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ABSTRACT
Future mobile edge computing (MEC) is envisioned to provide
federated intelligence to delay-sensitive learning tasks with multi-
modal data. Conventional horizontal federated learning (FL) suffers
from high resource demand in response to complicated multi-modal
models. Multi-modal FL (MFL), on the other hand, offers a more
efficient approach for learning from multi-modal data. In MFL, the
entire multi-modal model is split into several sub-models with each
tailored to a specific data modality and trained on a designated
edge. As sub-models are considerably smaller than the multi-modal
model, MFL requires fewer computation resources and reduces
communication time. Nevertheless, deploying MFL over MEC faces
the challenges of device mobility and edge heterogeneity, which,
if not addressed, could negatively impact MFL performance. In
this paper, we investigate an S

¯
ervice M

¯
igration-assisted M

¯
obile

M
¯
ulti-modal F

¯
ederated L

¯
earning (SM3FL) framework, where the

service migration for sub-models between edges is enabled. To ef-
fectively utilize both communication and computation resources
without extravagance in SM3FL, we develop the optimal strategies
of service migration and data sample collection to minimize the
wall-clock time, defined as the required training time to reach the
learning target. Our experiment results show that the proposed
SM3FL framework demonstrates remarkable performance, surpass-
ing other state-of-art FL frameworks via substantially reducing
the computing demand by 17.5% and dramatically decreasing the
wall-clock time by 25.3%.
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1 INTRODUCTION
Mobile edge computing (MEC) has emerged as a promising para-
digm for next-generation computing systems, which brings com-
putation and storage resources to the network edge in proximity
to mobile devices. Driven by its salient features of low latency and
bandwidth saving, MEC enables a diverse range of applications
such as advanced manufacturing [12], intelligent health care [27],
and smart cities [29]. Future MEC is anticipated to support increas-
ingly complex applications with high reliability and robustness,
which necessitates the use of data with multiple modalities [23].
Object tracking in autonomous vehicles, for instance, requires the
integration of data generated by multiple sources, such as cam-
eras, radars, and LiDAR [4]. Similarly, in traffic surveillance tasks,
time-series data, including location, altitude, and velocity, as well
as vision data from cameras, are collected and further analyzed
for pattern recognition [3]. Typically, the volume of multi-modal
data is higher than that of single-modal data, requiring significantly
more computation and storage resources [11].

Federated learning (FL) [17] is surging as a key enabler to learn
from the massive collected data to provide useful insights in MEC,
where edges collaboratively train a powerful learning model under
the coordination of a edge server. When the conventional hori-
zontal FL (HFL) meets multi-modal data, as shown in Fig. 1b, each
edge builds a complex multi-modal model with a huge amount of
parameters and further communicates it with the server back and
forth. However, the limited resources at the edges significantly com-
promise the HFL efficiency. Even worse, inadequate edge resources
pose a substantial risk of HFL failure in the time requirement. Multi-
modal FL is a better FL paradigm to learn from the multi-modal
data. As depicted in Fig. 1a, the entire multi-modal model in MFL
is divided into several sub-models with each corresponding to a
single-modal data. Each edge trains a sub-model and then outputs
an intermediate result. The server deploys a top fusion model to
aggregate intermediate results of all modalities and generate new
gradients for training. This process is iterated until reaching the tar-
get loss. MFL shifts the training of the complicated fusion layer to
the edge server, and only a sub-model is trained on the edge. Thus,
MFL greatly reduces the edge training load. Meanwhile, compared
to exchanging complex models with the edge server in HFL, the
sub-model in MFL significantly reduces the volume of parameters
to be transferred and thus saves transmission time. The comparison

211

https://doi.org/10.1145/3565287.3610277
https://doi.org/10.1145/3565287.3610277
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3565287.3610277&domain=pdf&date_stamp=2023-10-16


MobiHoc ’23, October 23–26, 2023, Washington, DC, USA Hansong Zhou, Xiaonan Zhang

�(0)

�(….)

�(t)

�(….)

�(t)

EDGE1 EDGE2 EDGE3

SERVER

F U S I O N

(a) Multi-modal FL

EDGE1 EDGE2 EDGE3

SERVER

Model Aggregation   

F U S I O N F U S I O N F U S I O N

(                )

(b) Horizontal FL

Figure 1: Illustration of different FL frameworks
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Figure 2: Performance comparison of different FL frameworks

between MFL and HFL in Fig. 2 highlights that MFL utilizes only
one-third of the memory and half the communication resources
required by HFL, as well as reduces half of the wall-clock time,
which is defined as the required training time to achieve a target
loss. Please refer to Section 6 for the settings in this experiment.

