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This article presents an analytical model for a few important operational characteristics of single-
lane roundabouts in the United States, In particular, we obtain renewal-based analytical expressions
for the mean and variance of the time required for entry into the circulating stream for an arbitrary
vehicle occupying the first position of the approach, regardless of the distribution of time headways
for the circulating stream. These analytical models are subsequently applied in a M/G/! queuing
model to compute the steady-state average delay and length of the queue at the approach under stable
conditions. The analytical models are validated by comparing numerical results for average delay with
field observations obtained at six single-lane roundabout sites in the United States. The models are
shown to perform well under a range of circulating stream flow rates.

Keywords: Roundabout operations; Roundabout delay; Headway distribution; Delay; Unsignalized
operations

1. Introduction

In the United States, unsignalized intersections exist in various forms, such as T-intersections,
two-way stop controlled intersections and all-way stop controlled intersections. An at-grade
intersection known as the roundabout has been introduced in the United States. In the early
1940s, a similar intersection known as the traffic circle gained much popularity; however,
roundabouts differ from traffic circles in that they include yield on entry, deflection on
approaches and flared entries (Myers 1994). In fact, some publications consider roundabouts
as a subset of traffic circles with greater restrictions on placement, design and operational
characteristics (FDOT and MdSHA 1995). ,

In 1994, the first multi-lane roundabout freeway interchange in the United States opened
in Vail, CO. Although the interchange has been successful to improve traffic conditions,
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roundabout installations at high volume intersections in the United States are rare. Many
state and local officials are taking a conservative approach to the implementation of round-
abouts and are limiting their use to single-lane sites until their suitability is better understood
in the United States.

Despite the limited use of roundabouts in this country, many new roundabouts are being
planned or designed by local and state engineers in the absence of a comprehensive study on
the safety and operational performance of roundabouts. An operational method (based on the
performance of American drivers) is required to allow practitioners to realistically compare
various design alternatives. Typical operational performance assessment includes capacity
prediction and various performance measure estimates. Capacity models are used to estimate
the maximum hourly flow rate at which vehicles can reasonably expect to enter an intersection
under prevailing conditions during a given time period. For a driver waiting to enter the

_circulating stream, measures for intersection analyses include estimates of average delay per
vehicle (i.e. time in queue, time required for an acceptable gap and acceleration/deceleration
time) and average queue length. The current US Highway Capacity Manual (HCM 2000)
contains a procedure for estimating capacity at single-lane roundabout approaches based on
gap acceptance procedures developed in Australia and limited United States field data. The
current HCM does not contain a procedure for estimating delay at either single-lane or multi-
lane roundabouts.

The main coniributions of this article are as follows. First, we present analytical results for
the mean and variance of the random time required for a vehicle waiting at the roundabout
approach to enter the circulating stream under stable conditions. We term this quantity as
the service time. Subsequently, the results of our analytical models may be applied in a
steady-state queuing model to provide estimates for the average delay of vehicles on the
roundabout approach as well as the average queue length. Finally, our analytical results for
average delay are validated via field data obtained from several single-lane roundabout sites in
the United States. The model is unique in that it is suited to handle any interarrival distribution
whatsoever for the circulating traffic stream. To our knowledge, this general model of the
mean and variance of service time is the first of its kind in that it explicitly models the
service time apart from estimates of capacity. Limitations to the model approach include
its inability to simultaneously model the performance of more than one approach at a time.
However, roundabouts are typically analyzed on an approach basis and considered to operate
as individual yield control points with short distances between these points.

The remainder of the article is organized as follows. In section 2, we review some previous
delay models for roundabouts in the UK and Australia. In section 3, we present our formal
model description and obtain analytical expressions for the mean and variance of service

- time. Section 4 describes an empirical study used to evaluate the efficacy of our model when

compared with field observations of vehicle delay. In section 5, we provide some concluding
remarks and directions for future research.

2. Review of past work

Methodologies have been developed to estimate the capacity of roundabouts and the delay
experienced by drivers entering roundabouts in several countries including Great Britain,
Australia, Germany, the Netherlands and others. Two primary methodologies exist for the
estimation of capacity: empirical models and gap acceptance theory, Empirical regression
models were developed in the UK at the Transport and Road Research Laboratory (TRRL) in
the late 1970s from data gathered during test track experiments in which full scale models of
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roundabouts with varying geometric characteristics operating under saturated conditions were
monitored to measure the capacity of individual entries under such conditions (Kimber and
Semmens 1977). It was hypothesized that the maximum allowable entry flow for a roundabout
is that rate at which vehicles are continuously queued on the subject approach. In such cases,
the entry is considered to be saturated and the flow that enters the roundabout during a specified
period (typically 1min, then extrapolated to an hourly rate) is deemed to be the roundabout
entry capacity. The TRRL study yielded a linear relationship between the entry capacity and
circulating flow rate that accounts for 90% of the variation in the measurement of entry
capacity. This relationship is given by

Ge = —fcge + F n

where g, denotes the entry capacity in veh/h, ¢, denotes the circulating stream flow rate across
the subject entry in veh/h, f. is given by the equation

fc=0.29+0.116w, 2)
and F is given by the equation
F =329w, + 354 +2.4D — 135 3)

where w, denotes the entry width in m, u denotes the circulation width in m and D denotes
the size factor in m. All of these factors (we, # and D) were found to be significant.

