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Abstract

Motivated by wind energy applications, we consider the problem of optimally replacing a
stochastically degrading component that resides and operates in a partially observable environ-
ment. The component’s rate of degradation is modulated by the stochastic environment process,
and the component fails when its accumulated degradation first reaches a fixed threshold. As-
suming periodic inspection of the component, the objective is to minimize the long-run average
cost per unit time of performing preventive and reactive replacements for two distinct cases.
The first case examines instantaneous replacements and fixed costs, while the second consid-
ers time-consuming replacements and revenue losses accrued during periods of unavailability.
Formulated and solved are mixed state space, partially observable Markov decision process
(POMDP) models, both of which reveal the optimality of environment-dependent threshold
policies with respect to the component’s cumulative degradation level. Additionally, it is shown
that for each degradation value, a threshold policy with respect to the environment belief state is
optimal if the environment alternates between two states. The threshold policies are illustrated
by way of numerical examples using both synthetic and real wind turbine data.

1 Introduction

Rising energy prices, global climate change, escalating demand for electricity, and global energy
supply uncertainties have generated enormous interest in clean, renewable energy sources. Wind
energy, generated by land-based and offshore wind turbines, is poised to play a prominent role in
a global shift towards alternative energy supplies. However, the cost of producing wind energy
remains a significant barrier with operating and maintenance costs contributing as much as 20 to
47.5% of the total cost of energy (see, for example, [32]). These significant costs are attributed
primarily to the replacement of major, critical components (e.g., gear boxes, generators or turbine
blades) that are subjected to randomly-varying loads due to time-varying wind speeds and dynamic
atmospheric conditions (e.g., temperature, humidity, etc.). Discerning the exact state of a wind
turbine’s environment is complicated by the fact that wind conditions depend on the topography of
the immediate surrounding land and the effects of adjacent wind turbines. Furthermore, the wind
turbine components themselves are housed in a protective nacelle whose internal conditions may
differ substantially from those of the ambient atmosphere. Because the environment state is not
known with certainty, a model that accounts for a partially-observed environment, and its influence
on the degradation of critical components, is needed. In this paper, we consider the problem of
optimally replacing a component whose stochastic degradation process is governed by an exogenous
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random environment, which is assumed to be partially-observed, while the component’s degradation
level is known with certainty. Considered are two different replacement models. The first model
assumes the replacement costs are deterministic, while the second model incorporates stochastic
revenue losses (or downtime costs). We formulate stochastic optimization problems to examine the
optimal times at which replacements should occur in order to minimize the long-run average cost
per unit time of performing preventive replacements (those done prior to component failure) and
reactive replacements (those done in response to unanticipated failures).

The optimal replacement or repair of a stochastically-degrading system is a classical applied
probability problem that has received considerable attention in the operations research community.
Some important surveys of this topic are provided in [25, 28, 31]. For wind turbine applications, par-
tially observable Markov decision process (POMDP) models are especially useful, as maintenance
decisions are often made using either incomplete information or imperfect models of degradation.
General POMDP models have found wide applicability in multi-state maintenance optimization
problems (cf. [11, 20, 21, 33] and references therein). Maintenance models pertaining to wind
turbines in particular are fairly sparse with the exception of Byon et al. [4] who formulated a
POMDP model to optimally maintain a wind turbine component whose degradation state evolves
as a finite, discrete-time Markov chain (DTMC). Their objective is to minimize the expected per
period costs, which are related to both maintenance activities and turbine downtime. That model
was extended in Byon and Ding [3] to include multiple components and season-dependent weather
conditions. They used a discounted POMDP model to minimize the total expected discounted cost
of performing corrective maintenance actions. Using a backward dynamic programming algorithm,
they solved the POMDP model and illustrated the optimal policies for a wind turbine gearbox
application.

In a more general setting, Makis and Jiang [22] consider optimally replacing a component
whose degradation evolves as a continuous-time Markov chain (CTMC) on a finite state space and
is observed imperfectly at discrete times. Associated with each observation is a probability mass
function conditioned on the true degradation state. The replacement model is formulated as an
optimal stopping problem, and the long-run expected replacement cost per unit time is minimized.
That work was extended in [16] to include multivariate observations that are normally distributed
with mean and covariance matrices determined by the degradation state. A similar model was
used by Jiang et al. [13] to maximize the component’s long-run expected availability per unit time.
Zhou et al. [35] analyzed a partially observable semi-Markov process (POSMDP) model which is
continuous in both time and state. In their model, component degradation evolves as a Gamma-
based state space model. A Monte Carlo density projection procedure (see [34]) was used to reduce
the infinite-dimensional belief space to a finite-dimensional space so as to formulate the problem
as a Markov decision process (MDP) model on the lower-dimensional space. The MDP model was
solved numerically using policy iteration for both long-run average cost and availability objectives.

Despite the importance of the operating environment, relatively few replacement models take
into account the environment’s impact on accelerating (or decelerating) degradation over time.
Çekyay and Özekici [5] surveyed condition-based maintenance models that lead to structured
control-limit (or threshold) policies. Waldmann [30] was the first to analyze the structure of an opti-
mal replacement policy for a system subjected to stochastic deterioration in a random environment.
He considered the effects of uncontrollable internal and external factors on the progression of the
system’s deterioration status in a continuous-time shock model and derived sufficient conditions for
the optimality of a threshold policy with respect to the cumulative damage of the system. Özekici
[23] modeled the deterioration of a system in an uncontrollable environment by its intrinsic age,
where the environment was assumed to evolve as a semi-Markov jump process and the intrinsic age
of the system is determined by the total cumulative degradation. They showed that, if the system’s
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lifetime distribution has an increasing failure rate in each environment state, then a threshold-type
policy, with respect to the degradation state, is optimal. Kurt and Maillart [18] examined the
optimal replacement of a system that fails due to random shocks arriving according to a Poisson
process whose rate is modulated by a discrete-time Markov chain. They consider both controllable
and uncontrollable Markovian environments and analyze the structure of the resulting optimal cost
function with respect to the shock arrival rate and the cumulative number of shocks received. Kurt
and Kharoufeh [17] extended that work by relaxing the fixed cost assumption. Relevant to our
work here is a model analyzed by Ulukus et al. [29], who considered the problem of optimally
replacing a component whose operating environment evolves as a CTMC on a finite state space S.
When the environment is in state i, the component accumulates degradation at a constant rate ri
(ri > 0) for i ∈ S. In their model, both the cumulative degradation and the environment state are
assumed to be completely observable, and at each inspection time, a decision maker may choose
to either preventively replace the component or do nothing until the next inspection time. The
problem was formulated using a MDP model with the objective of minimizing the total expected
discounted cost of performing preventive and reactive replacements over an infinite time horizon.
It was shown that, for each environment state, there exists a degradation threshold above which it
is always optimal to preventively replace the component.

In this paper, we consider the problem of optimally replacing a component whose observable
degradation is influenced by its operating environment, which is only partially observable. The
degradation dynamics are similar to those described in [29], but our optimization problem is com-
plicated by the partial observability of the environment. We formulate and solve two problems using
a POMDP modeling framework. The first model assumes that preventive and reactive replacements
are performed instantaneously with fixed, deterministic costs, whereas the second model considers
time-consuming replacements during which revenue losses are accrued at a rate that depends on the
environment state. The objective in both models is to minimize the long-run average cost per unit
time of performing preventive and reactive replacements. For each model, we prove the existence
and optimality of a threshold-type replacement policy with respect to the cumulative degradation
level whose thresholds depend on the decision maker’s belief of the current environment state.
Furthermore, in the case of deterministic replacement costs, the optimality of a threshold policy,
with respect to the environment belief state, is proved for each possible degradation value when
the environment alternates between two states. Numerical solution techniques are presented to
compute optimal policies, and numerical examples using notional and real wind turbine data are
presented to illustrate the replacement policies.

The remainder of the paper is organized as follows. Section 2 describes the stochastic degrada-
tion process and the general POMDP framework of both replacement models. In Sections 3 and 4,
the replacement models and their associated optimality equations are presented for fixed replace-
ment costs and stochastic revenue losses, respectively. Numerical techniques for approximating
the optimal policies of the models are described in Section 5, while Section 6 presents numerical
examples to illustrate the replacement policies.

2 Problem Formulation

Before presenting the general problem formulation that forms the basis of the models in Sections
3 and 4, we first review the stochastic degradation model analyzed by Ulukus et al. [29]. Consider
a component that is placed into service at time t = 0 in new condition. The component degrades
over time due to normal usage and the influence of its operating environment. Once the cumulative
degradation exceeds a critical threshold value ξ (ξ > 0), the component is considered to be failed.
For each t ≥ 0, the environment can occupy one (and only one) state in the set S = {1, . . . , ℓ}
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where ℓ < ∞. Let Z(t) be the state of the environment at time t, and suppose {Z(t) : t ≥ 0} is an
S-valued, continuous-time Markov chain (CTMC) with infinitesimal generator matrix Q = [qij],
i, j ∈ S. The CTMC is assumed to be irreducible; therefore, it possesses a unique, positive limiting
distribution vector πs that satisfies πsQ = 0 and πse = 1, where 0 is the 1× ℓ zero-vector and e is
an ℓ× 1 vector of ones. Let r : S → (0,∞) be a real-valued, (Borel) measurable function such that
whenever Z(t) = i ∈ S, the component degrades linearly at a unique, constant rate ri (ri > 0).
For convenience, assume r1 < r2 < · · · < rℓ and define r = (r1, . . . , rℓ), the degradation rate
vector. We pause here to note that this modeling framework does not assume that the component
degrades linearly overall; rather, it is assumed that the rate of degradation is constant within a
given environment state. Therefore, the degradation process can be characterized by several mean
rates of degradation as a function of time (or usage). Variation about these mean degradation
rates certainly exists, but if the times between transitions are short relative to the overall time to
failure, or if there is ample evidence to suggest a certain growth pattern, this approach provides a
great deal of modeling flexibility, as it allows one to estimate the degradation rate associated with
each state. In practice, it may also be necessary to estimate the number of distinct environment
states (ℓ) to which the component might be exposed. If the number of environment states is large,
aggregation of the states may be necessary. Two approaches have been suggested for aggregating
and estimating the number of states. Those include: (1) clustering the degradation rates, as
proposed by Kharoufeh and Cox [14], and (2) using the Bayesian inference criterion (BIC), as was
done by Flory et al. [8]. Numerical illustrations in those papers demonstrate that only a few states
(usually not more than three) are needed to adequately approximate the modulating environment
process.

