḡ(xτ, b)

ḡ(xτ, y)
.

The proof is completed by noting that Condition 1 implies ḡ(t, y) is monotone nonincreasing in

y ∈ Y. The proof for B̄(x, b) ≤lr b follows similarly by noting that g(t, y) = 1− ḡ(t, y) is monotone

nondecreasing in y ∈ Y.

We next show that, for any fixed belief state, the probability that the system survives the inter-

inspection period decreases as the virtual age increases; consequently, the probability of failure

increases.

Proposition 2 Under Condition 1, for b ∈ ∆Y and x ∈ X \ {∞},

Ḡ(xτ, b) ≥ Ḡ((x+ 1)τ, b) and G(xτ, b) ≤ G((x+ 1)τ, b).

Proof. We will first show that Ḡ(xτ, b) ≥ Ḡ((x+ 1)τ, b), noting that G(xτ, b) ≤ G((x+ 1)τ, b)

follows since G(t, b) = 1− Ḡ(t, b). By Condition 1, for each x ∈ X \ {∞},

h1(y) := ḡ(xτ, y) ≥ ḡ((x+ 1)τ, y) := h2(y)

for all y ∈ Y. Because the functions h1 and h2 are ordered for all y,

h1(Q) ≥st h2(Q). (3)

Consequently, by taking expectations on across both sides of inequality (3),

Ḡ(xτ, b) = E(h1(Q)) ≥ E(h2(Q)) = Ḡ((x+ 1)τ, b),

where Q ∼ b.

The next result asserts that if two states are ordered such that the belief state is ordered in

the sense of the usual stochastic order, and the virtual ages are ordered, then the probabilities

of system failure are ordered in the same direction. That is, systems with older virtual ages and

stochastically larger belief states are more likely to fail.
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Proposition 3 Under Conditions 1 and 2, if b1 ≤st b2 and x1 ≤ x2 then

Ḡ(x1τ, b1) ≥ Ḡ(x2τ, b2) and G(x1τ, b1) ≤ G(x2τ, b2).

Proof. We again proceed by first showing Ḡ(x1τ, b1) ≥ Ḡ(x2τ, b2), noting this implies

G(x1τ, b1) ≤ G(x2τ, b2). By Condition 1, we have that ḡ(x1τ, y) is nonincreasing in y ∈ Y. Thus,

if Qi ∼ bi, i = 1, 2, then

Ḡ(x1τ, b1) = E(ḡ(x1τ,Q1)) ≥ E(ḡ(x1τ,Q2)) = Ḡ(x2τ, b2)

where the inequality holds by b1 ≤st b2. The result follows by repeated application of Proposition

2.

Next, assume that we have two distributions over the quality of the system in operation that

are ordered in the likelihood ratio sense. Under the same observation, i.e., the system is found to

be functioning or failed at a particular time, the distributions remain ordered after being updated.

This is formalized in Proposition 4.

Proposition 4 Under Condition 1, if b1 ≤lr b2 and x ∈ X then

B̄(x, b1) ≤lr B̄(x, b2) and B(x, b1) ≤lr B(x, b2).

Proof. Again, we proceed by only showing that B̄(x, b1) ≤lr B̄(x, b2). For i = 1, 2, let biy
be the yth component of bi. Then,

B̄y(x, b2)

B̄y(x, b1)
=

[Ḡ(xτ, b2)]−1

[Ḡ(xτ, b1)]−1

ḡ(xτ, y)

ḡ(xτ, y)

b2
y

b1
y

=
Ḡ(xτ, b1)

Ḡ(xτ, b2)

b2
y

b1
y

,

but b2
y/b

1
y is increasing in y by assumption; hence, B̄y(x, b2)/B̄y(x, b1) is increasing.

We are now prepared to state our first main result. Theorem 1 asserts that, under Condition

1, for a fixed virtual age, the value function is monotone in the belief state. Additionally, for any

fixed belief state, the value function is largest when the system is in the failed state.

Theorem 1 Under Condition 1, if x ∈ X and b1 ≤lr b2, then

V (x, b1) ≤ V (x, b2)

and if b ∈ ∆Y then

cF + V (x, b) ≤ V (∞, b).

Proof. We proceed by induction on the iterates of the value iteration algorithm. Let vk

be the approximation of the value function V at the kth iteration and assume v0(x, b) = 0 for all

(x, b) ∈ X ×∆Y . Then,

v1(x, b) =

cI + cF + cR, x =∞,
cI , x <∞;

hence, v1(x, b) is constant in b and v1(x, b) + cF < v1(∞, b). Now, assume that vk(x, b) satisfies

the induction hypothesis, i.e., if x ∈ X and b1 ≤lr b2 then vk(x, b1) ≤ vk(x, b2), and if b ∈ ∆Y then

10



cF + vk(x, b) ≤ vk(x, b). For notational convenience, we let Ck
P = cI + cP + αvk(0,ρ), Ck

R(b) =

cI +cR+αvk(0, b), and Ck
DN (x, b) = cI +α(Ḡ(x, b)vk(x+1, B̄(x+1, b))+G(x, b)vk(∞, B(x+1, b)).

Then, when x =∞, we have

vk+1(∞, b) = min{cF + Ck
P , cF + Ck

R(b)}.

By the induction hypothesis, Ck
R(b) is monotone nondecreasing in b, and since Ck

P is constant in b,

it is clear that vk+1(∞, b) is also monotone nondecreasing in b.