Capacity estimation models using gap acceptance theory have also been developed to esti-
mate the maximum rate at which vehicles on a roundabout (minor) approach can enter the
circulating (major) stream of a roundabout. This maximum rate is a function of not only
the availability of acceptable gaps in the circulating stream, but also driver behavior which
dictates operational characteristics known as critical gap and follow-up time. Critical gap is
defined in the HCM as the minimum acceptable gap that entering drivers will utilize to enter
the circulating stream (HCM 2000). Follow-up time represents the flow of two or more vehi-
cles from the entering stream into large gaps in the circulating stream. Follow-up time is the
headway maintained by minor stream drivers as they enter large gaps in the circulating stream
subsequently. With the further assumption that time headways in the circulating stream follow
an exponential distribution, Tanner (1967) developed, and Troutbeck (1986, 1988) further
refined, the following equation for entry stream capacity at single-lane roundabouts.

_ qee exp(—A(ty — A))
© 1 — exp(—Atr)

@

where o denotes the proportion of free vehicles (those vehicles in the circulating stream which
are not traveling in platoons), A is the headway between platooned vehicles in the circulating
stream, A is given by the equation

_ %4

S 1- ch,

t, is the critical gap in s and # is the follow-up time also in s. Refinements to equation (4) have
been suggested by many researchers to account for the varying critical gap between vehicles in
different lanes of a multi-lane roundabout approach and make use of the Cowan M3 distribution
(Cowan 1975) for the circulating stream. This brief review of capacity models serves to
demonstrate the link between capacity estimation models and delay estimation models.

The average delay, experienced by drivers entering general unsignalized intersections, is
now defined in the HCM as the delay experienced accelerating and decelerating to negotiate

®
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entry, time spent in the queue and service time, which is defined as the time spent at the head
of the queue. Control delay includes 5 s of delay to account for acceleration and deceleration
experienced by the driver as he/she travels into and through an unsignalized intersection (Kyte
et al. 1991) and this adjustment leads to the current unsignalized capacity and delay estimation
methodologies included in the HCM 1997, 2000 editions.

Typically, time spent in the queue and service time have been modeled by researchers
using M/M/1, M/G/1 or M/G2/1 queuing systems. In most instances, it has been found
acceptable to estimate service time, which is an intrinsic part of the delay estimation model,
as the reciprocal of entry capacity (Kimber et al. 1986, Fisk 1991). In an attempt to account
for varying service time, authors have linked service time to the degree of saturation on the
subject approach which is defined as the ratio of the entry flow to the capacity on an approach.
In particular, Troutbeck (1986) applied the Pollaczek-Khintchine (P-K) formula from the
standard results of aM/G/1 queuing system to estimate delay at minor approaches. The delay
for an individual driver is given by

W=g;'(1+Cx(1 ~x)7) ©)

where W is the average delay experienced by drivers, x = g, /¢, is the degree of saturation
in which g, is the approach entry flow rate in veh/h and the constant parameter C is 1.0 for
exponential service time and 0.5 for deterministic service time.

Of particular relevance to our model are those approaches utilizing the more general
M/G2/1 queuing system which attempts to account for the delay experienced by two types
of drivers: (1) those who encounter a busy server upon arrival and (2) those who encounter an
idle server (i.e., those who move directly into the server which is defined as the first position
of the approach).

One important study which utilizes the M/G2/1 model is by Heidemann and Wegmann
(1997) who generalize most previous models and provide analytical results for key measures
such as queue length, delay and their associated probability distributions. This article also
presents a general capacity formula. The main premise of the work is the use of a general
gap-block process in the context of the M/G2/1 queue. In such processes, the gaps between
vehicle arrivals in the major stream are random as are the block lengths. The model contributes
significantly to the analysis of general unsignalized intersections but requires that gaps are all
independent and exponentially distributed random variables. The block (B) is assumed to have
a general distribution. Moreover, the arrival process of the subordinate stream is a Poisson
process with time-invariant rate. With regard to the gap-acceptance aspects of this model, the
authors consider two cases for the behavior of drivers: (i) when the critical gap is assumed to be
afixed value from a known population (consistent drivers) and (ii) when drivers make multiple
critical gap choices that may originate from differing populations (inconsistent drivers).