Denote by X(t) the cumulative degradation of the component at time t, and let T (ξ) ≡ inf{t >
0 : X(t) ≥ ξ} be the first passage time of the process {X(t) : t ≥ 0} to the critical threshold ξ. The
cumulative degradation at time t is

X(t) = X(0) +

∫ t

0
rZ(u)du, (1)

where we assume P(X(0) = 0) = 1 and

P

(∫ t

0

∣∣rZ(u)

∣∣du < ∞

)
= 1

to ensure X(t) is well-defined. The strict positivity of r ensures that the sample paths of {X(t) :
t ≥ 0} are monotone increasing with probability 1 (w.p. 1). The following additional notation will
be used throughout. All random variables are defined on a common and complete probability space
(Ω,F ,P). For an event A ∈ F , denote by I(A) the indicator function with I(A) = 1 if A occurs
and I(A) = 0 otherwise. For any a, b ∈ R, let a ∧ b ≡ min{a, b} and a ∨ b ≡ max{a, b}.

The component is inspected (or observed) periodically at times in the set I = {kδ : k ∈ N}
for some δ > 0, where each time in I represents a decision epoch. A period is the time between
two consecutive decision epochs. For decision epoch n ∈ I, let Xn be the cumulative degradation
of the component and Zn be the state of the environment at this time. Our models assume that
Xn is completely observable (i.e., degradation can be discerned with certainty), but that Zn is
only partially observable through a probability distribution (i.e., the environment state is inferred
from an observed degradation increment and represented using the concept of a belief state). For
example, some forms of wind turbine degradation are fully observable, such as the length of a crack
on a turbine blade, or the oil contamination level in the wind turbine’s gearbox, whereas other
forms can be discerned through a signal of degradation, such as a vibration signal, as in Gebraeel

4



et al. [9]. Furthermore, there is ample evidence to suggest that the environment is only partially
observable. For instance, it is well known that several factors contribute to the random evolution
of the environment, including wind speed, wind turbulence, ambient air temperature, humidity,
and the degradation levels of other components within the wind turbine. While many of these
environment conditions can be monitored, measurement errors and the inability to measure these
conditions at all points spatially and temporally leads to partial observability. Indeed, character-
izing the operating environment of a wind turbine is known to be very challenging, as noted by
Dueñas-Osorio and Basu [7] and Peinke et al. [24]. Immediately following an inspection, a deci-
sion maker chooses one of two feasible actions in the set A = {0, 1}, where action 0 means “do
nothing,” and action 1 means “preventively replace” the component. Inspections are assumed to
be performed instantaneously at a fixed cost c0 (c0 > 0). If an inspection reveals that the system
is not failed, the decision maker can perform a preventive replacement at a fixed cost c1 where
0 < c0 ≪ c1 < ∞. On the other hand, the decision maker may elect to do nothing until the
start of the next period. Should the component fail during any period (between two consecutive
decision epochs), it is immediately, reactively replaced at a fixed cost c1 + c2 where c2 > 0 is a
penalty cost for unplanned replacements. For the model in Section 3, both preventive and reactive
replacements are assumed to be performed instantaneously. However, in Section 4, this assumption
is relaxed, and the penalty cost c2 is replaced by stochastic downtime costs (revenue losses) that
are incurred due to time-consuming replacements. Whenever a preventive or reactive replacement
occurs, the cumulative degradation level is reset to 0 at the start of the next period. The objec-
tive is to minimize the long-run average cost per unit time of performing preventive and reactive
replacements.

To address this problem, we use a partially observable Markov decision process (POMDP)
model. The states of the POMDP model are vectors of the form (x, π), where x ∈ [0, ξ] is the
component’s degradation level and π ∈ R

ℓ
+ is the belief state of the environment whose belief space

is the ℓ-dimensional probability simplex

Π ≡

{[
π(1), . . . , π(ℓ)

]
:
∑

i∈S

π(i) = 1

}
.

The belief space of the POMDPmodel is B = [0, ξ]×Π. At the nth decision epoch, xn is the observed

degradation, and the belief state of the environment is the probability vector πn = [π
(1)
n , . . . , π

(ℓ)
n ],

where
π(i)
n = P(Zn = i|∆Xn, πn−1), i ∈ S,

and ∆Xn ≡ Xn−Xn−1 is the (random) degradation increment during the nth period. Immediately
following the observation of a degradation increment, the belief state is recursively updated. Let
Wij(x, t) = P(X(t) ≤ x,Z(t) = j|Z(0) = i) for i, j ∈ S and t ≥ 0, and define the probability density
function

wij(u) ≡
∂Wij(x, δ)

∂x

∣∣∣∣
x=u

where wij(u) is defined for all u ∈ (r1 δ, rℓ δ) such that u 6= rk δ for all k ∈ S. For j ∈ S, define

Tj(u, π) ≡ P(Zn+1 = j|∆Xn = u, πn = π) =
∑

i∈S

P(Zn+1 = j|∆Xn = u,Zn = i)π(i),

where

P(Zn+1 = j|∆Xn = u,Zn = i) =





wij(u)∑
k∈S wik(u)

, u ∈ (r1 δ, rℓ δ) and u 6= rk δ, ∀ k ∈ S,

I(j = k), u = rk δ for some k ∈ S.
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The quantity Tj(u, π) is the probability that the environment is in state j at the next decision
epoch, given an initial belief state π and an observed degradation increase u = xn+1 − xn over
the period. Given πn = π and a realized degradation increment u, it follows that πn+1 = T (u, π),
where T (u, π) ≡ [T1(u, π), T2(u, π), . . . , Tℓ(u, π)].

Let the belief state at the nth decision epoch be denoted by b(n) = (xn, πn), n ∈ I. For two
states in B, (x, π) and (x′, π′), define the conditional probability

K((x, π), (x′, π′)) ≡ P(∆Xn+1 ≤ x′ − x, πn+1 = π′|πn = π).

Note that K((x, π), (x′, π′)) = K((0, π), (x′ − x, π′)), where for u ≥ 0,

K((0, π), (u, π′)) =





∫ u

0

∑

i∈S

q(v|i)π(i)dv +
∑

i∈S

I(u ≥ riδ)π
(i) exp(qii δ), π′ = T (u, π),

0, π′ 6= T (u, π),

and q(v|i) ≡
∑

j∈S wij(v). Denote the transition kernel density between (x, π) ∈ B and (x′, π′) ∈ B
as

k(x′ − x, π) ≡
∂

∂u
K((0, π), (u, π′))

∣∣∣∣
u=x′−x

where for u ≥ 0,

k(u, π) =





∑

j∈S

q(u|j)π(j), u 6= ri δ for all i ∈ S,

π(i) exp(qii δ), u = ri δ for some i ∈ S.

In Sections 3 and 4, we consider the POMDP model formulation under two different cost struc-
tures, respectively. The first model excludes the cost of downtime due to replacements, while the
second includes this cost explicitly. For both models, it is shown that a threshold replacement policy
is optimal with respect to the component’s cumulative level of degradation, and these thresholds
depend on the decision maker’s assessment of the environment state.

3 Replacement with Fixed Costs

For this first model, as described in Section 2, inspection and preventive and reactive replace-
ments are assumed to be instantaneous and impose fixed costs. All components are assumed to
begin operation in the belief state (0, πs). Define a policy as a function a : B → A, where a(Xn, πn)
is the action taken in state (Xn, πn) ∈ B, and let P denote the set of all possible policies. The
objective is to find the policy a∗ that minimizes the long-run average cost of replacements per unit
time, γ, given by

γ = inf
a∈P

Ea

{
lim

N→∞

1

N

N∑

n=1

c0 + c1 I{a(Xn, πn) = 1} + (c1 + c2) I{a(Xn, πn) = 0, Ĥ(Xn, πn) = 1}

}

where Ĥ(Xn, πn) is an indicator for the event that the component fails between decision epochs n
and n+ 1, given (Xn, πn) ∈ B.

The optimality equations are now provided. Let V (x, π) be the minimum relative cost per unit
time, given that a component starts operation in (x, π) ∈ B, and define V0(x, π) and V1(x, π) as the
relative costs if either no action or preventive replacement, respectively, are taken in (x, π) ∈ B.
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The expected survival time of the component in the next period, given (x, π) ∈ B, is denoted
τ(x, π), where

τ(x, π) =
∑

i∈S


∑

j∈S

∫ δ

0
Wij(ξ − x, t) dt


π(i).

The optimality equations are

V (x, π) = min{V1(x, π), V0(x, π)}, (x, π) ∈ B, (2)

where for I+(x, u) ≡ I(x+ u ≥ ξ), I−(x, u) ≡ I(x+ u < ξ), and Vπ(x, u) ≡ V (x+ u,T (u, π)),

V1(x, π) = c0 + c1 + V (0, πs) (3)

V0(x, π) = c0 +

∫
∞

0
I
+(x, u) [c1 + c2 + V (0, πs)] k(u, π)du

+

∫
∞

0
I
−(x, u)Vπ(x, u)k(u, π)du − γτ(x, π). (4)

An exact analytical solution for the optimality equations (2) is attainable only in trivial cases.
Nonetheless, it is possible to prove some basic structural results to characterize the optimal re-
placement policy.

3.1 Structural Results

Here, we examine attributes of the cost function and establish structural results that lead to a
characterization of the optimal policy in Section 3.2. For (x, π) ∈ B, let

H(x, π) ≡

∫ ξ

0
I
+(x, u)k(u, π) du

be the probability that the component fails in the next period starting in state (x, π), i.e., the
probability that the component’s cumulative degradation exceeds the failure threshold ξ prior to the
next decision epoch, given the current belief state is (x, π). The first result provides a nonnegative
lower bound for the optimal average cost γ.

Lemma 1. The average cost of an optimal policy is bounded below as follows:

γ >
c0
δ
. (5)

Proof. The lower bound can be established by considering the average cost of a policy for the case
when c1 = c2 = 0. Note that, immediately following replacement, it is optimal to do nothing;
otherwise, γ = ∞. Set V (0, πs) = 0 and observe that V (0, πs) = V0(0, πs) = 0. This implies that

c0 + (c1 + c2)H(0, πs) +

∫
∞

0
I−(x, u)Vπ(0, u)k(u, π)du − γτ(0, πs) = 0. (6)

Solving (6) for γ gives

γ =

c0 + (c1 + c2)H(0, πs) +

∫
∞

0
I−(0, u)Vπ(0, u)k(u, π)du

τ(0, πs)
>

c0
δ
.
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The lower bound (5) is not tight; however, its existence is useful to establish basic properties
of the optimal policy. Lemma 2 bounds V (x, π) from above.

Lemma 2. For all (x, π) ∈ B,

V (x, π) ≤ C0 ≡ c0 + c1 + V (0, πs).

Proof. For an arbitrary state (x, π) ∈ B,

V (x, π) = min{V0(x, π), V1(x, π)}

≤ V1(x, π)

= c0 + c1 + V (0, πs).