Next, for x <∞,

vk+1(x, b) = min{Ck
P , C

k
R(b), Ck

DN (x, b)} ≤ min{Ck
P , C

k
R(b)};

hence, vk+1(x, b) + cF ≤ cF + min{Ck
P , C

k
R(b)} = vk+1(∞, b). To complete the proof, we need to

show that Ck
DN (x, b) is monotone nondecreasing in b. Let, b1 ≤lr b2, and, for i = 1, 2, let Di be a

random variable such that

P(Di = q) =

Ḡ(x, bi), q = 0,

G(x, bi), q = 1,

and let hki (q|x) be a function such that

hki (q|x) =

vk(x+ 1, B̄(x+ 1, bi)), q = 0,

vk(∞, B(x+ 1, bi)), q = 1.

Because b1 ≤lr b2 implies b1 ≤st b2, Proposition 2 shows that G(x, b1) ≤ G(x, b2); consequently,

D1 ≤st D2. Additionally, by Proposition 4, B̄(x + 1, b1) ≤lr B̄(x + 1, b2) and B(x + 1, b1) ≤lr

B(x + 1, b2); therefore, by the induction hypothesis, hk1(q|x) ≤ hk2(q|x) for q = 0, 1. We can see

then that

Ck
DN (x, b1) = cI + αE(hk1(D1|x)) ≤ cI + αE(hk2(D1|x)).

Next, we note

hk2(0|x) = vk(x+ 1, B̄(x+ 1, b2)) ≤ V k(x+ 1, b2) ≤ vk(x+ 1, B(x+ 1, b2))

≤ vk(∞, B(x+ 1, b2))

= hk2(1|x),

where the first two inequalities follow from the induction hypothesis and Proposition 1, and the

last inequality follows from the induction hypothesis. Thus, hk2(q|x) is nondecreasing in q, so by

D1 ≤st D2

Ck
DN (x, b1) ≤ cI + αE(hk2(D1|x)) ≤ cI + αE(hk2(D2|x)) = Ck

DN (x, b2),

and the proof is complete.

Our next result (Theorem 2) establishes that the belief state space can be partitioned into two

regions: a region where either doing nothing or repair is optimal, and a region where either doing

nothing or replacement is optimal. Moreover, these regions are formed by partitioning ∆Y and are

related to the likelihood ratio ordering.
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Theorem 2 Under Condition 1, if d∗(x, b) = 2, then d∗(x′, b′) ∈ {0, 2} for all x′ ∈ N and b′ ≥lr b.

Additionally, if d∗(x, b) = 1, then d∗(x′, b′) ∈ {0, 1} for all x′ ∈ N and b′ ≤lr b.

Proof. If d∗(x, b) = 2, then V (x, b) = cI + cP + αV (0,ρ); hence,

cI + cP + αV (0,ρ) < cI + cR + αV (0, b) (4)

≤ cI + cR + αV (0, b′), (5)

where the first inequality follows directly from (2), and the second inequality follows from Theorem

1. Therefore, repair is not optimal in state (x′, b′). The proof of the second statement follows by

noting that d∗(x, b) = 1 and b′ ≤lr b results in a reversal of inequalities (4) and (5).

To further understand the structure of the optimal value function and policy, we consider their

behavior when the quality is known with certainty. Let the set of vectors {ey : 1 ≤ y ≤ Y } be the

standard basis for Y -dimensional Euclidean space, where ey denotes the vector with a one in the

yth coordinate and zeros elsewhere. Our next result states that, when the quality is known with

certainty, the value function is monotone nondecreasing in the virtual age.

Proposition 5 Under Condition 1, for each y ∈ Y, and x ∈ X \ {∞},

V (x, ey) ≤ V (x+ 1, ey).

Proof. Again, by induction, if v0(x, b) = 0 for all (x, b) ∈ X ×∆Y , then again

v1(x, b) =

cI + cR + cF , x =∞,
cI , x <∞;

hence, the base case holds. Additionally, for each x ∈ X \{∞} and y ∈ Y, we note that v1(x, ey) ≤
v1(∞, ey). Now, assume that for each x, y that vk(x, ey) ≤ vk(x + 1, ey) ≤ vk(∞, ey), which also

holds in the base case, then by the proof of Theorem 1 we know this property is conserved under each

iteration of the value iteration algorithm and holds for k+ 1. Then, noting that Ḡ(x, ey) = ḡ(x, y),

G(x, ey) = g(x, y), and B̄(x, ey) = B(x, ey) = ey, we see

vk+1(x, ey) = min


cI + αvk(0,ρ)

cI + αvk(0, ey)

cI + α
(
ḡ(x, y)vk(x+ 1, ey) + g(x, y)vk(∞, ey)

)
≤ min


cI + αvk(0,ρ)

cI + αvk(0, ey)

cI + α
(
ḡ(x, y)vk(x+ 2, ey) + g(x, y)vk(∞, ey)

)
≤ min


cI + αvk(0,ρ)

cI + αvk(0, ey)

cI + α
(
ḡ(x+ 1, y)vk(x+ 2, ey) + g(x+ 1, y)vk(∞, ey)

)
= vk+1(x+ 1, ey),
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where the first inequality follows directly from the induction hypothesis, and the second inequality

follows by noting that vk(x+2, ey) ≤ vk(∞, ey) and g(x, y) ≤ g(x+1, y) (using a stochastic ordering

argument similar to that in the proof of Theorem 1).

Additionally, for each ey, there exists a virtual age above which it is optimal to preventively

maintain and below which it is optimal to do nothing. This result is formalized in Proposition 6.

Proposition 6 If d∗(x, ey) > 0, then

V (x+ 1, ey) = V (x, ey) = V (∞, ey)− cF ,

and

d∗(x+ 1, ey) = d∗(x, ey).