We present a renewal-based analytical approach to compute the mean and variance of the
time required for an arbitrary individual in the first position of the approach to enter the
circulating stream of a single-lane roundabout. (By arbitrary individual, we mean that we do
not distinguish between drivers that see an empty or an occupied first position.) An accurate
estimate of the mean and variance of this random time is subsequently apptied in a M/G/1
queuing model which uses the P-K formula to determine the overall average number of vehicles
waiting to enter a single-lane roundabout (average queue length) and the expected total waiting
time (i.e. average delay) for an arbitrary driver under stable conditions. Our M/G/1 model
can, in fact, be considered as a special case of the one due to Heidemann and Wegmann (1997)
wherein the subordinate vehicles arrive to the roundabout according to a Poisson process with
fixed intensity (as in the M/G2/1 model) and the circulating traffic stream generates vehicle
arrivals according to a renewal process. The latter assumption corresponds to a block length of
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zero (B = 0) in the approach of Heidemann and Wegmann (1997). It is assumed that all drivers
use a fixed critical gap at the approach. We further adopt our renewal-based model to real data
from several single-lane roundabout sites in the United States and demonstrate the model’s
effectiveness for evaluating the average delay. The results of the field experiment indicate
good model performance at a variety of flow levels. In section 3, we present the specifics of
our mathematical model.

3. Analytical models

In the setting of a single-lane roundabout, vehicles arrive to the approach and wait for an
acceptable gap between subsequent vehicles in the conflicting traffic stream before entering
the roadway. If an arbitrary vehicle arriving to the roundabout finds a vehicle already in the
first position of the approach, then that individual must wait for entry of the first vehicle to
the traffic stream before assuming the first position. On the other hand, if a vehicle arrives at
the approach and sees no vehicles ahead of it, the driver immediately assumes the first position
of the approach and awaits an acceptable gap to enter the circulating traffic stream. In reality,
vehicles may not always come to a complete stop in this scenario, but rather, may simply
decelerate before proceeding into the circulating stream. Figure 1 graphically depicts a typical
roundabout in which the approach and circulating traffic stream are displayed.

This scenario of vehicles arriving to the approach and awaiting entry to the roundabout
may be modeled as a queuing system. More specifically, we model the first position of the
approach as the server in the queuing system and the queue is the waiting line of vehicles
on the approach seeking ‘service’ in the first position. If it is assumed that vehicles arrive
to the approach according to a Poisson process and that the approach to the roundabout can
physically accommodate an infinite number of vehicles, then the system may be modeled as an
M/G/1 queue. Some of the implications of these assumptions will be discussed subsequently.

The true service time for a vehicle in the first position of the approach includes the time
required to wait for an acceptable gap, travel time to enter the circulating stream and the
headway for the subsequent circulating vehicle. It should be noted that a point queuing model

First position of approach
(server)

Approach (queue)

Figure 1. Pictorial representation of a single-lane roundabout.
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assumes instantaneous service (i.e., zero elapsed time for vehicle passage into the circulating
stream). However, in typical operation modeling, a vehicle is not considered to be ‘serviced’
until the rear bumper of the vehicle clears the yield bar. Adjustments to our model for this
discrepancy are described in section 4.

The total system waiting time is the random time spent on the approach waiting to assume
- the first position in the queue plus the service time. Applying standard queuing results for the
M/G/1 queue (Gross and Harris 1998), the mean number of vehicles in the system (server
and queue) in steady state is given by the P-K formula

V2 4 A20?
20 ~y)’

from which the mean waiting time for an arbitrary vehicle can be obtained by Little’s law as

L=y+ )

W = L1 ®)

where A is the mean arrival rate of vehicles to the queue, ,LL_I is the mean service time of
the server, o2 is the variance of the service time and y = A/u is the traffic intensity. Clearly,
equations (7) and (8) require only the mean arrival rate of vehicles to the approach (1) and the
mean and variance of the service times having a general distribution function, G. However, it
is important to note that these equations are valid only under stable operating conditions, i.e.,
the arrival rate of vehicles to the approach may not exceed the total service rate at the approach.
This assumption corresponds to the roundabout system experiencing light to moderate traffic
conditions.

In this model, we also assume that the approach to the roundabout is able to accommodate
an infinite number of vehicles. Our rationale for doing so is as follows. Let K < oo denote
the total number of vehicles that may be accommodated on the approach (including the first
position) foran M/G/1/K queuing system. For K sufficiently large, the M/G/1 queuing results
‘serve as a good approximation to the M/G/1/K system. As it seems practically reasonable
to assume that the approach would accommodate at least 10 vehicles and because the steady-
state distribution is intractable when the waiting room is finite, we employ the infinite waiting
room assumption. In what follows, we review some rudimentary concepts from the theory
of renewal processes which are needed to derive our analytical expressions for the mean and
variance of the service time.