To facilitate the discussion that follows, let the subset of B where preventive replacement is
optimal be denoted by D = {(x, π) ∈ B : V1(x, π) ≤ V0(x, π)}, and let Dc be its complement.
Additionally, let Dπ ≡ {x : (x, π) ∈ D} and Dx ≡ {π : (x, π) ∈ D}. Characterizing the optimal
policy is tantamount to describing the structure of the region D; however, it is difficult to determine
properties of D, such as convexity or even connectedness. Fortunately, Theorem 1 and Corollary 1
provide bounds on the region.

Theorem 1. If the component survives the next period w.p. 1 for (x, π) ∈ B, then (x, π) ∈ Dc.

Proof. If the component survives in the next period w.p. 1 for (x, π) ∈ B, then

V0(x, π) = c0 +

∫
∞

0
I−(x, u)Vπ(x, u)k(u, π)du − γδ

≤ c0 +

∫
∞

0
I−(x, u)[c0 + c1 + V (0, πs)]k(u, π)du − γδ (by Lemma 2)

= 2c0 + c1 + V (0, πs)− γδ

< c0 + c1 + V (0, πs)

= V1(x, π).

Therefore, (x, π) ∈ Dc.

Intuitively, preventive replacement is never optimal if the likelihood of component failure before
the next decision epoch is zero. Theorem 1 leads immediately to Corollary 1, which provides some
insights into the structure of the set D.

Corollary 1. Let Dδ ≡ {(x, π) ∈ B : x ∈ (ξ − rℓ δ, ξ]}. Then D ⊆ Dδ.

Proof. For all (x, π) ∈ B such that x ∈ [0, ξ−rℓ δ], the component will survive the next period with
certainty since the maximum degradation increment cannot exceed rℓ δ in the next period. Hence,
Dc

δ = {(x, π) ∈ B : x ∈ [0, ξ − rℓ δ]} ⊆ Dc. The result follows by taking the complements of both
sets.

Corollary 1 confines D to a subset of B where x ≥ ξ − rℓ δ so that the probability of failure
before the next decision epoch is nonzero. Figure 1 depicts this bound in the case of a two-state
environment.

It is tempting to conclude that a sufficient condition for the optimality of preventive replacement
in (x, π) is the certainty of failure in the next period; however, a stronger condition is required to
account for pathological cases, e.g., the inspection interval is longer than the component lifetime.
A sufficient condition for the optimality of preventive replacement is provided in Theorem 2, which
requires the next lemma.
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Figure 1: Depiction of boundary for preventive replacement region D.

Lemma 3. An upper bound for γ is

γ ≤ c0 + (c1 + c2)
rℓ
ξ
. (7)

Proof. Applying Lemma 1 of [15], it can be shown that T (ξ) ≥ ξ/rℓ w.p. 1. Therefore, an upper
bound for the optimal cost can be obtained by considering the average cost of allowing a component
to operate continuously at rate rℓ (without intervention) until failure. In such a case,

γ ≤

⌊
ξ

rℓ

⌋
c0 + c1 + c2

ξ

rℓ

≤ c0 + (c1 + c2)
rℓ
ξ
.

Similar to the lower bound (5), the upper bound (7) is not particularly tight; however, its
existence is useful to establish a sufficient condition for the optimality of preventive replacement.

Theorem 2. If the component fails w.p. 1 in the next period for (x, π) ∈ B, then it is optimal to
preventively replace if

τ(x, π) ≤
c2 ξ

c0 + (c1 + c2)rℓ
. (8)

Proof. Suppose failure is certain in the next period. Then

V0(x, π) = c0 +

∫
∞

0
I
+(x, u) [c1 + c2 + V (0, πs)] k(u, π)du

+

∫
∞

0
I
−(x, u)Vπ(x, u)k(u, π)du − γτ(x, π)

= c0 + c1 + c2 + V (0, πs)− γτ(x, π).

Preventive replacement is optimal if V0(x, π) ≥ V1(x, π), or equivalently,

c0 + c1 + c2 + V (0, πs)− γτ(x, π) ≥ c0 + c1 + V (0, πs),

which implies c2 − γτ(x, π) ≥ 0. From Lemma 3, it follows that

c2 − γτ(x, π) ≥ c2 −

[
c0 + (c1 + c2)

rℓ
ξ

]
τ(x, π).
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Hence, a sufficient condition for preventive replacement is

c2 −

[
c0 + (c1 + c2)

rℓ
ξ

]
τ(x, π) ≥ 0,

or equivalently,

τ(x, π) ≤
c2 ξ

c0 + (c1 + c2)rℓ
.

3.2 Optimal Policy for Fixed π

The main result of this section is Theorem 3, which asserts the optimality of a threshold policy
with respect to the cumulative degradation level x for each π ∈ Π. That is, for each belief state
of the environment, there exists a control limit above which it is always optimal to preventively
replace the component. To help prove this result, the next lemma establishes bounds for V0(x, π).

Lemma 4. For each (x, π) ∈ B, V0(x, π) is bounded as follows:

V
¯ 0(x, π) ≤ V0(x, π) ≤ V̄0(x, π), (9)

where

V
¯ 0(x, π) = (C0 − c1) + (c1 + c2)H(x, π) − γτ(x, π), (10)

V̄0(x, π) = c0 + C0 + (c2 − c0)H(x, π) − γτ(x, π). (11)

Proof. By Lemma 2, Vπ(x, u) ≤ C0 for all u ≥ 0. Let M ≡ c1 + c2 + V (0, πs), then

V0(x, π) = c0 +

∫
∞

0
I
+(x, u)[c1 + c2 + V (0, πs)]k(u, π)du

+

∫
∞

0
I(x+ u < ξ)Vπ(x, u)k(u, π)du − γτ(x, π)

= c0 +M

∫
∞

0
I
+(x, u)k(u, π)du

+

∫
∞

0
I(x+ u < ξ)Vπ(x, u)k(u, π)du − γτ(x, π)

≤ c0 +H(x, π)M + C0[1−H(x, π)]− γτ(x, π)

= c0 + C0 + (M −C0)H(x, π) − γτ(x, π)

= c0 + C0 + (c2 − c0)H(x, π) − γτ(x, π).

Likewise, V (x, π) ≥ V (0, πs) for all π ∈ Π. Therefore,

V0(x, π) = c0 +M

∫
∞

0
I
+(x, u)k(u, π)du

+

∫
∞

0
I(x+ u < ξ)Vπ(x, u)k(u, π)du − γτ(x, π)

≥ c0 +M

∫
∞

0
I
+(x, u)k(u, π)du

+V (0, πs)

∫
∞

0
I(x+ u < ξ)k(u, π)du − γτ(x, π)

= c0 +H(x, π)M + (C0 − c0 − c1)[1−H(x, π)] − γτ(x, π)

= (C0 − c1) + [M − V (0, πs)]H(x, π) − γτ(x, π)

= (C0 − c1) + (c1 + c2)H(x, π) − γτ(x, π).
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Although the monotonicity of V0(x, π) in x, and by extension V (x, π), are not guaranteed,
the lower bound (10) and upper bound (11) are both monotone increasing in x. Therefore, as x
increases, it can be shown that V

¯ 0(x, π) will eventually exceed V1(x, π) (which is constant in x),
implying the existence of a threshold of cumulative degradation above which preventive replacement
is optimal. A depiction of the relationship between V (x, π) and the bounds of Lemma 4 is provided
in Figure 2.

V0(x,π)
Preventively Replace x

c0+c1+c2
2c0+c1c0+c1c0 ξ0 V0(x,π)V(x,π)V1(x,π)V al ueF uncti o

n
Figure 2: Depiction of the value functions and their bounds.

The next lemma states that if preventive replacement is optimal for some degradation level in
a fixed environment state, then preventive replacement is also optimal for all higher degradation
levels. The lemma is particularly useful because it establishes that a single interval comprises Dπ.

Lemma 5. For each π ∈ Π, if (x, π) ∈ D, then (x′, π) ∈ D for all x′ ≥ x.

Proof. For π fixed, assume that (x, π) ∈ D and there exists some x∗ > x such that (x∗, π) ∈ Dc.
Let BD

(x∗,π) be the subset of B that is reachable from (x∗, π) under the policy defined by D prior to
a replacement event. Consider a policy defined by D∗ that is obtained by modifying D as follows:

(i) Set D∗ = D \ {(x, π)};

(ii) For all (y, π′) ∈ BD
(x∗,π), set D∗ = D∗ ∪ {(y + x − x∗, π′)} if (y, π′) ∈ D; otherwise, set

D∗ = D∗ \ {(y + x− x∗, π′)}.

Note that, prior to a replacement event, the evolution of two sample paths starting from (x, π)
and (x∗, π) under the policy defined by D∗ differ only through a translation of degradation levels
by x∗ − x. For any sample path starting at (x∗, π) that exceeds the threshold at some time t, the
corresponding sample path starting from (x, π) will not exceed the threshold at time t. Therefore,
γD′ < γD, and the policy defined by D cannot be optimal. This implies that (x′, π) ∈ D for all
x′ ≥ x.

Using the lower bound of (9) and Lemma 5, the following theorem establishes the existence of
a threshold policy with respect to x for a given belief state π.

Theorem 3. For each π ∈ Π, there exists a threshold xπ (xπ < ξ) at which it is optimal to
preventively replace for all x ≥ xπ.

11



Proof. A sufficient condition to replace in (x, π) ∈ B is that V
¯ 0(x, π) ≥ V1(x, π). Therefore,

V
¯ 0(x, π) ≥ V1(x, π) implies that

(C0 − c1) + (c1 + c2)H(x, π)− γτ(x, π) ≥ C0,

which implies

(c1 + c2)H(x, π) − γτ(x, π) ≥ c1. (12)

Note that the left-hand side of inequality (12) is increasing in x as H(x, π) is increasing in x and
γτ(x, π) is decreasing in x. Furthermore, the inequality is strict at the point (ξ, π) for all π ∈ Π
since H(ξ, π) = 1 and τ(ξ, π) = 0. Let x′ = inf{x : (c1 + c2)H(x, π) − γτ(x, π) ≥ c1}. Then x′ < ξ
and (12) is satisfied for all x ≥ x′. Therefore, {x : x ≥ x′} ⊆ Dπ. Moreover, it follows by Lemma
5 that Dπ = {x : x ≥ xπ} for some xπ ≤ ξ. However, since {x : x ≥ x′} ⊆ Dπ, it follows that
xπ < ξ.

3.3 Optimal Policy for Fixed x

Subsection 3.2 established the fact that, for each belief state π, there exists a threshold degra-
dation level, xπ, above which preventive replacement is always optimal. It is natural to inquire
whether an optimal threshold policy exists with respect to the belief state for each degradation
level. That is, for each degradation level x (x ∈ [0, ξ)), is there a threshold belief state πx for which
it is optimal to replace the component whenever the belief state is worse (in some sense) than πx?
To answer this question definitively, it is necessary to characterize the set Dx = {π : (x, π) ∈ D},
which is difficult to do in general. However, the following proposition provides at least one attribute
of Dx – namely that it is an increasing set in x.