Proof. If d∗(x, ey) > 0, then

V (x, ey) = min{cI + cP + αV (0,ρ), cI + cR + αV (0, ey)}
≤ cI + α (ḡ(x, y)V (x+ 1, ey) + g(x, y)V (∞, ey)) (6)

≤ cI + α (ḡ(x, y)V (x+ 2, ey) + g(x, y)V (∞, ey)) (7)

≤ cI + α (ḡ(x+ 1, y)V (x+ 2, ey) + g(x+ 1, y)V (∞, ey)) , (8)

where inequality (6) follows by supposition that the optimal action is preventive maintenance, (7)

follows by Proposition 5, and (8) follows by Condition 1. The result then follows immediately by

noting that

V (x+ 1, ey) = min

min{cI + cP + αV (0,ρ), cI + cR + αV (0, ey)}
cI + α (ḡ(x+ 1, y)V (x+ 2, ey) + g(x+ 1, y)V (∞, ey))

= min{cI + cP + αV (0,ρ), cI + cR + αV (∞, ey)}
= V (x, ey).

Proposition 7, further characterizes the optimal policy and value function when the quality is

known with certainty.

Proposition 7 Suppose that Conditions 1 and 2 hold. For each y ∈ Y,

1. if d∗(x, ey) ∈ {0, 2}, then d∗(x, ey) = 0 for all x < x∗y and d∗(x, ey) = 2 for all x ≥ x∗y, where

x∗y = argmin

{
x ∈ N : ḡ(xτ, y) <

(
1− α
αcF

)(
cI + cF
1− α

− (cI + cF + cP )− V (0,ρ)

)}
,

2. if d∗(x, ey) ∈ {0, 1}, then d∗(x, ey) = 0 for all x < x∗y and d∗(x, ey) = 1 for all x ≥ x∗y, where

x∗y = argmin

{
x ∈ N : ḡ(xτ, y) <

(
1− α
αcF

)(
cI + cF
1− α

− (cI + cF + cR)− V (0, ey)

)}
,
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3. if d∗(x, ey) ∈ {0, 1}, then V (x, ey) = V (x) where V (x) satisfies the following one-dimensional

Bellman equations:

V (x) = min

cI + cP + αV (0),

cI + α [ḡ(xτ, y)V (x+ 1) + g(xτ, y) (cI + cF + cR + αV (0))] .

Proof. We first prove Part 3. By the assumption that d∗(x, ey) ∈ {0, 1}, and (2), we have

V (x, ey) = min

cI + cR + αV (0, ey),

cI + α
[
Ḡ(xτ, ey)V (x+ 1, B̄(x+ 1, ey)) +G(xτ, ey)V (∞, B(x+ 1, ey))

]
.

(9)

It can be seen that ey = B̄(x, ey) = B(x, ey), Ḡ(xτ, ey) = ḡ(xτ, y) and G(xτ, ey) = g(xτ, y). Hence,

V (∞, B(x+ 1, ey)) = V (∞, ey) = cI + cF + cR + αV (0, ey) and (9) can be rewritten as

V (x, ey) = min

cI + cR + αV (0, ey),

cI + α [ḡ(xτ, y)V (x+ 1, ey) + g(xτ, y)(cI + cF + cR + αV (0, ey))] ,
(10)

completing the proof of Part 3. For Part 2, we see from (10) that d∗(x, ey) = 1 if, and only if,

cI + cR + αV (0, ey) < cI + α [ḡ(xτ, y)V (x+ 1, ey) + g(xτ, y)(cI + cF + cR + αV (0, ey))] . (11)

We note that if d∗(x, ey) = 1, then by Proposition 6 that d∗(x + 1, ey) = 1, and, consequently,

V (x, ey) = V (x+ 1, ey) = cI + cR + αV (0, ey). Hence, inequality (11) is equivalent to

cI + cR + αV (0, ey) < cI + α [ḡ(xτ, y)(cI + cR + αV (0, ey)) + g(xτ, y)(cI + cF + cR + αV (0, ey))] .

(12)

By noting that g(xτ, y) + ḡ(xτ, y) = 1, we rearrange the inequality to see that d∗(x, ey) = 1 if, and

only if,

ḡ(xτ, y) <

(
1− α
αcF

)(
cI + cF
1− α

− (cI + cF + cR)− V (0, ey)

)
. (13)

The proof is completed by noting that ḡ(xτ, y) is monotone nonincreasing in x, and converges to 0

(by Conditions 1 and 2, respectively). The proof of Part 1 is similar to that of Part 2.

Proposition 7, Part 3 is useful for computing the optimal policy at extreme points of ∆Y where

repair is optimal. Additionally, as shown in Corollary 1, Proposition 7, Part 1 is useful for bounding

the age replacement threshold of the extreme points of ∆Y for which repair is not optimal.

Corollary 1 Under Conditions 1-2, for each y ∈ Y, if d∗(x, ey) ∈ {0, 2}, and if there exist real

numbers
¯
V and V̄ such that

¯
V ≤ V (0,ρ) ≤ V̄ , then

¯
xy ≤ x∗y ≤ x̄y, where

¯
xy = argmin

{
x ∈ N : ḡ(xτ, y) <

(
1− α
αcF

)(
cI + cF
1− α

− (cI + cF + cP )−
¯
V

)}
, and

x̄y = argmin

{
x ∈ N : ḡ(xτ, y) <

(
1− α
αcF

)(
cI + cF
1− α

− (cI + cF + cP )− V̄
)}

.
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There are many ways to bound V (0,ρ), but some simple bounds are given by V (0, e1) ≤ V (0,ρ) ≤

¯
V (0,ρ) where V (0, e1) can be computed as described in Proposition 7, Part 3 and

¯
V (0,ρ) is

determined by solving the following one-dimensional Bellman equations:

¯
V (x,ρ) = min

cI + cP + α
¯
V (0,ρ),

cI + α
(
Ḡ(xτ,ρ)

¯
V (x+ 1,ρ) + Ḡ(xτ,ρ)(cI + cF + cP + α

¯
V (0,ρ))

)
.