Let {N(¢) : t = 0} be a counting process such that N(z) denotes the number of occurrences
of an event in the time interval (0, ¢]. Define X, as the time between event n — 1 and event
n. The counting process {N(r) : t > 0} is said to be a renewal process if the sequence of
non-negative random variables {X1, X», ...} is independent and identically distributed with
arbitrary distribution function F. For example, when the distribution function of the interevent
times is exponential, the counting process is said to be a Poisson process.

A delayed process is one in which the distribution function for the first interevent time X is
F¢ while the sequence {X,: n =2, 3, ...} follows the distribution F. The distribution function
Fe, referred to as the equilibrium distribution, is related to F by

Fult) = 71 /0 (1 = P du ©

where T = E(X,). After the occurrence of the first event, the renewal process is initiated, and
henceforth, all interevent times have cumulative distribution function F.

In the case of the single-laneé roundabout, the sequence of observations, {X|, X, ...},
correspond to time headways for the circulating traffic stream. In subsection 3.1, we present
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the main results of our paper; analytical models to compute the mean and variance of service
time as a function of the arbitrary headway distribution F. The derivations of the expressions
can be found in Appendix A.

3.1 Mean and variance of service time

Let T be a continuous random variable denoting the time for a driver to enter the circulating
stream of a single-lane roundabout given that the driver is at the front of the waiting line (i.e.
T is the service time). Our objective is to calculate the expected value and variance of T given
that headway times for the circulating stream follow some general cumulative distribution
function denoted by F. The first vehicle attempting to enter the circulating stream arrives at the
approach at some intermediate phase of the renewal process and not at the beginning (i.e. with
probability 1, the first driver does not enter the approach at the inception of a renewal epoch).
Hence, the elapsed time until first passage of a circulating stream vehicle will not technically
follow the distribution F, but can be assumed to follow the equilibrium distribution (see
equation (9)) of F.

Define g as the mean acceptable gap for drivers arriving at the subject approach and 7 as the
mean time headway for circulating vehicles under the general distribution F. In our context,
gaps are considered to be time headways in the circulating stream. It is assumed in this work
that all drivers use the same mean acceptable gap (i.e. all drivers are consistent and choose
the same fixed critical value from the same population). This assumption of our model is
somewhat restrictive; however, we use it to gain analytical insight into the behavior of the
service time. In the subsequent discussion, it will be seen that the mean and variance of the
service time are, in fact, highly dependent on the value of g. We next present the main results
of this article and defer the derivations of such to Appendix A. The expected service time may
be obtained by conditioning upon the passage time of the first and subsequent vehicles in the
circulating stream by the equation

/1, g | g g
E(T):—(—g —/ 1R dt + (1 — F(g))™ <g—f F(t)dt/ tdF(t))). (10)
T\2 0 0 0

Derivation of equation (10) is provided in Appendix A.
Using an approach similar to that used for deriving the mean service time, the variance of
service time 7" may also be derived using the fundamental relationship

VAR(T) = E(T?) — (E(T))% an

Using this relationship, the variance of service time (Appendix A) may be written as

VAR(T) = % (lg3 + E(Ty)g? — / : (t* 4+ 2tE(Ty)) - F(t) dt)
0 .

3
1 8 8 g
+1 (g— f () de(l - F(g))-') - < f 2AF () + 2E(Ty) f de(z))
T 0 0 0
—[E(T)P? (12)

where the last term of (12) is obtained by equation (10) and E(Tp) = (1 — F(g))™" [EtdF(2),
(refer equation (A4) in Appendix A). Equations (10) and (12) require only the mean time
headway of the circulating stream, the mean acceptable gap and the cumulative distribution
function of the interarrival times of the circulating stream. These expressions make no assump-
tions regarding the time headway distribution; however, if, e.g., the headway distribution is
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Figure 2. Expected service time for exponential time headway with various mean acceptable gaps.

exponential with rate 6, then E(T') and VAR(T') are, respectively, given by
E(T) =0 (exp(dg) — 1) — ¢ (13)

and
VAR(T) = 0~ %((exp(9g) — 0g)* — 1) — g% (14)

Equation (13) is in agreement with the delay equation originally due to Adams (1936). In
order to depict the behavior of E(T), VAR(T) and the effect of the mean acceptable gap, the
mean and variance of service time are plotted in figures 2 and 3, respectively, as a function of
the mean time headway when the headway distribution of the circulating stream is exponential.
In such cases, the coefficient of variation (the ratio of the standard deviation to the mean) of
the headway times of the circulating stream is equal to unity.

In agreement with intuition, figure 2 indicates that, for all gap sizes, the expected service
time decreases as the circulating stream time headway increases. Moreover, the mean service
time increases with the mean acceptable gap. However, the impact of the acceptable gap size
diminishes in the region of large time headways as larger gaps permit nearly instantaneous
entry to the circulating stream of the roundabout. Figure 3 reveals similar trends for the variance
of service time given that the circulating stream headway times are exponentially distributed.
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Figure 3. Variance of service time for exponential time headway with various mean acceptable gaps.
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Figure 4. Average wait time for exponential time headway and various mean acceptable gaps (approach arrival
rate = 500 veh/h).