Proposition 1. For all x and x′ such that x ≤ x′, Dx ⊆ Dx′ .

Proof. Consider π ∈ Dx for x ≥ xπ. Then for x′ ≥ x, (x′, π) ∈ D by Theorem 3, which implies that
π ∈ Dx′ . Therefore, Dx ⊆ Dx′ .

Proposition 1 asserts that the subset of Π in which preventive replacement is optimal for a given
degradation level x will tend to grow larger as x increases. However, characterizing this subset is
nontrivial.

The main result of this subsection (Theorem 4) establishes the optimality of a threshold policy
for each fixed x in a particular case. Specifically, for the case when ℓ = 2, it is possible to establish
a threshold policy with respect to the belief state π, provided that Q and r satisfy certain mild
conditions. Assume the environment has infinitesimal generator Q and degradation rate vector r

given by

Q =

[
−α α
β −β

]
, r =

[
r0 r1

]
,

where α > β > 0 and r1 > r0 > 0. In what follows, we parameterize the belief state so that
π(ρ) ≡ [1− ρ, ρ] ∈ Π for 0 ≤ ρ ≤ 1.

Theorem 4. For x ∈ [0, ξ] fixed, if it is optimal to replace in state (x, π(ρ)), then it is optimal to
replace for all (x, π(ρ′)) ∈ B such that ρ ≤ ρ′ ≤ 1.

Proof. The detailed proof is provided in the Appendix.
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Theorem 4 asserts that, for fixed x, if preventive replacement is optimal in a particular belief state,
then it is also optimal for any belief state that assigns a higher probability to the more detrimental
environment state.

For environments in which ℓ > 2, it is natural to order the belief states via standard stochastic
orders. Two of the most common stochastic orders are the usual stochastic ordering and the
likelihood ratio ordering of two belief states π and π′. The following definitions are adopted from
Maillart and Zheltova [21].

Definition 1. Suppose π and π′ are two belief states in the ℓ-dimensional simplex Π. Then, π′ is
larger than π in the usual stochastic order if and only if, for all m = 1, 2, . . . , ℓ,

ℓ∑

i=m

π(i) ≤
ℓ∑

i=m

π′(i).

In such case, we write π �st π
′. Belief state π′ is larger than π in the likelihood ratio order if and

only if
π(i)π′(j) ≥ π(j)π′(i)

for all j ≥ i. In such case, we write π �lr π
′.

Next, we will show that when ℓ > 2, the existence of an optimal threshold policy with respect
to π, for each fixed degradation level x, cannot be guaranteed. To that end, note that, in either
the usual stochastic or likelihood ratio orders, the ℓ-dimensional simplex Π has a largest element,
namely eℓ ≡ [0 0 · · · 1], where ei denotes the ith unit vector for each i ∈ S. We formalize this fact
in Proposition 2.

Proposition 2. Under the usual stochastic order and the likelihood ratio order, eℓ ≡ [0 0 · · · 1] is
the largest element in the probability simplex

Π =

{[
π(1) · · · π(ℓ)

]
:

ℓ∑

i=1

π(i) = 1

}
.

More specifically, there does not exist any π ∈ Π where π 6= eℓ such that π �st eℓ or π �lr eℓ.

Proposition 3 establishes conditions under which the replacement region is non-empty but no
threshold belief state π exists for at least one x ∈ [0, ξ). In what follows, xπ̂ and xeℓ denote the
degradation thresholds corresponding to belief states π̂ and eℓ, respectively.

Proposition 3. If for some π̂ ∈ Π such that π̂ 6= eℓ we have that xπ̂ < xeℓ < ξ, then

1. Dxπ̂
6= ∅;

2. For degradation level xπ̂, there does not exist a threshold πxπ̂
∈ Π such that, for all π �st πxπ̂

or π �lr πxπ̂
, preventive replacement is optimal.

Proof. By Theorem 3, for fixed π̂, it is true that (xπ̂, π̂) ∈ D, which implies that π̂ ∈ Dxπ̂
. Hence,

Dxπ̂
is non-empty. For part (2), by contradiction, assume there exists a threshold belief state πxπ̂

above which preventive replacement is optimal. By Proposition 2, we have that πxπ̂
�st eℓ and

πxπ̂
�lr eℓ, which implies (xπ̂,eℓ) ∈ D ⇒ xπ̂ ∈ Deℓ

. By Theorem 3, x ∈ Deℓ
if and only if x ≥ xeℓ .

Therefore, xπ̂ ≥ xeℓ , but this is a contradiction. Hence, there does not exist such a threshold.
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Proposition 3 provides sufficient conditions under which a threshold policy does not exist for
a given degradation level x ∈ [0, ξ). To see that these conditions can, in fact, be met, consider
the following numerical illustration. Suppose the environment infinitesimal generator matrix and
degradation rate vector are, respectively,

Q =




−1 4/5 1/5 0
0 −1 4/5 1/5
0 0 −1 1

1/3 1/3 1/3 −1


 and r =

[
5 6 7 8

]
.

The fixed costs are c0 = 1, c1 = 10, c2 = 5, and the failure threshold is ξ = 24 units. In this
case, it can be shown that xe4 = 17.6 and xe3 = 17. Hence, the conditions of Proposition 3 are
met. Thus, there does not exist a threshold policy with respect to π when x = 17. Moreover,
consider any degradation value x̂ ∈ (17, 17.6). Then, (x̂,e3) ∈ D, so Dx̂ 6= ∅; however, (x̂,e4) /∈ D
since x̂ < 17.6. Therefore, there does not exist a threshold belief state πx̂ above which preventive
replacement is optimal, as e4 is the largest element of Π (in the usual stochastic and likelihood
ratio orders).

4 Replacement with Stochastic Downtime Costs

Realistically, wind turbine component replacements are time-consuming and require a shut-
down period during which no power is generated and revenue is lost. This section extends the
model of Section 3 to consider non-instantaneous replacements and the cost of downtime, which
depends explicitly on the state of the random environment. To set the stage for this model, we
first discuss the costs. Inspections are performed instantaneously at a fixed cost c0. If a preventive
replacement is elected (at cost c1), it is initiated immediately at the start of the period, and if
reactive replacement is required (also at cost c1), it likewise begins immediately upon failure. The
deterministic time required to complete a preventive (reactive) replacement is δ1 (δ2), and these
durations are such that 0 < δ < δ1 < δ2. The assumption that δ1 < δ2 is justified since, in the
event of an unplanned replacement, additional time is required to assemble the resources needed to
complete the replacement (e.g., a large crane, specialized equipment and personnel). In addition
to the fixed replacement cost c1, a stochastic downtime cost is accrued for each replacement type
at a rate that depends on the environment state. Let di denote the downtime cost (or revenue
loss) rate for a replacement that commences while the environment is in state i ∈ S, and define
the vector d = (d1, d2, . . . , dℓ). Let Cp(π) be the expected total downtime cost of preventive re-
placement starting in belief state (π), and Cr(x, π) be the expected total downtime cost of reactive
replacement commencing in state (x, π) ∈ B.

Let V (x, π) again be the minimum relative cost per unit time starting in state (x, π) ∈ B, and
V0(x, π) and V1(x, π) are the relative costs of doing nothing and performing preventive replacement,
respectively, starting in state (x, π). The optimality equations,

V (x, π) = min{V1(x, π), V0(x, π)}, (x, π) ∈ B, (13)

are identical to those of Section 3 with the exception of additional downtime cost terms in the
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relative cost functions. The modified functions are

V1(x, π) = c0 + c1 + Cp(π) + V (0, πs)− δ1γ, (14)

V0(x, π) = c0 + [c1 + Cr(x, π) − δ2γ + V (0, πs)]

∫
∞

0
I
+(x, u)k(u, π)du

+

∫
∞

0
I
−(x, u)Vπ(x, u)k(u, π)du − γτ(x, π). (15)

The next subsection provides expressions for the expected downtime costs Cp(π) and Cr(x, π),
followed by structural results for this model.

4.1 Expected Downtime Costs

Here, we show how to obtain the expected downtime costs Cp(π) and Cr(x, π). We begin by
defining the cumulative downtime cost accrued during a replacement up to time t, D(t), given by

D(t) = D(0) +

∫ t

0
dZ(u)du,

where P (D(0) = 0) = 1, i.e., a replacement that consumes no time accrues no downtime costs. For
i, j ∈ S and t ≥ 0, let Fij(y, t) ≡ P(D(t) ≤ y, Z(t) = j|Z(0) = i), and define the density function

fij(u, t) ≡
∂Fij(y, t)

∂y

∣∣∣∣
y=u

.

The expected total downtime cost accrued during a replacement commencing in environment state
i and requiring a duration of t time units, denoted Ci(t), is

Ci(t) ≡ E (D(t)|Z(0) = i)

= t di exp(qii t) +
∑

j∈S

∫ tdℓ

td1

u fij(u, t) du.

Therefore, the expected total downtime cost of a preventive replacement in belief state (π) is

Cp(π) = E (D(δ1)|π) =
∑

i∈S

Ci(δ1)π
(i). (16)

For the downtime cost of reactive replacement, let Y (x, π) be the elapsed time from the current
inspection until failure in the next period starting in state (x, π). To simplify notation, we suppress
the dependence of Y on (x, π) and write simply Y . For u ≥ 0, define the row vector T ∗(u, π) ≡
[T ∗

i (u, π)], i ∈ S where

T ∗
i (u, π) ≡ P(Z(u) = i|π, Y = u) =

∑

j∈S

p(u)(ξ − x, i|j)π(j)

∑

j∈S

∑

k∈S

p(u)(ξ − x, j|k)π(k)
,

where

p(u)(ξ − x, j|i) ≡
∂Wij(v, u)

∂v

∣∣∣∣
v=ξ−x

.
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Therefore, starting in state (x, π), the expected total downtime cost of a reactive failure in the next
period is

Cr(x, π) = E (D(Y + δ2)|D(Y ) = 0,X(Y ) = ξ − x, π)

=

∫ ν1

νℓ

∑

i∈S

Ci(δ2)T
∗
i (u, π)dP(Y ≤ u), (17)

where νi = [r−1
i (ξ − x)] ∧ δ, i ∈ S.

As before, we assume all new components begin operation in state (0, πs), and the objective is
to minimize the long-run average replacement costs per unit time given by

γ = inf
a∈P

Ea

{
lim

N→∞

1

N

N∑

n=1

c0 + c1 I{a(Xn, πn) = 1}

+ [c1 +D(Y + δ2)−D(Y )] I{a(Xn, πn) = 0, Y ≤ δ}

}
.

Obtaining structural results for (13) is considerably more difficult than for (2). In the next subsec-
tion, we provide some results that help characterize the optimal replacement policy.