(14)

The solution to equation (14) gives the total expected discounted cost of an optimal replacement-

only policy when the belief about the active system’s quality is never updated.

In order to prove our final main result concerning the structure of the optimal policy, we need

several useful lemmas, whose proofs are provided in the Appendix. The first lemma establishes

limits for the Bayesian update functions B and B̄.

Lemma 1 For all b ∈ ∆Y , under Condition 2,

lim
x→∞

B(x, b) = b,

and, under Condition 3,

lim
x→∞

B̄(x, b) = e1.

Lemma 2 asserts that, regardless of the time-to-failure distribution, Ḡ, G, B̄, and B are con-

tinuous in the belief about the system quality.

Lemma 2 For each fixed x ∈ X \ {∞}, the functions Ḡ(x, b), G(x, b), B̄(x, b), and B(x, b) are

continuous in b ∈ ∆Y .

Our next result states that, for each fixed virtual age, the optimal value function V is continuous

in the belief about the system quality.

Lemma 3 Under Conditions 2-3, for each fixed x ∈ X \ {∞}, V (x, b) is continuous in b ∈ ∆Y .

The following two results enable us to characterize the asymptotic behavior of the value function

as the virtual age increases. Specifically, Lemma 4 quantifies the value of doing nothing as the virtual

age goes to infinity, while Corollary 2 asserts that the value function is convergent as x→∞.

Lemma 4 Under Conditions 2-3,

lim
x→∞

VDN (x, b) = cI + αV (∞, b),

where VDN (x, b) = cI + α
(
Ḡ(x, b)V (x+ 1, B̄(x+ 1, b)) +G(x, b)V (∞, B(x+ 1, b))

)
.

A natural consequence of Lemma 4 is that, for each fixed system belief, the value function converges

as x→∞. We state Corollary 2 without proof.

Corollary 2 Under Conditions 2-3,

lim
x→∞

V (x, b) = cI + min{cP + αV (0,ρ), cR + αV (0, b), αV (∞, b)}.
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Finally, Theorem 3 asserts that, for each fixed system belief b ∈ ∆Y , under the appropriate

conditions, there exists a threshold in the virtual age beyond which preventive maintenance is

optimal. Moreover, this threshold is guaranteed to be finite.

Theorem 3 Under Conditions 1-3, if cR < αcF , then for each b ∈ ∆Y , there exists an x(b) <∞
such that d∗(x, b) = d∗(x(b), b) > 0 for all x > x(b).

Proof. By Theorem 1,

αV (∞, b) ≥ α(cF + V (x, b)),

for all x ∈ X . Therefore,

αV (∞, b) ≥ α(cF + V (0, b)) = αcF + αV (0, b) (15)

> cR + αV (0, b) (16)

≥ min{cP + αV (0,ρ), cR + αV (0, b)}, (17)

where inequality (16) follows from the assumption that cR < αcF , and inequality (17) by definition

of the minimum function. For all δ, ε > 0, there exist two finite, possibly distinct, integers xDN (δ, b)

and x(ε, b) such that for all x > xDN (δ, b),

|VDN (x, b)− (cI + αV (∞, b))| < δ, (18)

and for all x > x(ε, b)

|V (x, b)− (cI + min{cP + αV (0,ρ), cR + αV (0, b)})| < ε, (19)

where (18) follows from Lemma 4, and (19) follows from Corollary 2 and the strict inequality (16).

Define

d(b) = cI + αV (∞, b)− cI + min{cP + αV (0,ρ), cR + αV (0, b)},

then for any x > max {xDN (d(b)/2, b), x(d(b)/2, b)}, we have

VDN (x, b)− V (x, b) = VDN (x, b)− V (xb) + d(b)− d(b) (20)

= VDN (x, b)− V (xb) + d(b)− [cI + αV (∞, b)
− cI + min{cP + αV (0,ρ), cR + αV (0, b)}]

(21)

= (VDN (x, b)− cI + αV (∞, b)
+ [cI + min{cP + αV (0,ρ), cR + αV (0, b)} − V (x, b)] + d(b)

(22)

> −d(b)

2
− d(b)

2
+ d(b) (23)

= 0, (24)

where inequality (23) follows by (18), (19), and the fact that (15)-(17) imply d > 0. Thus, for

all x > max {xDN (d/2, b), x(d/2, b)}, doing nothing is strictly suboptimal. The result follows by

defining x(b) = max {xDN (d(b)/2, b), x(d(b)/2, b)}.

We are unable to confirm that the value function is jointly monotone nondecreasing; however,

if such monotonicity holds, we can establish stronger structural properties.
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Theorem 4 If V (x, b) is jointly monotone nondecreasing, then

1. for each b ∈ ∆Y , x ≤ x′ implies d∗(x, b) ≤ d∗(x′, b); and

2. if d∗(x1, b1) = 2, then d∗(x2, b2) = 2 for all x2 ≥ x1 and b2 ≥lr b1.

Proof. Part 1: By contradiction, assume that for some (x, b) ∈ X × ∆Y and x′ > x that

d∗(x, b) > d∗(x′, b). It follows by Theorem 2 that V (x, b) = min{cI + cR + αV (0, b), cI + cR +

αV (0,ρ)} and V (x′, b) = min{cI + cR + αV (0, b), cI + cR + αV (0,ρ), VDNx
′, b} ≤ min{cI + cR +

αV (0, b), cI + cR + αV (0,ρ)} = V (x, b). Therefore, V (x, b) = V (x′, b) and d∗(x, b) = d∗(x′, b),

which is a contradiction.