Equations (10) and (12) are next utilized in the M/G/1 queuing model to obtain our
performance measures, namely the average number of vehicles on the approach given by

M[(E(T))* + VAR(T)]

L=2EMD + =55 (15)

and the average waiting time on the approach (queue time plus service time), which is obtained
by equation (8). Figure 4 demonstrates the effect of the mean and variance of headway times
on the total waiting time (W) for various acceptable gap sizes. In figure 4, headway times are
assumed to follow an exponential distribution, and the arrival rate to the approach is 500 veh/h.

The figure indicates that the average waiting time on the approach increases as the mean
acceptable gap increases. Intuitively, the same trend is observed as that for the mean and
variance of service time, namely that the effect of the gap size diminishes as the mean headway
times tend toward infinity.

Equation (15), in conjunction with equation (8), was used to compute the mean queue length
(L) and mean waiting time (W) for a number of approach arrival rates when the circulating
stream was assumed to be exponentially distributed. Table 1 provides a summary of the
performance measures when the mean time headway is exponential with mean 3.0s (and
variance 9.0s%) and the mean acceptable gap for drivers entering the circulating stream is 3.5 s.

The derived analytical models of this section require only the mean accepted gap for drivers,
the headway distribution of the circulating stream and the arrival rate to the roundabout

Table 1. Performance measures when time headways are
exponentially distributed with mean 3.0s, g = 3.5s.

Approach flow Average number of Average waiting

rate (veh/h) vehicles in system (L) time (W) (s)
50 0.046 3.314

100 0.098 3.515

200 0.221 3.980

300 0.380 4,553

400 0.587 5.281

500 0.866 6.232

600 1.255 7.530

700 1.823 9.403

800 2.744 12.348
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approach only. The headway distribution of the circulating stream may be approximated by
collecting headway data under varying levels of traffic flow. The time headway maintained by
a pair of circulating stream vehicles is formally defined as the elapsed time between the front
bumper of the first vehicle and the front bumper of the second circulating vehicle with respect
to a fixed point of reference. By collecting a sufficiently large number of headway obser-
vations at a roundabout site, an empirical distribution function may be obtained. Thereafter,
through the use of standard goodness-of-fit tests, it is possible to fit a parametric probability
distribution to the headway data. The fitted distribution is then used explicitly in equations
(10) and (12) to estimate the mean length of the queue and the average amount of time an
arbitrary vehicle waits before entering the circulating stream whenever the system is in steady
state (i.e., when traffic conditions are stable). In section 4, we describe a field experiment for
single-lane roundabouts in the United States and compare the analytical results to field data
for the average delay of vehicles.

4. Data analysis

4.1 Data collection procedure

The National Co-operative Highway Research Program (NCHRP) conducted a survey identi-
fying 15 single-lane roundabouts in the United States in 1997 (NCHRP Project 20-5, 1998).
Six of these sites are operating in residential or rural areas and carry a low volume of traffic;
therefore, six of the remaining nine sites were chosen for analysis in this work.

The data collection sites are shown in table 2 along with information regarding average daily -
traffic and peak hour volumes. Each site adheres to the basic definition of a roundabout in that
it requires entering drivers to yield to circulating traffic and their entries are deflected to slow
drivers as they proceed through the roundabout. In addition, each site had been in operation for
at least 1 year prior to data collection. Data were recorded at the six single-lane roundabouts
by video cameras mounted at each of the roundabout entries and over the circulating roadway
for 2 h during the morning and evening peak periods.

In addition to observing traffic volumes, the following operational performance measures
were also observed:

15-min entering flow rate per approach (veh/h)

15-min circulating flow rate per approach (veh/h)

turning movements (veh/h)

headway in the circulating stream (s)

gaps/lags in the circulating stream accepted by entering drivers (s)

Table 2. Summary of empirical study data collection sites.

Average daily Peak hour
volume on all volume on all

Number of approaches approaches
Location approaches (veh/day) (veh/h)
Palm Beach County, FL 4 7,600 510
Lisbon, MD 4 8,500 856
Tallahassee, FL, 3 17,825 1085
Fort Walton Beach, FL 3 12,000 1245
Lothian, MD 4 15,000 1345
Boca Raton, FL 4 16,000 1450
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gaps/lags in the circulating stream rejected by entering drivers (s)
follow-up time maintained by two consecutively entering vehicles (s)
service time (s)

time spent in the queue (s).

It should be noted that the queue lengths were not explicitly observed and recorded in this
experiment. The required inputs for evaluating the efficacy of equations (10) and (12) were the
average accepted gap by drivers, the mean and variance of time headways for the circulating
stream and the distribution of headway in the circulating stream. The two former measures
were observed directly while the latter must be approximated.