4.2 Structural Results

In this section, we present several results that hold under somewhat strong conditions. The main
result of this section establishes necessary conditions that ensure the optimality of a threshold-type
control policy. The first result bounds the optimal cost from below.

Lemma 6. The average cost of an optimal policy is bounded below as follows:

γ >
c0

δ + δ2
.

Proof. Set V (0, πs) = 0, and note that the optimal action immediately following replacement is
a = 0, so that V0(0, πs) = V (0, πs) = 0. Substituting equation (15) for V0(0, πs) and solving for γ
yields

γ =

c0 + [c1 + Cr(0, πs)]H(0, πs) +

∫
∞

0
I
−(0, u)Vπ(0, u)k(u, π) du

τ(0, πs) + δ2H(0, πs)
,

which shows that

γ >
c0 + [c1 +Cr(0, πs)]H(0, πs)

τ(0, πs) + δ2H(0, πs)
>

c0
δ + δ2

.

In contrast to the model of Section 3, it is not necessarily optimal to delay preventive replace-
ment when the component survives the next period with certainty. This is because it may be
advantageous to initiate preventive replacement in an environment state with lower downtime costs
(e.g., when wind conditions are mild). But when failure is imminent in the next period, preventive
replacement is always optimal if the difference between preventive and reactive downtime costs
exceed a certain threshold, as shown in Lemma 7.
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Lemma 7. Starting in state (x, π), if the component fails w.p. 1 in the next period, then a sufficient
condition for the optimality of preventive replacement is

Cr(x, π) − Cp(π) ≥
c0(δ2 − δ1)

δ + δ2
.

Proof. Choose any state (x, π) ∈ B for which failure is certain in the next period. Now, preventive
replacement is optimal if V1(x, π) ≤ V0(x, π) or, equivalently, if

c0 + c1 + Cp(π) + V (0, πs)− δ1γ ≤ c0 + c1 + Cr(x, π)− δ2γ + V (0, πs)− γτ(x, π). (18)

Rearranging the terms of (18) shows that

Cr(x, π)− Cp(π) ≥ γ [δ2 − δ1 + τ(x, π)] >
c0(δ2 − δ1)

δ + δ2
,

where the second inequality follows from Lemma 6.

The next three lemmas are needed to prove the optimality of a threshold policy with respect
to the degradation level x (for π fixed). The first establishes a lower bound for V0(x, π), and the
remaining two assert some properties of the downtime cost function Cr(x, π).

Lemma 8. For each π ∈ Π,

V0(x, π) ≥ V
¯ 0(x, π) ≡ c0 + [c1 + Cr(x, π)]H(x, π)− γ [δ2H(x, π) + τ(x, π)] + V (0, πs). (19)

Proof. For (x, π) ∈ B and u ≥ 0, Vπ(x, u) ≥ V (0, πs). Therefore,

V0(x, π) = c0 + [c1 + Cr(x, π)− δ2γ + V (0, πs)]

∫
∞

0
I
+(x, u)k(u, π)du

+

∫
∞

0
I
−(x, u)Vπ(x, u)k(u, π)du − γτ(x, π)

≥ c0 + [c1 + Cr(x, π)]H(x, π)− γδ2H(x, π)

+V (0, πs)H(x, π) + V (0, πs)[1 −H(x, π)]− γτ(x, π)

= c0 + [c1 + Cr(x, π)]H(x, π)− γ [δ2H(x, π) + τ(x, π)] + V (0, πs).

Unfortunately, the non-monotonicity of Cr(x, π) in x precludes us from asserting the monotonicity
of V0(x, π) via (19). By contrast, the properties of the lower bound (10) were transparent.

Lemma 9. For all π ∈ Π,

Cr(ξ, π) =
∑

i∈S

Ci(δ2)π
(i).

Proof. When x = ξ, the remaining lifetime is zero w.p. 1, and dP(Y ≤ u) = ω(u), where ω(u) is
the Dirac delta function. Therefore,

Cr(ξ, π) =

∫

R+

∑

i∈S

Ci(δ2)T
∗
i (u, π)ω(u)

=
∑

i∈S

Ci(δ2)T
∗
i (0, π)

=
∑

i∈S

Ci(δ2)P(Z(0) = i|Y = 0, π)

=
∑

i∈S

Ci(δ2)π
(i).
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Lemma 10. For ǫ > 0 and (x, π) ∈ B such that ξ − x < ǫ,

Cr(x, π) ≥
∑

i∈S

Ci(δ2)π
(i) exp(qiiǫ/ri).

Proof. Choose ǫ < δr1 and x such that ξ − x < ǫ. Then

Cr(x, π) =

∫ ǫ/r1

ǫ/rℓ

∑

j∈S

Cj(δ2)T
∗
j (u, π)dP(Y ≤ u)

=

∫ ǫ/r1

ǫ/rℓ

∑

j∈S

Cj(δ2)P(Z(u) = j|Y = u, π)dP(Y ≤ u)

=

∫ ǫ/r1

ǫ/rℓ

∑

j∈S

Cj(δ2)dP(Z(u) = j, Y ≤ u|π)

≥

∫ ǫ/r1

ǫ/rℓ

I(u ∈ {ǫ/ri : i ∈ S})
∑

j∈S

Cj(δ2)dP(Z(u) = j, Y ≤ u|π)

=
∑

i∈S

∑

j∈S

Cj(δ2)dP(Z(u) = j, Y ≤ u|π)|u=ǫ/ri

≥
∑

i∈S

Ci(δ2)dP(Z(u) = i, Y ≤ u|π)|u=ǫ/ri

=
∑

i∈S

∑

k∈S

Ci(δ2)dP(Z(u) = i, Y ≤ u|Z(0) = k)|u=ǫ/ri π
(k)

=
∑

i∈S

∑

k∈S

Ci(δ2)P(Z(ǫ/ri) = i,X(ǫ/ri) = ǫ|Z(0) = k)π(k)

≥
∑

i∈S

Ci(δ2)P(Z(ǫ/ri) = i,X(ǫ/ri) = ǫ|Z(0) = i)π(i)

=
∑

i∈S

Ci(δ2)π
(i) exp(qiiǫ/ri).

We are now prepared to state the main result of this section, namely the optimality of a
threshold policy under certain conditions. Specifically, such a policy is optimal for belief states in
which the expected difference between the downtime costs of reactive and preventive replacements
is sufficiently large. When these conditions are met, the optimality of preventive replacement can
be established for all x sufficiently close to the failure threshold ξ.

Theorem 5. If for some π ∈ Π,

c0(δ2 − δ1)

δ + δ2
<
∑

i∈S

[Ci(δ2)− Ci(δ1)] π
(i), (20)

then there exists an ǫ > 0 such that preventive replacement is optimal for all (x, π) ∈ B such that
x ∈ (ξ − ǫ, ξ].

Proof. By Lemma 8, a sufficient condition for the optimality of preventive replacement in state
(x, π) ∈ B is V

¯ 0(x, π) ≥ V1(x, π), which implies

c0 + c1 + Cr(x, π) − δ2γ + V (0, πs) ≥ c0 + c1 + Cp(π) + V (0, πs)− δ1γ. (21)
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Rearranging the terms of (21) and applying Lemma 7 shows that

Cr(x, π) −
∑

i∈S

Ci(δ1)π
(i) ≥ γ(δ2 − δ1) >

c0(δ2 − δ1)

δ + δ2
,

which with further simplification yields

Cr(x, π) ≥
∑

i∈S

Ci(δ1)π
(i) +

c0(δ2 − δ1)

δ + δ2
≡ K. (22)

Evaluating (22) at (ξ, π) by applying Lemma 9 and rearranging terms gives condition (20). Now,
assuming (20) is satisfied at ξ, it can also be shown to be satisfied for x ∈ (ξ − ǫ, ξ] for some ǫ > 0
as follows. Assume condition (20) is satisfied and rearrange terms so that

∑

i∈S

Ci(δ2)π
(i) >

∑

i∈S

Ci(δ1)π
(i) +

c0(δ2 − δ1)

δ + δ2
= K,

which implies

∑

i∈S

Ci(δ2)π
(i) −K ≡ K1 > 0. (23)

By Lemma 10, for ǫ > 0 and all x such that ξ − x < ǫ,

Cr(x, π) ≥
∑

i∈S

Ci(δ2)π
(i) exp(qiiǫ/ri).

Choosing ǫ such that 1− exp(qiiǫ/ri) < K1/
∑

j∈S Cj(δ2) for all i ∈ S and using (23) yields

Cr(x, π) −K ≥
∑

i∈S

Ci(δ2)π
(i) exp(qiiǫ/ri)−K

>

(
∑

i∈S

Ci(δ2)π
(i)

)
1−K1

(
∑

i∈S

Ci(δ2)

)−1

−K

= K1


1−

(
∑

i∈S

Ci(δ2)π
(i)

)(
∑

i∈S

Ci(δ2)

)−1



> 0,

where the last inequality holds by (23). Since Cr(x, π)−K > 0 implies inequality (22) holds, it is
optimal to replace for all x ∈ (ξ − ǫ, ξ].

That a replacement threshold does not necessarily exist for each environment belief state in Theorem
5 indicates that information about the environment is especially critical when downtime costs are
incurred as a result of replacement actions.

The next section describes the means by which we obtain optimal policies for the models
presented in Sections 3 and 4. Subsequently, we illustrate these policies by way of a few numerical
examples.
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5 Solution Techniques

This section describes numerical solution techniques to solve the optimal replacement models
of Sections 3 and 4. These techniques require discretization of the belief space B and application of
either the policy iteration algorithm (cf. Puterman [26]) or the linear programming (LP) approach
to solving Markov decision process (MDP) models. We approximate the integrals in equations (4)
and (15) as Riemann sums and formulate MDP models on a discrete, finite state space.

To that end, let Π̇ = {π̇1, π̇2, . . . , π̇L1
} be a discretization of Π, where π̇j ∈ Π and L1 is a

positive integer. Let X = {0} ∪ [r1δ, ξ + rℓ δ] be the set of possible degradation levels in the
numerical procedure, and define b as the step size between the discrete points in [r1δ, ξ+rℓ δ] where

b = [ξ + (rℓ − r1)δ] /L2,

and L2 (L2 ≥ 2) is a positive integer. The ordered set Ẋ = {0, ẋ1, ẋ2, . . . , ẋL2+1} is the discretization
of X , where

ẋk = r1δ + (k − 1)b, k = 1, 2, . . . , L2 + 1.

The complete discretized belief space is denoted Ḃ ≡ (Π̇×Ẋ )∪{(0, πs)}, where πs is the stationary
distribution of the environment process. Define L = |Ḃ| = L1(L2+2)+1, and let L = {0, 1, . . . , L}.
The ith belief state in Ḃ is denoted by ḃi ≡ (ẋi, π̇i), where (ẋi, π̇i) ∈ Π̇ × Ẋ , i ∈ L \ {0} and
ḃ0 ≡ (0, πs). The set of cumulative degradation levels attainable from state ḃi, given no replacement,
is X̄i = {x̄i1, x̄i2, . . . , x̄i,C+1}, where x̄ij = ẋi + r1δ+ (j − 1)b and C ≡ |X̄i| = ⌊δ(rℓ − r1)/b⌋, i ∈ L ,
j = 0, 1, . . . , C + 1.