Despite its potential benefits, device mobility and edge hetero-
geneity pose a great challenge to efficient MFL. The movement
of mobile devices, such as autonomous vehicles [13] and smart-
phones [2], causes various latencies in uploading data to edges
across rounds. As a mobile device moves farther away, the edge
may experience prolonged waiting times for data to perform lo-
cal training, leading to a significant increase in wall-clock time.
Moreover, edges in an area typically undertake multiple computing
tasks that serve both public and government purposes, such as
real-time transcription services [18] and spectrum management
[20]. The sharing of edge resources is dynamic in nature and may
result in resource depletion, thereby disrupting MFL operation.
Edge resource sharing also exacerbates edge heterogeneity, thereby
rising to the challenge of learning from multi-modal data that re-
quire diverse resources. Obviously, it is not the best option to train
LSTM on resource-exhausted edges while performing simple CNN
on edges with abundant resources, since it would not only waste
edge resources but also increase the local training time divergence
among edges. In the worst case, the whole MFL would fail caused
by insufficient edge resources for training LSTM. Therefore, how to
utilize both the communication and computation resources without
extravagance becomes a critical issue in MFL.

In this paper, we propose a S
¯
ervice M

¯
igration-assisted M

¯
obile

M
¯
ulti-modal F

¯
ederated L

¯
earning (SM3FL) framework as shown in

Fig. 3. The modality-associated sub-models, taken as the service,
will be moved from one edge to another more proper one to balance
the learning performance and the available resources in each round,
which is the idea of “waste not, want not”. To develop an optimal

service migration strategy for efficient MFL with convergence guar-
antee, we mainly focus on these two problems: Whether to move
the sub-model between edges? and Which is the pair between the
target edge and the sub-model for a specific data modality? To get
answers, we first provide the convergence analysis and reveal the
relationship between the convergence round and data sample size.
An offline wall-clock time minimization problem is then formulated
taking service migration decisions and the sample collection ratio as
variables. Solving this problem requires the information of mobile
devices and edges during the whole training process, which is not
always available. Therefore, we reformulate it as an online problem,
but the above variables are coupled. To tackle this issue, we first
obtain the service migration strategy by coverting the online prob-
lem into a Makespan minimization problem, which can be solved
by a variant of Longest-Processing-Time-first (LPT) algorithm [8].
The optimal sample collection ratio is then determined based on its
slope feature.

In light of the above discussion, we summarize our key attribu-
tions in this paper as follows:

• We propose a novel service migration-assisted multi-modal
federated learning (SM3FL) framework, which is highly efficient
and applicable for multi-modal learning tasks in MEC.

• We provide the convergence analysis to SM3FL under the
assumption of the non-convex loss function and get the maximum
estimated number of rounds to achieve a target loss.

•We formulate awall-clock timeminimization problem in SM3FL.
We solve it by determining the optimal and service migration strate-
gies and sample collection ratio in each round.

•We conduct extensive experiments to reveal how SM3FL works.
We further demonstrate its advantages in reducing wall-clock time,
communication cost, as well as computation demand.

2 RELATEDWORK
Federated Learning overWireless Network. The deployment of
FL over wireless networks faces the challenge caused by the commu-
nication and computation resource constraints [19]. Quantization
algorithms are developed to minimize the local model transmis-
sion cost between clients and the server in resource-constrained
IoT networks [24]. Assisted by deep reinforcement learning (DRL)
approaches, various resource allocation strategies are designed
for efficient FL over wireless networks [10, 31, 33]. However, most
DRL-based approaches take the offline policy and regard to only the
single-modal data. By contrast, we focus on improving FL efficiency
in an online manner for multi-modal learning tasks.

Edge Computing with Multi-modal Data. Multi-modal data
widely exists in various applications in MEC, including but not
limited to mobile crowd sensing [34], objective trajectory [4], the
smart home [32], the smart city [22], and the smart health [1, 15].
For instance, Zhou et al. in [34] map multi-modal data into the same
feature space and fuse the representations through the bi-linear
pooling technique for the classification tasks. Their experiments
prove that the classification with multi-modal data is more accurate
than the single-modal one. In [26], Mohammad-Parsa et al. explore
a cloud-edge framework for real-time health diagnosis. They apply
an unsupervised feature extraction model for the identification of
Interictal epileptic discharge (IED) and nonIED time intervals using
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EEG and rs-fMRI data, respectively. However, these works place the
model for processing multi-modal data on a single edge, without
considering the high cost of multi-modal learning tasks and the
limited edge resources in the MEC network.