4.2 Determination of headway distribution

Microscopic circulating stream headway data were collected for each roundabout entry under
varying traffic flows. Headway observations for 141, 15-min periods were tested against para-
metric cumulative distribution functions at several circulating stream flow rates in addition to
one aggregate test. The headway data were grouped and tested as shown in table 3.

Headway measurements were partitioned into 80 categories ranging from 0 to 200s in
2.5 s increments. Empirical distribution functions were computed for each of the six hourly
flow rates and a software package (BestFit) was used to determine which parametric dis-
tribution best represented the empirical time headways by performing both Chi-square and
Kolmogorov—Smirnov (K-S) goodness-of-fit tests. In total, twenty-one parametric distribu-
tions including lognormal, exponential, gamma, Weibull and normal were considered. Our
experiments indicate that the lognormal distribution is best suited to approximate the empiri-
cal data given its consistent ranking of 1 or 2 to represent the distribution of headways under
a variety of flow conditions. The results of the goodness-of-fit tests for these distributions are
given in table 4 for each of the flow ranges. All tests were performed at the 0.01 level.

Table 3. Circulating stream headway data measurements.

Circulating stream Number of Number of headway
flow (veh/h) operational periods measurements

0-200 81 2406
201400 38 1893
401-600 15 1106
601-800 6 849
801-880 1 222

0-880 141 6476

Table 4. Goodness-of-fit results for lognormal and exponential headway distribution.

Lognormal Exponential

Flowrate  Bestfit  Chi-square K-S Bestfit ~ Chi-square K-S
(veh/h) rank statistic statistic rank statistic statistic

0-200 i 0.287 0.183 4 1.28 0.151*
201-400 1 0.258 0.043 6 0.177*
401-600 2 0.190 0.047 7 1179.53* 0.210*
601-800 2 0.068 0.047 7 0.115
801-880 I 0.107 0.039 6 449.10* 0.159

0-880 1 0.220 0.050 9 10.121 0.217*

*Denotes a statistically significant test at the 0.01 level,
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Table 5. Lognormal versus exponential headways, assumed g = 4.0s.

E(T)(s) VAR(T) (s*)
Mean headway (s)  Lognormal Exponential Lognormal Exponential
5 2.57 2.13 1295 9.50
10 1.01 0.92 346 3.17
15 0.61 0.58 1.80 1.85
20 043 0.43 1.19 1.30
25 0.34 0.34 0.90 1.0
30 0.28 0.28 0.72 0.81
35 0.23 0.24 0.60 - 0.68
40 0.20 0.21 0.52 0.59
45 0.18 0.18 0.46 0.52
50 0.16 0.16 041 0.46

Table 4 indicates that the empirical distribution function of time headway was not found to
be statistically significantly different from the lognormal distribution in any of the six cases
using both goodness-of-fit tests. Moreover, the software package ranked the lognormal as the
first or second best fit in each case. In contrast to these results, the data indicate a statistically
significant difference from an exponential distribution for all but one of the cases. Tradi-
tionally, deterministic models widely published and used by the transportation community
utilize the simplistic exponential distribution for modeling headways. To better understand
the implications of this assumption, we evaluate our analytical model using both lognormal
and exponential headway distributions. Equations (10) and (12) were numerically computed
using MATLAB® codes running on a personal computer. We first allowed the coefficient of
variation of the circulating stream to equal unity in each case and simply varied the mean
headway time. The mean acceptable gap was assumed to be 4.0s. Table 5 demonstrates that
if the circulating stream headway distribution has coefficient of variation equal to one, then
the difference between using the lognormal and exponential distributions is small for both the
mean and variance of service time. As is demonstrated when headways begin to become less
random, the two estimations of expected service time begin to diverge. This may suggest that .
the lognormal distribution is a better representation of actual operating conditions under high
flow conditions.

Next, we examine the impact of the coefficient of variation on the estimation of the mean
and variance of service time. Figures 5 and 6 demonstrate that there is very little difference
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Figure 5. Expected service time as a function of coeficient of variation of the circulating headway distribution.
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Figure 6. Variance of service time as a function of coefficient of variation of the circulating headway distribution.

between the two approximations. However, the two curves can be distinguished more easily
in the case of the variance of service time.

For the purpose of illustration, we computed the average wait time in the system for a vehicle
arriving to the approach assuming that the headway distribution of the circulating stream is
lognormal and exponential. The mean gap size was set to 3.5s and the approach arrival rate
was 500 veh/h. Figure 7 demonstrates that it is difficult to distinguish between the two curves.

In subsection 4.3, we compare average delay values obtained from our analytical models to
field observations taken from the various roundabout sites. The empirical experiment serves to
validate our renewal theory-based approach for modeling the service time and overall delay.