Estimating the transition probabilities between discretized belief states consists of three steps.
First, for a given state ḃi, compute Π̄i = {π̄i1, π̄i2, . . . , π̄i,C+1}, where π̄ij = T (x̄ij , π̇i) is the updated
belief state obtained from ḃi by observing an increase in degradation of x̄ij in the next decision
epoch, i ∈ L \ {0}, j = 1, 2, . . . , C + 1. Next, approximate each π̄ij with a discretized π∗

ij ∈ Π̇,
where

π∗
ij = min

π̇∈Π̇
‖π̄ij − π̇‖, i ∈ L , j = 0, 1, . . . , C + 1,

and let Π∗
i ≡ {π∗

i1, π
∗
i2, . . . , π

∗
i,C+1}. Finally, compute the row vector Ṗi = (ṗi1, ṗi2, . . . , ṗi,C+1),

where ṗij is the transition probability between ḃi and the updated belief state (ẋi + x̄ij, π
∗
ij), given

no replacement. To compute ṗij, define R(x;πn, xn) ≡ P(Xn+1 ≤ x|xn, πn), the probability that
the cumulative degradation during period n+1 does not exceed x, given b(n) = (xn, πn). A simple
conditioning argument shows that

R(x;πn, xn) = P (Xn+1 ≤ x|xn, πn)

=
∑

i∈S

∑

j∈S

P(X1 ≤ x− xn, z1 = j|z0 = i)π(i)
n

=
∑

i∈S

∑

j∈S

Wij(x− xn, δ)π
(i)
n .

The transition probability ṗij is computed as

ṗij =

{
Ri(x̄ij + b/2 ∧ ẋi,C+1)−Ri(ẋi1 ∨ ẋij − b/2), i ∈ L , j > 0,

0, i = 0, j = 0,
(24)

where Ri(x) ≡ R(x; π̇i, ẋi) is approximated using a technique described in Theorem 4.1 of Bladt
et al. [2]. Computing (Π∗

i , X̄i, Ṗi) for all ḃi ∈ Ḃ provides the transition probabilities between each
pair of discretized belief states, given no replacement occurs.
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Now the optimality equations are stated on Ḃ for the model of Section 3. Let V̇ (i) ≡ V̇ (ḃi)
denote the relative cost, starting in state ḃi. Then

V̇ (i) = min{V̇0(i), V̇1(i)}, i ∈ L , (25)

where V̇0(i) ≡ V̇0(ḃi) and V̇1(i) ≡ V̇1(ḃi) denote the relative costs of doing nothing and preventive
replacement, respectively, in ḃi. The relative cost of action a = 1 (preventive replacement) in ḃi is

V̇1(i) = c0 + c1 + V̇ (0), i ∈ L .

For action a = 0 (do nothing), the relative cost is obtained by conditioning on the event of com-
ponent survival in the next period. Denote the single-period transition probability between ḃi and
ḃj , given the component survives, by q̃ij , where

q̃ij = P(b(n+1) = ḃj |b
(n) = ḃi, ẋj ≤ ξ)

=
ṗij

Ri(ξ)
I(ẋj ≤ ξ), i, j ∈ L .

Let τi be the expected survival time in the next decision period, given ḃi, where

τi =
∑

j∈S

∑

k∈S

∫ δ

0
Wjk(ξ − ẋi, t)dt, i ∈ L .

Then the relative cost of doing nothing starting in state ḃi is

V̇0(i) = c0 + (c1 + c2 + V̇ (0))R̄i(ξ) +Ri(ξ)
L∑

i=0

V̇ (j)q̃ij − γτi, i ∈ L ,

where R̄i(ξ) ≡ 1−Ri(ξ).
The optimality equations (25) can be solved using the policy iteration algorithm, but for larger

problem instances, the LP approach, which facilitates use of a commercial solver, is preferred. By
convention, the solution of the LP primal formulation of a MDP model corresponds to the optimal
relative cost of each belief state, whereas the solution of the LP dual formulation corresponds to the
optimal action for each belief state. The primal and dual objective function values both equal the
long-run average cost per unit time under the optimal replacement policy. Before presenting the
primal formulation, observe that setting V̇ (0) = 0 leads to the following set of optimality equations
for each discretized belief state i ∈ L :

V̇ (i) = min



c0 + c1, c0 + (c1 + c2) R̄i(ξ) +Ri(ξ)

L∑

j=0

V̇ (j)q̃ij − γτi



 . (26)

Equation (26) can be expressed as the pair of linear constraints

V̇ (i) ≤ c0 + c1, (27a)

V̇ (i)−Ri(ξ)

L∑

j=0

V̇ (j)q̃ij + γτi ≤ c0 + (c1 + c2)R̄i(ξ). (27b)
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Using constraints (27a) and (27b), the primal LP formulation is

max γ (28a)

s.t. V̇ (i) ≤ c0 + c1, ∀i ∈ L (28b)

V̇ (i)−Ri(ξ)
L∑

j=0

V̇ (j)q̃ij + γτi ≤ c0 + (c1 + c2)R̄i(ξ), ∀i ∈ L (28c)

γ ∈ R.

The dual LP formulation follows directly from the primal formulation (28). Let xia denote the
limiting probability of being in belief state i and taking action a, a ∈ {0, 1}. The dual formulation
is

min
L∑

i=0

xi0
[
c0 + (c1 + c2)R̄i(ξ)

]
+ (c0 + c1)

L∑

i=0

xi1 (29a)

s.t. xi0 + xi1 −
L∑

j=0

q̃jiRj(ξ)xj0 = 0, ∀ i ∈ L (29b)

L∑

i=0

τi xi0 = 1, (29c)

xia ≥ 0, ∀ i ∈ L , a ∈ {0, 1}.

From a computational viewpoint, obtaining the optimal policy via formulation (29) can be prob-
lematic because the belief space of the POMDP model is comprised of many transient states, and
the dual formulation can assign optimal actions only to recurrent states (see Puterman [26]). To
circumvent this complication, the optimal policy can be alternatively obtained from the primal so-
lution. Consider a component that begins operation in ḃi ∈ Ḃ. Preventive replacement is optimal
in state ḃi only if the expected total bias incurred for immediate preventive replacement, followed
by resumption of the optimal policy, does not exceed the expected total bias for doing nothing in
a single period, i.e., if

c0 + (c1 + c2)R̄i(ξ)− γτi +Ri(ξ)

L∑

j=0

q̃ijV̇ (j) ≥ c0 + c1,

or equivalently,

c2 +Ri(ξ)




L∑

j=0

q̃ijV̇ (j) − (c1 + c2)


− γτi ≥ 0. (30)

Therefore, the optimal policy is obtained by first solving the primal LP formulation (28) to obtain
γ and V̇ (i), i ∈ L . Subsequently, condition (30) is checked for each discretized belief state to
obtain the corresponding optimal action.

For the replacement model of Section 4, the optimality equations on Ḃ follow in a similar
manner. Let V̈ (i) ≡ V̈ (ḃi) denote the relative cost given that the component starts operation in i,
and let V̈0(i) ≡ V̈0(ḃi) and V̈1(i) ≡ V̈1(ḃi) denote the relative costs given no action and preventive
replacement, respectively, in state i, i ∈ L . Then

V̈ (i) = min{V̈0(i), V̈1(i)}, i ∈ L , (31)
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where

V̈0(i) = c0 +
[
c1 + Cr(i)− δ2γ + V̈ (0)

]
R̄i(ξ) +Ri(ξ)

L∑

j=0

V̈ (j)q̃ij − γτi,

V̈1(i) = c0 + c1 + Cp(i) − δ1γ + V̈ (0),

and the downtime costs Cp(i) and Cr(i) are obtained via (16) and (17), respectively. Setting
V̈ (0) = 0, we have for each i ∈ L ,

V̈ (i) = min



c0 + c1 + Cp(i)− δ1γ, c0 + (c1 +Cr(i) − δ2γ) R̄i(ξ) +Ri(ξ)

L∑

j=0

V̈ (j)q̃ij − γτi



 ,

which is equivalent to the pair of linear constraints

V̈ (i) + δ1γ ≤ c0 + c1 + Cp(i), (32a)

V̈ (i)−Ri(ξ)
L∑

j=0

V̈ (j)q̃ij + γ
[
τi + δ2R̄i(ξ)

]
≤ c0 + (c1 + Cr(i)) R̄i(ξ). (32b)

Using constraints (32a) and (32b), the primal LP formulation is

max γ (33a)

s.t. V̈ (i) + δ1γ ≤ c0 + c1 + Cp(i), ∀i ∈ L (33b)

V̈ (i)−Ri(ξ)

L∑

j=0

V̈ (j)q̃ij + γ
[
τi + δ2R̄i(ξ)

]

≤ c0 + (c1 + Cr(i)) R̄i(ξ), ∀i ∈ L (33c)

γ ∈ R.

The dual LP is then formulated directly from the primal as

min

L∑

i=0

xi0
[
c0 + (c1 + Cr(i)) R̄i(ξ)

]
+ (c0 + c1 + Cp(i))

L∑

i=0

xi1 (34a)

s.t. xi0 + xi1 −
L∑

j=0

q̃jiRj(ξ)xj0 = 0, ∀ i ∈ L , (34b)

L∑

i=0

[
τi + δ2R̄i(ξ)

]
xi0 + δ1

L∑

i=0

xi1 = 1, (34c)

xia ≥ 0, ∀ i ∈ L , a ∈ {0, 1}.

Analogous to (30), preventive replacement is optimal in a given belief state only if

c0 + (c1 + Cr(i)− δ2γ) R̄i(ξ) +Ri(ξ)

L∑

j=0

V̈ (j)q̃ij − γτi ≥ c0 + c1 +Cp(i)− δ1γ,

or equivalently,

γ (δ1 − τi) + (Cr(i)− δ2γ) R̄i(ξ) +Ri(ξ)




L∑

j=0

V̈ (j)q̃ij − c1


− Cp(i) ≥ 0. (35)
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Therefore, the optimal policy is obtained by solving the primal LP formulation (33) to obtain γ
and V̈ (i), for i ∈ L . Then condition (35) is checked for each discretized belief state to assign the
optimal actions.

6 Numerical Examples

This section presents two numerical examples that illustrate optimal policies obtained from
the model of Section 3 and elucidate the advantages of the POMDP policies. The models were
solved using the LP approach described in Section 5. The first example illustrates the case in which
replacements are instantaneous and only fixed costs are involved.