Part 2: If d∗(x1, b1) = 2, then by equation (2) we have that V (x1, b1) = cI + cP + αV (0,ρ),

and by joint monotonicity it is seen that V (x1, b1) ≤ V (x2, b2). Lastly, we note that V (x2, b2) ≤
cI + cP + αV (0,ρ). Combining these facts yields

cI + cP + αV (0,ρ) ≤ V (x2, b2) ≤ cI + cP + αV (0,ρ). (25)

Therefore, equality holds throughout (25), thus completing the proof.

Theorem 4, Part 1 asserts that, if the value function is jointly monotone, then the optimal decisions

are also monotone in the system’s virtual age for each belief vector b. Theorem 4, Part 2 establishes

that, if it is optimal to replace in a particular state, then it is optimal to replace for all larger states

(the belief vector being ordered in the likelihood ratio sense). That is, within the region for which

replacement is the optimal maintenance action, the preventive age replacement thresholds are

monotone nondecreasing in the belief vector.

4 Numerical Examples

In this section, we illustrate our maintenance optimization framework on synthetic problem in-

stances. We consider problems that are specifically tailored to illustrate particular properties, in

addition to a large bed of randomly-parameterized problem instances. Examined are the qualitative

properties of the optimal value function and resulting optimal policy. Additionally, we compare

the cost of following the optimal MOMDP policy to several other policies.

Throughout all of our numerical examples, it is assumed that the time-to-failure, (T |Q =

y), follows a Weibull distribution with common shape parameter k > 1 and scale parameter λy.

Additionally, it is assumed that λ1 > λ2 > · · · > λY . These distributional assumptions are

made due to the prevalence of the Weibull distribution in modeling the time-to-failure, particularly

within the context of maintenance optimization models. Additionally, under these assumptions, it

is straightforward to verify that Conditions 1-3 are met.

All two-quality problem instances are coded within the MATLAB R2016a computing environ-

ment, and the three-quality problem instance is coded within the Java SE Runtime Environment

8. All codes are executed on a personal computer with a 3.50 GHz processor and 8GB of RAM.

4.1 Randomly-Generated Problem Instances

Here, 200 two-quality problems (Y = 2) are randomly generated with the aim of varying the

problem parameters over a wide range values to assess the robustness of our MOMDP policy. In
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what follows, U(a, b) denotes a continuous uniform random variable on (a, b). Fixing the number

of system qualities at Y = 2, we randomly generate M = 200 problem instances. For problem

m ∈ {1, . . . ,M}: the discount factor is denoted α(m), where α ∼ U(0.8, 0.9999); the cost vector

is denoted c(m) = (c
(m)
I , c

(m)
F , c

(m)
R , c

(m)
P ), where c

(m)
I = 1, c

(m)
F ∼ U(4, 8), c

(m)
R ∼ U(1, 2), and

c
(m)
P ∼ c

(m)
R + U(1, 4); the time-to-failure distribution shape parameter is denoted k(m) and scale

parameter vector is denoted λ(m) = (λ
(m)
1 , λ

(m)
2 ), where k(m) ∼ U(1.1, 3), λ

(m)
2 ∼ U(1, 10), and

λ
(m)
1 ∼ λ

(m)
2 + U(1, 10); the initial quality distribution is denoted ρ(m) = (ρ

(m)
1 , ρ

(m)
2 ), where

ρ
(m)
1 ∼ U(0.1, 0.9) and ρ

(m)
2 = 1 − ρ(m)

1 ; and the inter-inspection period is denoted τ (m), where

τ (m) ∼ U(0.2, 1.5).

Because there are only two qualities, the belief state can be written as b = (b, 1− b); hence, the

belief space can be simplified to the interval [0, 1]. In order to compute the MOMDP policy, we

discretize the interval [0, 1] into 1,000 states and truncate X to be large enough to have negligible

impact on the optimal value function. When a value iteration step required the value function iterate

be evaluated at a non-grid point, it is approximated using simple linear interpolation between the

two nearest points. The optimal value function and policy are then obtained numerically using the

value iteration algorithm.

In addition to our MOMDP policy, we consider three other policies: Oracle, Heuristic, and

Naive. The Oracle policy is endowed with additional information in that it is given perfect infor-

mation about the system quality. It then takes actions prescribed by the MOMDP policy but with

the belief state fixed to the appropriate extreme point in ∆Y . The Oracle policy provides a per-

formance bound on the total expected discounted maintenance costs, as the additional information

guarantees that, in expectation, it will outperform the MOMDP model. The Heuristic policy is

determined by decoupling the problem across the belief states. Specifically, if the belief state is

fixed, the problem of determining the optimal policy simplifies to solving a one-dimensional set of

Bellman equations in which the time-to-failure distribution is determined by the current mixture

distribution. As in the MOMDP policy, we begin by discretizing the interval and then solving a

one-dimensional problem for each of the 1,000 belief states. This approach reduces the computa-

tional burden and storage requirements, and because each of the MDP models is monotone, we can

utilize a monotone value iteration algorithm to further enhance the computational savings. The

Heuristic policy is implemented by updating the belief about the quality of the system in the same

manner as the MOMDP policy, but at each inspection epoch, it utilizes the one-dimensional policy

corresponding to the current belief state to determine which action is taken. Finally, the Naive

policy fixes the belief state at the initial distribution and, similar to the Heuristic policy, solves a

one-dimensional MDP to determine whether or not to preventively maintain the system.