Service Migration in Wireless Network. The device mobility
and the edge server’s limited coverage could lead to significant
network performance degradation [28]. Service migration ensures
high service quality by deciding when or where to migrate the
service. The optimal decision of service migration in the 2𝐷 area is
investigated in [25]. They form the migration as a Discrete Time
Markov Decision Process and gain an optimal decision in each
round with Q-matrix. Recently, a few works come out on migrating
local models in FL. Aergia in [7] speeds up the FL process by mi-
grating part of the CNN model to faster clients for efficient training.
They either require devices’ trajectories, contradicting our assump-
tion of unpredictable device locations, or pre-training, unsuitable
for our scenarios demanding fast service deployment.

3 SYSTEM MODEL
Fig. 3 presents a 3-layer MEC network including 𝑀 mobile de-
vices for multi-modal data collection, e.g., the smartphone and
autonomous vehicles, a set of trusted edges N = {1, 2, · · · , 𝑁 } for
local training, e.g., the small base stations (SBS) and roadside units
(RSU), and a powerful third-party edge server, such as the remote
cloud of Intelligent Transportation Systems [16]. They collaborately
perform SM3FL over 𝑅 rounds.

Edge Server

TEXT VISION AUDIOADIOVISION AUDIO
Device Status

Edge Status

Upload Decision

Migration Strategy

Service Migrarion

Edge

Device

Figure 3: System overview

3.1 System Overview
In each round 𝑟 = 1, 2, · · · , 𝑅, mobile device𝑚 = 1, 2, · · · , 𝑀 deploys
multi-modal sensors for collecting the same number of 𝐾-modality
data samples, written as 𝑆𝑟𝑚 = 𝜌𝑟𝑆 , where 𝑆 is the number of
total samples in the environment and 𝜌𝑟 is the sample collection
ratio. For MEC in large areas, the number of modalities is far less
than the number of deployed edges, for which we assume 𝐾 ≤
𝑁 . MFL works in the single-modality single-edge manner, that
is each modality is uniquely processed by only one edge. Note
that single-modality multi-edge will lead to huge communication
costs of model duplication and transfer, whereas multi-modality
single-edge will result in resource exhaustion on some edges but
under-utilization on others.

The edge server requests mobile device locations and edge avail-
able computing resources, based on which it makes decisions on
service migration and sample collection for all mobile devices. Par-
ticularly, at the beginning of each round, the edge server decides 𝐾

out of 𝑁 target edges to learn from 𝐾 modalities, respectively, de-
noted as {𝑛𝑟

𝑘
, 𝑘 ∈ 𝐾} ⊆ N , for which we use (𝑛𝑟

𝑘
, 𝑘) to denote each

edge-modality pair. Once model migration is completed, the device
uploads each modality to the associated edge for local training
based on the collection ratio 𝜌𝑟 provided by the edge server.

3.2 Learning Model
Let X = {𝑋1, . . . , 𝑋𝐾 } ∈ R𝑆×𝐷 represent all available multi-modal
data in the environment, where 𝐷 denotes the dimension of feature
space. 𝑋𝑘 ∈ R𝑆×𝐷𝑘 indicates the data of modality 𝑘 and

∑𝐾
𝑘=1 𝐷𝑘 =

𝐷 . In round 𝑟 , device𝑚 collects a subset X𝑟𝑚 ∈ R𝑆𝑟𝑚×𝐷 ⊆ X con-
sisting of 𝑆𝑟𝑚 samples. Device𝑚 then sends each modality data to
the associated target edge 𝑛𝑟

𝑘
. After contaminating data of modality

𝑘 from all devices 𝑋𝑟
𝑘
= {𝑋𝑟

𝑚,𝑘
}𝑀
𝑚=1 ∈ R𝑆𝑟 ×𝐷𝑘 , the edge forwards

each data sample 𝑥𝑟,𝑖
𝑘

∈ R𝐷𝑘 through its neural network 𝜽𝑘 ∈ R𝑉𝑘
to generate the embedding ℎ𝑘 (𝜽𝑘 ;𝑥𝑟,𝑖

𝑘
), which is then sent to the

edge server. The edge server maintains a fusion model parame-
terized by 𝜽 𝑓 ∈ R𝑉𝑓 , which is a function of 𝐾 embeddings. We
represent the entire model as 𝚯 = [𝜽 𝑓 , 𝜽 1, . . . , 𝜽𝐾 ] ∈ R𝑉 , where
𝑉 = 𝑉𝑓 +