Example 1. Suppose the component operates in a random environment with ℓ = 3 distinct
states. The generator matrix and degradation rate vector are parameterized so that

Q(q) =




−1 0.9 0.1
0.9 −1 0.1

0.5 + q/2 0.5 + q/2 −1− q


 and r(w) =

[
1.0 2.0 w

]
.

We consider parameter values (q, w) in the set {(q, w) : q ∈ {−0.5, 0, 1}, w ∈ {3, 5, 7}}. For the
inspection interval, we set δ = 1 and set the failure threshold at ξ = 40 units. The fixed costs of
inspection, preventive replacements and reactive replacements are c0 = 1, c1 = 10 and c2 = 2.5,
respectively. A discretization interval of 0.5 was used for both Π and X \ {0}, which corresponds
to fixing L1 = 21 and setting L2 = 210, L2 = 220 and L2 = 230 when w = 3, w = 5, and w = 7,
respectively. The respective total number of states when w = 3, w = 5, and w = 7 are L = 4, 453,
L = 4, 663, and L = 4, 875. The optimal policy costs associated with each environment are shown
in Table 1.

Table 1: Policy cost (γ) for various (q, w).

Parameter values (q, w) Policy cost (γ)

(-0.5,3) 1.4797
(-0.5,5) 1.5664
(-0.5,7) 1.6433
(0,3) 1.4557
(0,5) 1.5084
(0,7) 1.5599
(1,3) 1.4422
(1,5) 1.4709
(1,7) 1.5004

Intuitively, the optimal cost γ increases as q decreases and the degradation rate in state 3 (w)
increases. As q decreases, the environment spends a greater proportion of time in state 3, thereby
reducing the component’s expected lifetime. Consequently, the replacement frequency increases,
leading to higher policy costs. Likewise, for q fixed, as w increases the component’s expected
lifetime is reduced as degradation progresses more rapidly, and the resulting replacement frequency
increases. Figure 3 plots the optimal replacement thresholds for three environment belief states
as a function of r3 when q = −0.5. For a fixed π̇ and q, the threshold xπ̇ appears to decrease
monotonically as r3 increases. That is, the policy becomes more conservative in order to avoid
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Figure 3: Optimal replacement thresholds (xπ̇) for q = −0.5.

costly reactive replacement penalties. Likewise, the optimal replacement thresholds tend to be
lower when there is a stronger belief that the environment is occupying the most detrimental state
(state 3).

The performance of the POMDP policies was also evaluated by comparing their costs with those
of classical age-replacement and reactive replacement only policies. To estimate the costs of the
age- and reactive-replacement policies, the c.d.f. of the first passage time to level ξ was obtained
numerically from the parameters Q and r using the Laplace transform results of Kharoufeh et
al. [15]. Subsequently, we applied classical results from Barlow and Proschan [1] to compute
the long-run average costs per unit time for these policies. For the age-replacement policy, the
replacement time is the minimum of the failure time or 90% of the component’s expected lifetime,
whichever occurs first. Policy costs were compared for two cases with c0 = 1, c1 = 10 and c2 ∈
{2.5, 5, 10, 20, 30, 40}. Define

cr ≡
c1 + c2

c1

as the ratio of the reactive replacement cost to the preventive replacement cost. Figures 4(a)
and 4(b) show a comparison of the policy costs for environments with (q, w) = (0, 3) and (q, w) =
(−0.5, 7), respectively, as a function of cr. In both cases, the performance of the POMDP policies is
superior to those of the age- and reactive-replacement policies. As cr increases and reactive failures
become more punitive, the cost of both the age- and reactive-replacement policies increases at a
much faster rate than the cost of the POMDP policy. The cost discrepancy is more pronounced in
environment (q, w) = (−0.5, 7), indicating that information about the environment can be crucial
if there is a significant likelihood that the environment will occupy a very detrimental state for
relatively long periods of time.

Example 2. The second example illustrates an optimal replacement policy for a real wind turbine
shaft bearing. The effective number of load cycles imposed on the bearing up to a fixed time can
be used as a proxy for the cumulative degradation of the bearing. To estimate the environment
parameters, the evolution of degradation was simulated up to a failure threshold ξ = 107 effective
load cycles using a physics-based bearing degradation model and empirical temperature and rotor
speed observations obtained from a commercial wind turbine. It was assumed that the primary
determinant of the degradation rate at a given time is the kinematic viscosity of the bearing
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(a) Policy costs for (q, w) = (0, 3).
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(b) Policy costs for (q, w) = (−0.5, 7).

Figure 4: Comparison of replacement policy performance.

lubricant. Let ρ = ν0/ν1 be the relative lubricant viscosity, where ν0 and ν1 respectively denote the
specification and actual lubricant viscosity, and a(ρ) is a life adjustment factor that is a function of
ρ. If Tb denotes the bearing’s specified lifetime – the time to which the bearing is expected to survive
with 90% probability under operational loading conditions – then it is known that Tb ∝ a(ρ) (see for
example [10]). The relationship between kinematic lubricant viscosity (in mm2/s) and the lubricant
temperature, θ, (in degrees Celsius, C) can be approximated by the empirical Ubbelohde-Walther
equation [12], given by

ln [ln(ν1 + 0.8)] = u− v ln(θ + 273.15), (36)

where u and v are constants that depend on the lubricant type.
Summary data for rotor speed and bearing temperature were available for N = 25, 421 10-

minute periods (after discarding periods with spurious or missing data). To simulate degradation
signals, rotor speed and bearing temperature data were bootstrapped by randomly sampling from
4-hour contiguous blocks of wind turbine data. For the ith 10-minute interval, the relative lubricant
viscosity ρi is computed as a function of the bearing temperature using equation (36) and assuming
ν0 = 150 mm2/s. In these calculations, the observed bearing temperature serves as a proxy for the
lubricant temperature θ. The constants u and v of equation (36) were obtained using tabulated data
from a commercial wind turbine lubricant with the following kinematic viscosity characteristics:
150 mm2/s at 40◦ C and 20.7 mm2/s at 100◦ C. Using these values, we obtained u = 17.76 and
v = 2.81. The total number of effective load cycles in the ith 10-minute period, denoted by η′i, is

η′i = 10 a(ρi)ωi, i = 1, . . . , N,

where ωi is the rotor speed in revolutions per minute (rpm). The life adjustment factor a(ρi) is
first estimated using data for standard steel bearings [6]. Subsequently, this factor is adjusted to
be significantly larger and smaller for relatively small and large values of ρi, respectively. This
adjustment is intended to represent a material with amplified degradation characteristics. The
degradation signal at time ti (the end of the ith 10-minute period) is given by

Y (ti) =

i∑

j=1

η′j , i = 1, . . . , N,

with Y (0) ≡ 0. Using this physics-based bearing degradation model, we estimated the environment
parameters by simulating cumulative bearing degradation up to the failure threshold ξ = 107
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effective load cycles. The environment parameters Q and r were inferred from the simulated
observations, {Y (ti) : i = 1, . . . , N}, by adapting a Markov chain Monte Carlo (MCMC) estimation
procedure for switching diffusion processes (see [8, 19]). The estimated number of environment
states is ℓ = 2, and the estimated generator matrix and degradation rate vector are, respectively,

Q =

[
−0.0089 0.0089
0.0304 −0.0304

]
and r = 103 ×

[
0.7580 2.2585

]
.

The remaining parameter values were selected as follows: δ = 300 min; c0 = 1; c1 = 100; and
c2 = 200. The POMDP model was solved numerically using a discretization interval of 0.2 for Π
and approximately 9.0 × 103 for X \ {0}, which corresponds to setting L1 = 6 and L2 = 1, 150 for
L = 6, 913 total belief states. Figure 5 depicts the optimal replacement threshold as a function of
the probability π̇(2) that the environment occupies the state of rapid degradation. The monotonic-
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Figure 5: Optimal replacement threshold (xπ) for Example 2.

ity of this curve illustrates the fact that the replacement policy is more conservative if there is a
stronger belief that the environment occupies the more detrimental state. The optimal average cost
of the POMDP model is γ = 0.0149, while the costs of the age- and reactive-replacement policies
are 0.0158 and 0.0362, respectively. It is noted that the cost of the POMDP policy is approximately
5.7% less than that of the age-replacement policy. This modest improvement can be attributed to
the fact that the ratio of reactive to replacement costs is cr = 3. As cr increases, it is expected
that the cost reduction will be more significant, as illustrated in Figure 4(b).

Example 3. The third and final example illustrates the existence and behavior of threshold-type
policies for the model of Section 4, which includes stochastic downtime costs. The parameter values
for this instance are as follows: ξ = 40; δ = 1; δ1 = 0.5; c0 = 1; and c1 = 1.5. Considered are
three distinct environment processes, each with ℓ = 3 states. The degradation rate vector, which
common to each case, is r = [1 2 5], and the generator matrices are

Q1 =




−1 1 0
0 −1 1
1 0 −1


 , Q2 =




−1 0.5 0.5
0.5 −1 0.5
0.5 0.5 −1


 , Q3 =




−1 0 1
1 −1 0
0 1 −1


 .

Matrices Q1 and Q3 describe the dynamics of cyclic environments for which transitions occur in
the sequences (1 → 2 → 3 → 1) and (3 → 2 → 1 → 3), respectively, and generator matrix Q2
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corresponds to an acyclic environment. In this environment, starting in any one of the states,
the process transitions to either of the other two states with equal probability. To examine the
effect of the reactive replacement duration (δ2), optimal replacement thresholds were obtained for
each δ2 ∈ {0.75, 1, 1.5, 2, 5}. Furthermore, it was assumed that the downtime cost rate vector is
d =

[
1 1.1 8

]
.

The optimality equations were solved numerically by discretizing Π and X \ {0} over intervals
of length 0.2 so that L1 = 21, L2 = 220, and L = 4, 663. Figure 6 depicts the optimal replacement
thresholds under the downtime cost rate vector d when the belief state is π̇ = [1 0 0], i.e., when
it is believed that the environment occupies state 1 with certainty. First, it is noted that for each
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Figure 6: Replacement thresholds as a function of δ2 (π̇ = [1 0 0]).

of the three cases, the replacement threshold is monotone decreasing in the reactive replacement
time. Intuitively, as the time to complete a reactive replacement increases, the optimal policy tends
to initiate preventive replacements earlier. Second, the thresholds for the environment described
by Q3 are consistently larger than those of the environment described by generator matrix Q1.
That is, when it is certain that the environment occupies state 1, the policy is opportunistic in
the sense that it prescribes preventive replacement when the downtime cost and degradation rates
are lowest, assuming the environment evolves as per Q1. By contrast, assuming the environment
evolves as per Q3, the thresholds are higher, indicating a postponement of replacements. Though
not presented here (due to space restrictions), further analysis indicates that, when the belief state
is π̇ = [0 0 1], replacement thresholds are comparatively higher than those of the cases π̇ = [1 0 0]
and π̇ = [0 1 0]. These differences indicate that it is advantageous to avoid initiating replacements
in state 3 due to this state’s high downtime cost rate. In fact, when π̇ = [0 0 1] and δ2 ≤ 1.5,
preventive replacement is never optimal.