In order to compare the costs of the four policies, we use a simulation model. For a given

simulation run, we simulate the system’s time-to-failure each time it enters service, and when a

system is replaced, we randomly draw a new system using the initial distribution ρ(m). For each m,

the simulation run length is given by the number of decision epochs N (m). Along each sample path,

the total discounted cost is computed for each policy of interest, and these values are compared.

It should be noted that, because the expected one-step costs are bounded, and the cost function

is discounted, we can determine a priori the simulation run length needed to ensure that the

total discounted cost is accurate to a fixed constant. More precisely, to guarantee that the finite
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approximation is within ε (ε > 0) of the true total discounted cost, the number of decision epochs

N (m) must satisfy

N (m) ≥
ln
[
(1− α(m))ε/C(m)

]
ln(α(m))

− 1, m = 1, . . . ,M,

where C(m) is any valid upper bound on the expected one-step costs. For all numerical examples,

N (m) is chosen to correspond to ε = 0.01 and C(m) is taken to be c
(m)
I + c

(m)
F + c

(m)
P .

For each problem instance m ∈ {1, . . . ,M}, 500 sample paths are simulated and the cost of

following each policy is computed. Under a particular policy and problem instance m, we denote

the average total discounted maintenance cost (averaged over the 500 sample paths) by v̄
(m)
policy, e.g.,

v̄
(m)
Naive. In problem instance m = 12, the parameter values are as follows:

α(12) = 0.9904

c(12) = (1, 4.2283, 1.9530, 3.9396)

k(12) = 1.9516

λ(12) = (14.3213, 8.1914)

ρ(12) = (0.4907, 0.5093)

τ (12) = 0.4942

Problem instance m = 12 is noteworthy in that it exhibits the greatest discrepancy between the

MOMDP and Naive policies; the MOMDP policy achieved a 39.47% average cost savings, i.e.,

v̄
(m)
Naive − v̄

(m)
MOMDP

v̄
(m)
Naive

× 100% = 39.47%.

For each problem instance, we establish baseline performance by comparing each policy to the

Oracle policy. We assess this difference by comparing the average increase in cost realized by using

each policy. This increase, for a particular policy in problem instance m, is denoted by v̂
(m)
policy. For

example, when comparing the MOMDP policy against the Oracle policy in problem m, we compute

v̂
(m)
MOMDP =

v̄
(m)
MOMDP − v̄

(m)
Oracle

v̄
(m)
Oracle

× 100%.

These percentage increases are then averaged over all 500 problem instances to obtain the average

cost increase for a given policy, denoted by v̂policy. Table 1 summarizes the average cost increase

for each policy, demonstrating significant savings achieved by utilizing the MOMDP policy. It is

noteworthy that our model yields a nearly 20% improvement over the Naive policy, on average.

Table 1: Summary of policy comparison results.

v̂Oracle v̂MOMDP v̂Heuristic v̂Naive

– 7.70% 20.90% 26.39%

Figure 1 depicts the cost comparison between two particular problem instances, m = 10 and

m = 12. In problem instance m = 10, the parameter values are as follows: α(10) = 0.9989, c(10) =

(1, 7.5643, 1.7253, 4.3246), k(10) = 1.4123, λ(10) = (10.5496, 5.8213), ρ(10) = (0.3754, 0.6246), and
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τ (10) = 0.9942. In these problem instances, the difference between the performance of the MOMDP

policy and Oracle policy are negligible, but there is a large performance gap between the MOMDP

policy and the Naive and Heuristic policies. The most striking commonality between these two

problem instances is that the discount factor α(m) is large in both cases (α(10), α(12) > 0.99). Under

appropriate regularity conditions, for all discount factors sufficiently close to unity, there exists a

common optimal stationary, deterministic policy that is also optimal under an average cost criterion

(cf. [3, 7]). Therefore, we can expect our framework to also outperform these policies under an

average cost criterion.
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(a) Boxplots of total discounted cost for m = 10.
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(b) Boxplots of total discounted cost for m = 12.

Figure 1: Boxplots comparing policy costs for problem instances m = 10 and m = 12.

4.2 A Specific Two-quality Problem

For the example considered in this section, the number of system qualities is again Y = 2. The

discount rate is α = 0.99 and the cost vector is c = (cI , cF , cR, cP ) = (1, 2, 3, 4), the time-to-

failure shape parameter is k = 2, the scale parameter vector is λ = (λ1, λ2) = (12, 6), the initial

distribution is ρ = (ρ1, ρ2) = (0.7, 0.3), and the inter-inspection period is τ = 0.2.

To compute the MOMDP policy, the belief space, [0, 1], is uniformly discretized into 1,000

states and X is truncated to be {0, 1, . . . , 200,∞}. The optimal value function and policy are

then obtained numerically using the value iteration algorithm. When a step in the value iteration

algorithm requires a value function iterate whose belief state is outside this discretization, it is

approximated by linear interpolation. For each (x, b) in the discretized and truncated set of states,

let vk(x, b) denote the kth iterate of the value iteration algorithm. The algorithm terminates when

the maximum norm of the difference between subsequent value function iterates is below 10−6, that

is,

||vk+1 − vk||∞ = max
x,b
{|vk+1(x, b)− vk(x, b)|} ≤ 10−6.