∑
𝑘 𝑉𝑘 . The above learning model structure can be referred

to Fig. 1a. The long-term object of MFL is

min
𝚯

𝐹 (𝚯,S;𝒚) = 1
𝑆

𝑆∑︁
𝑖=1

𝑓 (𝜽 𝑓 ;ℎ1 (𝜽 1;𝑥𝑖1); . . . ;ℎ𝐾 (𝜽𝐾 ;𝑥𝑖𝐾 )), (1)

where 𝐹 (·) is the overall loss of all samples; 𝑓 (·) denotes the loss
function on the edge server; and 𝒚 ∈ R𝑆 represents the label set.

The derivative of modality 𝑘 evaluated by 𝚯 is given as

∇𝑘𝐹 (𝚯,S;𝒚) = 1
𝑆

𝑆∑︁
𝑖=1

∇𝑘 𝑓 (𝜽 𝑓 ;ℎ1 (𝜽 1;𝑥𝑖1); . . . ;ℎ𝐾 (𝜽𝐾 ;𝑥𝑖𝐾 )) . (2)

3.3 Communication Model
The communication time per round is comprised of service migra-
tion and data uploading. We ignore the time spent in embedding
transmission between edges and server due to its tiny size.

ServiceMigration.Denote the edge for modality 𝑘 in last round
as 𝑛𝑟−1

𝑘
. 𝑛𝑟−1
𝑘

= 𝑛𝑟
𝑘
indicates no migration performed for modality

𝑘 in round 𝑟 . Otherwise, the local model for modality 𝑘 is migrated
from𝑛𝑟−1

𝑘
to𝑛𝑟

𝑘
. Given the local model size 𝜈𝑘 in bytes, the reference

distance 𝑑0, the distance 𝑑𝑛𝑟−1
𝑘

,𝑛𝑟
𝑘
between 𝑛𝑟−1

𝑘
and 𝑛𝑟

𝑘
, and the

migration speed 𝜋𝑛 in bytes/second, the service migration time is,

𝑇 𝑟𝑠𝑚 (𝑛𝑟
𝑘
, 𝑘) =

𝜈𝑘 log2 (1 + 𝑑𝑛𝑟−1
𝑘

,𝑛𝑟
𝑘
/𝑑0)

𝜋𝑛
. (3)

Data Uploading. In round 𝑟 , mobile device𝑚 uploads samples
of each modality 𝑋𝑟

𝑚,𝑘
to the associated target edge, respectively.

We denote size of each sample in 𝑋𝑟
𝑚,𝑘

, 𝑘 = 1, 2, · · · , 𝐾 as 𝑞𝑘 . The
overall size of 𝑋𝑟

𝑚,𝑘
is 𝜌𝑟𝑚𝑆𝑞𝑘 . Each device deploys MIMO antennas

for sample transmission. Given the transmission bandwidth 𝐵𝑚
and power 𝑃𝑚 , the time in sending 𝑋𝑟

𝑚,𝑘
is calculated as

𝑇 𝑟𝑢𝑝,𝑚 (𝑛𝑟
𝑘
, 𝑘) = 𝜌𝑟𝑆𝑞𝑘

𝐵𝑚 log2 (1 +
𝑃𝑚ℎ (𝑑𝑟𝑚,𝑛𝑟

𝑘

)
𝑁0

)
, (4)
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where 𝑑𝑟
𝑚,𝑛𝑟

𝑘

is the distance between device𝑚 and target edge 𝑛𝑟
𝑘
in

round 𝑟 ; ℎ(𝑑𝑟
𝑚,𝑛𝑟

𝑘

) denotes the corresponding channel gain, which
is positively related to the distance, such as the Rayleigh fading
channel; and 𝑁0 denotes additive white Gaussian noise (AWGN).

The communication time of edge-modality pair (𝑛𝑟
𝑘
, 𝑘) is

𝑇 𝑟𝑐𝑚 (𝑛𝑟
𝑘
, 𝑘) = 𝑇 𝑟𝑠𝑚 (𝑛𝑟

𝑘
, 𝑘) + max

𝑚
𝑇 𝑟𝑢𝑝,𝑚 (𝑛𝑟

𝑘
, 𝑘), (5)

where max function indicates the longest time in sending modality
𝑘 to target edge 𝑛𝑟

𝑘
among all devices. It is because the target edge

cannot perform training until getting the modality from all devices.