4.3 Comparisons with field data

Numerical values via equations (10) and (12) were compared with field measurements of
the average delay experienced by drivers. We do not compare the average queue length, as
this performance measure was not explicitly observed in the field experiment. It is important
to note that a point queuing model assumes zero elapsed time for vehicle passage into the
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Figure 7. Average wait time as a function of coefficient of variation of the circulating headway distribution
(g = 3.5s, approach volume = 500 veh/h).
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Table 6. Comparison of analytical versus empirical delay values at various flow ranges.

Approach Mean Variance Average Average delay (s)
volume circulating circulating acceptable Measured
(veh/h) headway (s) headway (s?) gap (s) delay (s) Lognormal Exponential
12 8.0 100.0 55 2.0 3.92 3.44
24 5.0 39.0 52 7.0 6.10 520
36 9.0 128.0 6.0 1.0 422 3.68
44 9.0 115.0 8.0 6.0 771 6.44
68 5.0 22.0 49 7.0 5.85 4.88
68 9.0 139.0 74 5.0 6.82 5.69
348 350 939.0 59 20 1.80 1.83
408 15.0 249.0 5.5 4.0 3.17 2.98
420 16.0 233.0 54 20 2.88 2.78
584 26.0 616.0 5.3 2.0 2.21 222

circulating stream. However, when service times were measured in the field, a vehicle was not
considered serviced until the rear bumper of the vehicle had cleared the yield bar, which is
typical in operations modeling. In order to adjust for this discrepancy between the model and
field measurements, the average vehicle passage time (found to be ~1.0s from several time
periods and sites) was added to the model estimate of mean service time of equation (10).

Table 6 gives a summary of the delay values computed using our models as compared to
the values observed at various sites in the United States. Only a sample of the available data
were extracted because of time and budget limitations of the study. Table 6 contains a range
of conditions from low to high entering flow and from low to high circulating headways. Each
row represents a particular roundabout approach operating under the conditions described for
a 15-min study period. As the proposed models are based exclusively on queuing theory and
do not include any potential influences of geometric parameters, it is acceptable to combine
the results as shown in table 6. To better understand the implications of traditional models
that assume an exponential distribution of headways, we computed the expected delay for
two cases: (1) when the circulating time headways are assumed to follow an exponential
distribution and (2) when they are assumed to follow a lognormal distribution. In table 6, the
field observed average delay are shown in column 5, and the estimated delay are shown in
columns 7 and 8.

The discrepancies between the model and field results may be attributed to a few different
factors. First, our model assumes that the roundabout approach behaves exactly as a queuing
system in which vehicles move out of queue and into service in a stop—go fashion. In reality,
if drivers observe an acceptable gap while approaching the first position, they tend to simply
decelerate and then proceed directly into the circulating stream without stopping. This behavior
is not captured in our model. Moreover, the model assumes that arrivals occur to the approach
according to the Poisson process with a time-invariant mean arrival rate. This may not be the
case in reality, even for a short observation period of 15 min.

5. Conclusions

This paper provides explicit, renewal theory-based analytical models to estimate the mean
and variance of service time for a driver in the first position of a single-lane roundabout
approach that is able to accommodate any distribution of time headways in the circulating
stream whatsoever. The model can easily compute the performance metrics on a personal
computer. These analytical models can subsequently be applied in an M/G/1 queuing model
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of the roundabout approach to compute the desired performance measures, namely the average
delay experienced by an arbitrary driver arriving at the approach attempting to enter the
circulating stream. To our knowledge, this general model of the mean and variance of service
time is the first of its kind in that it explicitly models the service time apart from estimates
of capacity. Results obtained using the analytical technique were compared against actual
field measurements of the mean and variance of service time and the overall average delay
experienced by drivers. Our model was shown to perform well in light to moderate traffic
conditions, the scenario for which we expect it to perform well. In saturated traffic conditions,
the model is not expected to perform as well.

The field study further contributes to a better understanding of operational characteris-
tics of single-lane roundabouts in the United States. The data collected from six single-lane
roundabout sites indicated that headway times of the circulating stream are most closely
approximated by the lognormal distribution. However, in computing the overall average delay,
there was not much benefit gained by using the lognormal when compared with assuming that
the circulating stream time headways are exponential. For this reason, it may be possible (and
computationally more expedient) to use the simpler closed-form analytical expressions of
equations (13) and (14).