In the case of only two qualities, the belief space is completely ordered; consequently, as seen
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in Figure 2, the value function exhibits monotonicity across the entire state space. In Figure 3,

the MOMDP and Heuristic policies are depicted. For each fixed belief, b1, both policies are of

threshold type in age. We note that for the MOMDP policy, it is guaranteed to be of threshold-

type by Theorem 4, Part 1. Interestingly, in the MOMDP policy, we see that near the interface

where the repair and replacement regions meet, the age threshold is increasing in both regions. This

behavior is somewhat counter intuitive as the time-to-failure is stochastically smaller (in the hazard

rate sense) near this interface than it is when b1 is nearer to 1. This behavior can be understood as

a natural exploration that occurs in the MOMDP policy. By allowing the system to function longer

near this interface, the decision maker obtains failure data that is less likely to be right-censored.

This additional data can be used to increase the likelihood that a high quality system is repaired

and a low quality system is replaced. Moving away from this interface (by either increasing or

decreasing b1), we see that actions become more exploitative, i.e., quickly replace systems that are

likely to be low quality and allow systems that are likely to be high quality to function for longer

before preventively repairing. Additionally, we see that near where b1 = 1, the MOMDP policy

and the Heuristic policy are nearly identical. This observation is not surprising, as Proposition 7

guarantees that they should be exactly the same when b1 = 1.
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Figure 2: Depiction of the optimal value function (dark colors indicate lower costs).
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Figure 3: Comparison between the MOMDP and Heuristic policies.

4.3 A Specific Three-quality Problem

For the example considered in this section, the number of system qualities is Y = 3. The discount

rate is α = 0.99 and the cost vector is c = (cI , cF , cR, cP ) = (1, 2, 3, 4), the time-to-failure shape

parameter is k = 2, the scale parameter vector is λ = (λ1, λ2) = (12, 10, 6), the initial distribution

is ρ = (ρ1, ρ2, ρ3) = (0.5, 0.2, 0.3), and the inter-inspection period is τ = 1.

To compute the MOMDP policy, each dimension of the belief space is uniformly discretized into

500 states and X is truncated to be {0, 1, . . . , 50,∞}. The optimal value function and policy are

then obtained numerically using the value iteration algorithm. When a step in the value iteration

algorithm requires a value function evaluation at a belief state outside this discretization, it is

approximated by bilinear interpolation (with edge cases approximated by linear or barycentric

interpolation). For each (x, b) in the discretized and truncated set of states, let vk(x, b) denote the

kth iterate of the value iteration algorithm. The algorithm terminates when the maximum norm

of the difference between subsequent value function iterates is below 10−6, that is,

||vk+1 − vk||∞ = max
x,b
{|vk+1(x, b)− vk(x, b)|} ≤ 10−6.

Figure 4 depicts a portion of the optimal value function evaluated at virtual age x = 5 and x =

25. It should be noted that in each image, the origin represents the belief state b = e3 = (0, 0, 1),

and can, therefore, be thought of as the worst belief. For this reason, we see that at x = 5 and

x = 25 starting from this belief state has the highest total expected discounted cost. Similarly,

starting from belief state (1, 0, 0) has the lowest cost. It can also be observed that the value function

exhibits monotonicity for each fixed x (as guaranteed by Theorem 1), but also across the x’s, i.e.,

V (5, b) < V (25, b) for each b.

Figure 5 provides a graphical depiction of the MOMDP policy. By Theorem 2, the belief state

space can be partitioned into two regions: one in which doing nothing or repair is optimal, and

another in which doing nothing or replacement is optimal (see Figure 5(a)). It is not coincidental
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(a) The optimal value function at x = 5.
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(b) The optimal value function at x = 25.

Figure 4: Depiction of the optimal value function (dark colors indicate lower costs).

that these regions are separated in the belief state space by a straight line; rather, it is a further

consequence of Theorem 2 resulting from the partitioning of ∆3 being related to the likelihood ratio

ordering. In particular, these regions are divided in such a way that if b ≤lr b
′ and b′ is in the

repair region, then b is also in the repair region. Similarly, if b ≤lr b
′ and b is in the replacement

region, then b′ is also in the replacement region.
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(b) The preventive maintenance thresholds.

Figure 5: Depiction of the MOMDP policy (dark colors indicate lower thresholds).

By the joint monotonicity of the value function, and Theorem 4, Part 1, the optimal policy

is guaranteed to be a threshold-type policy, for each fixed belief state. Figure 5(b) shows the

age threshold for each belief state above which it is optimal to perform preventive maintenance.

Unsurprisingly, the thresholds are ordered at the corner points of the plot, i.e., the threshold at e3

is the smallest and at e1 is the largest. However, in contrast to the two-quality case, the largest

threshold is not when the belief state is e1, but rather at b = (0.4, 0, 0.6). Again, a ridge is formed

along the interface between the repair and replacement regions where exploration is encouraged in

the form of large thresholds. Additionally, we see that the thresholds are monotone in the belief

state within the replacement region, but not within the repair region. By the joint monotonicity

of the value function, the monotone age thresholds in the replacement region are guaranteed by

Theorem 4, Part 2.

5 Conclusions and Future Work

In this work, we have considered the problem of optimally maintaining a stochastically degrading,

single-unit system with heterogeneous spare parts of varying quality. To address this problem,

we presented an MOMDP model and investigated its properties. Under intuitive conditions on

the time-to-failure distributions, we have established monotonicity properties of the optimal value

function and presented a comprehensive characterization of the optimal policy. Additionally, by

way of a detailed computational study, we highlighted the cost savings that can be achieved by

properly accounting for spare part heterogeneity. These numerical illustrations also revealed that

the optimal policy implicitly accounts for the tradeoff between receiving high-quality, uncensored

data (which improves long-term decision making) and reducing short-term maintenance costs.