Figure 7 depicts the optimal average costs as a function of the reactive replacement time δ2.
Interestingly, the costs associated with the cyclic environments (described by generator matrices Q1

and Q3) are nearly identical, and those associated with the acyclic environment (described by Q2)
are significantly higher when δ2 is small to moderate. It is surmised that the average cost is higher
in the latter case because it may not be possible to avoid state 3 for at least one period by initiating
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a preventive replacement in states 1 or 2. However, the average costs are more comparable as the
reactive replacement time increases.
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Figure 7: Optimal average cost as a function of δ2.
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Appendix: Proof of Theorem 4

Proof. Assume S = {1, 2} and the environment process has parameters

Q =

[
−α α
β −β

]
, r =

[
r0 r1

]
,

where α > β > 0 and r1 > r0 > 0. Define λ = β/α, λ̄ = 1− λ, and P̂ = I +Q/α, where P̂ is the
transition probability matrix of the uniformized environment process given by

P̂ =

[
0 1
λ 1− λ

]
.

Recall that Wij(x, t) = P(X(t) ≤ x,Z(t) = j|Z(0) = i) and define the matrix W (x, t) = [Wij(x, t)],
i, j ∈ S. Sericola [27] obtained a series representation W (x, t) which, for ℓ = 2, is

W (x, t) =
∞∑

n=0

e−αt (αt)
n

n!

n∑

k=0

(
n

k

)
xk(1− x)n−kC(n, k), (37)

where the matrix C(n, k) = [cij(n, k)] is given by

cij(n, k) =





c2j(n− 1, k), i = 1, j ∈ {1, 2}, k ∈ {0, 1, . . . , n− 1},(
P̂

n
)
1j
, i = 1, j ∈ {1, 2}, k = n,

0, i = 2, j ∈ {1, 2}, k = 0,

λc1j(n− 1, k − 1) + λ̄c2j(n− 1, k − 1), i = 2, j ∈ {1, 2}, k ∈ {1, 2, . . . , n}.

For notational brevity, let ci.(n, k) ≡ ci1(n, k) + ci2(n, k) be the ith row sum of C(n, k), i ∈ {1, 2}.
It will be shown that a threshold policy exists with respect to π for fixed x if c1.(n, k) ≤ c2.(n, k)
for all k ≤ n and n ≥ 0. To prove this condition, we employ an induction argument that requires
a few preliminary lemmas.

Lemma 11. For j ∈ {1, 2},

c2j(n, k) =





λn−kc2j(2k − n, 2k − n)

+λ̄

[
n−k∑

s=1

λn−k−sc2j(2k − n+ 2s− 1, 2k − n+ s− 1)

]
, k ≥ n/2,

0, k < n/2.

Proof. The result can be obtained by recursive substitution of the function definitions.

Lemma 12. For n ≥ 1, the n-step transition probability matrix of the uniformized chain is

P̂
n
=




1−
n−1∑

k=0

(−1)kλk
n−1∑

k=0

(−1)kλk

1−
n∑

k=0

(−1)kλk
n∑

k=0

(−1)kλk



.

Proof. The result follows directly by induction on n.
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Lemma 13. For n ≥ 1, c2.(n, n) = λ

n−1∑

k=0

λ̄k.

Proof. Using Lemmas 11 and 12 and C(0, 0) = 0,

c2.(n, n) = λ
[(

P̂
n−1
)
11

+
(
P̂

n−1
)
12

]
+ λλ̄

[(
P̂

n−2
)
11

+
(
P̂

n−2
)
12

]

+λλ̄2
[(

P̂
n−3
)
11

+
(
P̂

n−3
)
12

]
+ · · ·+ λλ̄n−1 [(I)11 + (I)12]

= λ

n−1∑

k=0

λ̄k.

Lemma 14. For all n ≥ 0, c2.(n, n) ≤ c1.(n, n). Moreover, for all n ≥ 1, c2.(n, n−1) ≤ c1.(n, n−1).

Proof. To prove the first part, note that by Lemma 13,

c2.(n, n) = λ
n−1∑

k=0

λ̄k ≤ 1 = c1.(n, n).

For the second part, observe that for n ≥ 1 and j ∈ {1, 2}, Lemma 11 gives the following:

c2j(n, n− 1) = λc2j(n− 2, n− 2)+λλ̄c2j(n− 3, n− 3)+λλ̄2c2j(n− 4, n− 4)+ · · ·+λλ̄n−3c2j(1, 1)

+ λλ̄n−2c2j(0, 0) + λ̄n−1c2j(1, 0).

Therefore, we see that

c2.(n, n− 1) = λ2

[
n−3∑

k=0

λ̄k + λ̄

n−4∑

k=0

λ̄k + λ̄2
n−5∑

k=0

λ̄k + · · ·+ λ̄n−3

]

≤ λ2

[
1

λ
+ λ̄

1

λ
+ λ̄2 1

λ
+ · · ·+ λ̄n−3 1

λ

]

≤ λ

n−2∑

k=0

λ̄k

= c2.(n− 1, n − 1) = c1.(n, n− 1),

where the last equality holds by the first part of the lemma.

Lemma 15. For all n ≥ 0 and k ≤ n, c2.(n, k) ≤ c2.(n− 1, k).
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Proof. By Lemma 11,

c2.(n, k) = λn−kc2.(2k − n, 2k − n)︸ ︷︷ ︸
(1)

+λn−k−1λ̄c2.(2k − n+ 1, 2k − n))︸ ︷︷ ︸
(2)

+λn−k−2λ̄c2.(2k − n+ 3, 2k − n+ 1)︸ ︷︷ ︸
(3)

+ · · ·+ λ2λ̄c2.(n− 5, k − 3)︸ ︷︷ ︸
(n− k − 1)

+λλ̄c2.(n− 3, k − 2) + λ̄c2.(n− 1, k − 1)︸ ︷︷ ︸
(n− k)

c2.(n− 1, k) = λn−k−1c2.(2k − n+ 1, 2k − n+ 1)︸ ︷︷ ︸
(1)

+λn−k−2λ̄c2.(2k − n+ 2, 2k − n+ 1)︸ ︷︷ ︸
(2)

+λn−k−3λ̄c2.(2k − n+ 4, 2k − n+ 2)︸ ︷︷ ︸
(3)

+ · · ·+ λ2λ̄c2.(n− 6, k − 3)︸ ︷︷ ︸
(n− k − 2)

+λλ̄c2.(n− 4, k − 2) + λ̄c2.(n− 2, k − 1)︸ ︷︷ ︸
(n− k − 1)

A pairwise comparison of terms {(3), . . . , (n− k)} in c2.(n, k) with terms {(2), . . . , (n− k− 1)}
in c2.(n− 1, k) shows that each pair is of the form α c2.(w, v) and αc2.(w− 1, v), respectively, where
w ≤ n, v ≥ w/2, and α > 0. Therefore, the paired terms in each set have the same relationship as
the generating expressions, for which (α,w, v) = (1, n, k). It follows that if the recursion is true for
(α,w, v) = (1, n, k), then it holds for all the generated terms by extension. Thus, it is sufficient to
show that the sum of terms (1) and (2) in c2.(n, k) is less than or equal to term (1) of c2.(n− 1, k).
To prove this, we first note that cij(n, k) ≤ cij(n, k + 1) for all i, j ∈ {1, 2}, n ≥ 0, and k ≤ n (see
[27]). The result follows by observing that the sum of terms (1) and (2) in c2.(n, k) is bounded
above by λn−k, while term (1) of c2.(n− 1, k) is bounded below by the same quantity.

Lemma 16. For all n ≥ 0 and k ≤ n, c2.(n, k) ≤ c1.(n, k).

Proof. In the case where k ≤ n/2, c2.(n, k) = 0 ≤ c1.(n, k) by Lemma 11. For k ≥ n/2, Lemma 14
proves that the result holds for all n ≥ 0 and k ∈ {n − 1, n}. Assume that c2.(n, k) ≤ c1.(n, k) for
all n ≥ 0 and k ∈ {n− (w− 1), n− (w− 2), . . . , n} for some integer w ≥ n/2. Then by Lemma 11,
it can be shown that

c1.(n, n− w) = K1 + λ̄c2.(n− 2, n − w − 1) and

c2.(n, n− w) = K2 + λ̄c2.(n− 1, n − w − 1),

where K1 > K2 > 0. By Lemma 15, c2.(n − 1, n − w − 1) ≤ c2.(n − 2, n − w − 1) so that
c2.(n, n− w) ≤ c1.(n, n− w), and the induction holds for w.

Proposition 4. Let π(ρ) = [1 − ρ, ρ] for some ρ ∈ [0, 1] and fix x ∈ [0, ξ]. Then H(x, π(ρ)) is
monotone increasing in ρ, and τ(x, π(ρ)) is monotone decreasing in ρ.

Proof. For ρ ∈ [0, 1] and (x, π(ρ)) ∈ B, we have that

H(x, π(ρ)) = 1−
∑

i∈S

∑

j∈S

Wij(x, δ)π
(i)(ρ) = ρ


∑

j∈S

W1j(x, δ) −W2j(x, δ)


 .
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Therefore, to prove H(x, π(ρ)) is monotone increasing in ρ, it suffices to show

∑

j∈S

(W1j(x, δ) −W2j(x, δ)) ≥ 0 (38)

for all x ∈ [0, ξ] and δ ≥ 0. By Lemma 16, c1.(n, k) ≥ c2.(n, k) for all n ≥ 0 and k ≤ n. Hence, it
follows immediately from (37) that

∑

j∈S

W1j(x, δ) ≥
∑

j∈S

W2j(x, δ).

Likewise, to prove that τ(x, π(ρ)) is monotone decreasing in ρ, observe that

τ(x, π(ρ)) =
∑

i∈S


∑

j∈S

∫ δ

0
Wij(ξ − x, v) dv


 π(i)(ρ)

=

∫ δ

0


1− ρ

∑

j∈S

(W1j(x, v) −W2j(x, v))


 dv.

The integrand is monotone decreasing in ρ as is τ(x, π(ρ)).

Finally, by Lemma 4, we note that

V (x, π(ρ)) ≥ V
¯ 0(x, π(ρ)) = (C0 − c1) + (c1 + c2)H(x, π(ρ)) − γτ(x, π(ρ)).

By Proposition 4, V
¯0(x, π(ρ)) is monotone increasing in ρ; therefore, if it is optimal to replace in

state (x, π(ρ)) ∈ B, it remains optimal to replace for all (x, π(ρ′)) ∈ B such that ρ ≤ ρ′ ≤ 1.
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