The use of roundabouts as an alternative to standard intersections is increasing rapidly in the
United States. To date, many of the analysis tools utilized by transportation professionals to
study roundabout performance are based on studies and models developed outside of the United
States. As driver behavior is a key factor to roundabout performance, ideally empirically based
studies will be conducted to better represent driver behavior in the United States. As the number
of installed roundabouts increases, more data will become available to help refine and improve
the models proposed herein. Hence, a number of future research directions may be identified.
First, this work assumed that all drivers use the same mean acceptable gap for entering the
circulating stream. It will be instructive to investigate the more generalized gap acceptance
behavior such as those considered by Heidemann and Wegmann (1997). Another extension is
to model the components of service time that were assumed fixed in our preliminary model (i.e.
car lengths, travel time into the stream and acceleration/deceleration) as a random component.
Finally, this work serves as a stepping stone for the analysis of multi-lane roundabouts. With
over 300 documented roundabouts in the United States and approximately one-third of them
operating in a variety of multi-lane configurations, there is a need to model the operational
performance of multi-lane roundabouts based on US conditions. The complexity of the multi-
lane problem appears, at first glance, to be significantly greater owing to weaving patterns in
the circulating roadway and gap acceptance behavior of entering drivers. Thus, an analysis of
the headway distribution of the circulating traffic stream and the gap acceptance behavior of
simultaneously entering vehicles is needed.
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Appendix A: derivation of main results

The following derivations are based on a conditioning/unconditioning argument commonly
used in stochastic modeling. Some definitions are first presented.

Define

F(-), the distribution function of headway times for the circulating stream; F(-), the equi-
librium distribution associated with F(-); g, the mean accepted gap for drivers seeking entry
to the circulating stream; 7, the mean headway time of the circulating stream; 7', the total
random time required for service for vehicle in first position of approach; 7y, the total random
time required for service assuming a non-delayed renewal process; 77, the random time to first
circulating stream arrival under the equilibrium process; T, the random time to first circulating
stream arrival under the non-delayed renewal process.

Derivation of equation (10)

If the first gap experienced by the approach driver is less than an acceptable gap (g), the
expected service time is the time that the driver has already waited plus the expected time
under the general renewal process, E (7). Using a standard conditional expectation approach,
we see that

E(TT =t)=

[t1+E(To) th<g A

h>g

i.e., if the first gap experienced upon arrival to the approach is greater than the driver’s accept-
able gap (g), then the driver experiences zero delay. However, if this first gap is unacceptable,
the driver must wait for the first arrival to pass and then it may be assumed that the renewal pro-
cess follows the distribution F(-) from this point forward. Hence, the total wait is #; + E (7).
An expression for E(Tp) is derived in a similar manner by conditioning on the first arrival of
the non-delayed renewal process.

L+ ET) h<g
E(hG|T, =) = { (A2)

h>g

Unconditioning (A1) and (A2), we obtain the following results:
4 00
E(T) = E(E(T|T)) =f E(T|T =1) dFe(t1)+/ 0dFe(z)
. 0 g
8
= [0 4R + B a3)
0
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and

8 [ee]
E(To) = E(E(To|T2)) =/(; (+ E(Ty)) - dF (2) +/ 0-dF(n)
8

8
=(1—-F@)™' fo L dF (1) (A4)
- Substituting equations (A4) into (A3) and using the relationship between the equilibrium

distribution and the interarrival distribution yields the mean service time for a driver in the
first position of the approach.

1(1 ) g . g 8
ETy =1 (Lt f (F(t) di + (1 — F(g)) (g— f F) de / rdF(r))) (AS)
T \2 0 0 0

Derivation of equation (12)

By definition,
T=Ty+T (A6)
which implies
1?2420 E(Ty) + E(T?), t <
BT =gy = |1 PP+ BT, n =g A7)
0, > g
and
24 2mE(T)+ETR), n<g
E(TAT, =1) = { ’ 0 (A8)
. 0, h>g

Unconditioning (A7) and (A8), we obtain the following result.
g g
E(T? = f (t7 + 20 E(Ty)) dFe (1)) + / E(Ty) dFe(t)
0 0
g -
= ["@+2nEm) ar + EGD R (9)

and
2 & 2 & 2
E(T?) = / (2 +26,E(Ty) dF (1) + / E(T2) dF (1)
0 0
8
= (1—F@g) - /0 (22 + 26,E(Ty)) dF (1)) (A10)
Substituting equations (A10) into (A9), we obtain

8 4
E(T? = fo (t7 + 20 E(Ty)) dFe(ty) + Fo(g)(1 — F(g))™" - /O (12 + 26, E(Ty)) dF (1)

which, with simplification yields

) 8
E(T?) = % (%g3 + E(To)g” - fO (* + 2E(T)) - F () dt)

1 8 8 8
+—~<g—f F@) dl‘(l——F(g))~1> (/ £ dF(t)-l—zE(To)f tdF(t))
T 0 0 0 '
(A1)
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Hence, our final result is obtained.

VAR(T) = % Gg3 + E(To)g* - /0 L@ UET) - FO) dt)

1 8 g
+ = (g —/ F(t) de(1 — F(g))_1> : (/ 12 dF (@)
T 0 0
+2E(Ty) fgt dF(t)) — [E(D7? (A12)
0

where E(Tp) is obtained by equation (A4) and the last term of equation (A12) is obtained by
equation (AS5).