The model we presented herein can be improved in a few important ways. First, our model

assumes that the proportion of parts of each quality is fixed and known, and that the number of

qualities and their respective time-to-failure distributions are known. Relaxing these assumptions
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would allow for additional model flexibility and the investigation of tradeoffs between parameter

learning and maintenance decisions that exploit the current belief about the parameters. Another

promising direction for future research is to relax the assumption that the inter-inspection period

τ is a predetermined model parameter. Two problems related to this relaxation are worthy of

further consideration: (i) determining the optimal fixed value of τ ; and (ii) allowing the subsequent

inter-inspection length to be set at each inspection epoch. In the latter problem, shorter inter-

inspection intervals would provide higher-quality information but with an increase in cost. Due to

this tradeoff, we suspect the optimal policy may be difficult to fully characterize.
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Appendix: Proofs of Lemmas

Proof of Lemma 1

Proof. Define limx→∞By(x, b) = `y, then if `y exists for ever y, B(x, b) → (`1, . . . , `Y ). Now,

by definition,

By(x, b) =
g(x, y)

G(x, b)
by,

where clearly, by Condition 2, we have that g(x, y)→ 1 and G(x, b) =
∑

m g(x,m)bm →
∑

m bm =

1. Therefore, By(x, b) → by and B(x, b) → b. Similarly, we consider B̄y(x, b), where, after some

algebraic manipulation,

B̄y(x, b) =
ḡ(x, y)by∑
m ḡ(x,m)bm

=
by∑

m
ḡ(x,m)
ḡ(x,y) bm

=
by

by +
∑

m 6=y
ḡ(x,m)
ḡ(x,y) bm

. (26)

For y = 1, by Condition 3, the expression in (26) converges to 1.

Proof of Lemma 2

Proof. In what follows, the norm ||·|| will denote the Euclidean norm. For ε > 0, consider δ(ε) =

ε/Y . Then, for any b, b′ ∈ ∆Y such that ||b−b′|| < δ(ε) we seek to show that
∣∣Ḡ(x, b)− Ḡ(x, b′)

∣∣ <
ε. First, we note that ||b − b′|| < δ(ε) implies

∣∣by − b′y∣∣ < δ(ε) for all y ∈ Y. Now, by the non-

negativity of ḡ(x, y) and the triangle inequality, we know that

∣∣Ḡ(x, b)− Ḡ(x, b′)
∣∣ =

∣∣∣∣∣∑
y

ḡ(x, y)(by − b′y)

∣∣∣∣∣ ≤∑
y

ḡ(x, y)
∣∣by − b′y∣∣ ,

but by the bound on
∣∣by − b′y∣∣, we have that∣∣Ḡ(x, b)− Ḡ(x, b′)

∣∣ < ε

Y

∑
y

ḡ(x, y) ≤ ε

Y

∑
y

1 = ε.

Therefore, Ḡ(x, b) is continuous in b, and because G(x, b) = 1− Ḡ(x, b), we conclude that G(x, b)

is likewise continuous in b.

Next, note that the function B̄(x, ·) is continuous if, and only if, B̄y(x, ·) : RY → R is continuous

for all y ∈ Y. By the continuity of Ḡ, we note that B̄y(x, b) =
(
Ḡ(x, b)

)−1
ḡ(x, y)by is a product

of continuous functions and is, therefore, continuous. Hence, by the continuity of its components,

B̄(x, ·) is continuous. The proof that B is continuous is similar.
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Proof of Lemma 3

Proof. By induction, if v0(x, b) = 0 for all (x, b) ∈ X ×∆Y , then

v1(x, b) =

cI + cR + cF , x =∞,
cI , x <∞,

so the base case holds. Now, assume vk(x, b) is continuous in b and note that

vk+1(∞, b) = cI + cF + min{cP + αvk(0,ρ), cR + αvk(0, b)}.

Because the minimum of continuous functions is again continuous, we conclude that vk+1(∞, b) is

continuous in b. Now, for finite x ∈ X ,

vk+1 = min{vk+1(∞, b)− cF , Ck
DN (x, b)},

where Ck
DN (x, b) = cI +α(Ḡ(x, b)vk(x+ 1, B̄(x+ 1, b)) +G(x, b)vk(∞, B(x+ 1, b)). Therefore, we

proceed to show that Ck
DN (x, b) is continuous to complete the proof. By Lemma 2, it is known

that B̄ is continuous; hence,

lim
bn→b

B̄(x+ 1, bn) = B̄(x+ 1, b).

Then, by the induction hypothesis, we see that

lim
bn→b

vk(x+ 1, B̄(x+ 1, bn)) = vk(x+ 1, lim
bn→b

B̄(x+ 1, bn)) = vk(x+ 1, B̄(x+ 1, b));

thus, vk(x+1, B̄(x+1, bn)) is continuous. Similarly, vk(∞, B(x+1, bn)) is also continuous. Lastly,

we note that G and Ḡ are continuous by Lemma 2. Because Ck
DN (x, b) is the composition of

continuous functions, it is also continuous.

Proof of Lemma 4

Proof. We first show that, for all x < ∞, V (x, b) is finitely bounded. By (2), we note that

V (0, b) ≤ cI + cR + αV (0, b). Rearranging terms, observe that V (0, b) ≤ (cI + cR)/(1 − α). For

any x <∞, V (x, b) ≤ cI + cR + αV (0, b) ≤ cI + cR + α(cI + cR)/(1− α). By Condition 2 and this

finiteness, we have that

lim
x→∞

Ḡ(x, b)V (x+ 1, B̄(x+ 1, b)) = 0.

By Condition 2, Lemma 1, and Lemma 3,

lim
x→∞

G(x, b)V (∞, B(x+ 1, b)) = V (∞, lim
x→∞

B(x+ 1, b)) = V (∞, b).

Therefore, VDN (x, b)→ cI + αV (∞, b).
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