3.4 Computation Model
Due to the resource sharing between other edge computing tasks
and MFL tasks, the available computing resource on each edge
varies across rounds, which is depicted by computation capabil-
ity 𝜉𝑟𝑛 in cycles/second. We assume that each edge performs 𝐸
epochs of local training to update 𝚯 every round. With GPU com-
putation density 𝜗𝑘 cycles/sample for model 𝜽𝒌 , we calculate the
computation demand of each epoch as 𝑆𝑟𝜗𝑘 in cycles, where 𝑆𝑟 =∑𝑀
𝑚=1 .𝑆

𝑟
𝑚 = 𝜌𝑟𝑀𝑆 represents the total samples from all devices.

The computation time on edge 𝑛𝑟
𝑘
in round 𝑟 is calculated as

𝑇 𝑟𝑐𝑝 (𝑛𝑟𝑘 , 𝑘) = 𝐸 (
𝑆𝑟𝜗𝑘

𝜉𝑟𝑛
) = 𝜌𝑟𝐸𝑀 (𝜗𝑘

𝜉𝑟𝑛
). (6)

We ignore the computation time spent by the edge server due
to its sufficient computation resources. Another reason is that the
fusionmodel on the server is much simpler than the learningmodels
on edges. For example, the RNN model processing time series data
on edges is much more complicated than the MLP-based fusion
model on the edge server.

4 THEORETICAL ANALYSIS
In this section, we analyze the convergence rate of SM3FL. For
simplicity, we use 𝑘 to refer to the target edge 𝑛𝑟

𝑘
that trains the

local model for modality 𝑘 .
As in Eq. (2), edge𝑘 needs the embedding set from all target edges,

including itself and themodel from server 𝜽𝑟
𝑓
, to calculate the partial

gradient 𝑔𝑘 (𝚯𝑟 ,S𝑟 ). We denote the set of required components as
Φ𝑟 = {(𝜽𝑟

𝑓
;ℎ1 (𝜽𝑟1;𝑥𝑖1); . . . ;ℎ𝐾 (𝜽

𝑟
𝐾 ;𝑥𝑖𝐾 ))}. (7)

We useΦ𝑟−𝑘 to represent the subset ofΦ
𝑟 without the embeddings

from edge 𝑘 . Denote the local gradient as 𝑔𝑘 ({𝜽𝑟𝑘 |Φ
𝑟
−𝑘 },S

𝑟 ), the
expectation over S𝑟 on edge 𝑘 is expressed as

∇𝑘𝐹 ({𝜽𝑟𝑘 |Φ
𝑟
−𝑘 },S

𝑟 ) = 1
𝑆𝑟

𝑆𝑟∑︁
𝑖=1

𝑔𝑘 ({𝜽𝑟𝑘 |Φ
𝑟
−𝑘 },S

𝑟 ), (8)

where {𝜽𝑟
𝑘
|Φ𝑟−𝑘 } indicates that embeddingsΦ𝑟−𝑘 remain static when

edge 𝑘 updates its local gradient 𝜃𝑟
𝑘
in round 𝑟 .

The update of the global model𝚯𝑟 can be decomposed to the col-
laboration of the updates on the local model 𝜽𝑟

𝑘
. Here we introduce

a global gradient G represented by the set of local gradients
G = [𝑔1 ({𝜽𝑟1 |Φ

𝑟
−1},S

𝑟 ); . . . ;𝑔𝐾 (𝜽𝑟𝐾 |Φ
𝑟
−𝐾 },S

𝑟 )] . (9)
With Eq. (9), the global update becomes

𝚯
𝑟+1 = 𝚯

𝑟 − 𝜂𝑇Gr, (10)

where 𝜂 = [𝜂1; . . . ;𝜂𝐾 ] is a set of learning rate w.r.t sub-models on
all edges. The local update for edge 𝑘 with a single step is

𝜽𝑟+1
𝑘

= 𝜽𝑟
𝑘
− 𝜂𝑘𝑔𝑘 ({𝜽𝑟𝑘 |Φ

𝑟
−𝑘 },S

𝑟 ) . (11)

According to [5, 6, 14], we make the following common assump-
tions on the model and simply denote the local gradient as 𝑔𝑘 (𝜽𝑟𝑘 ).

Assumption 1 (L-Smoothness). The global model is L-smooth
with positive constants 𝐿 and 𝐿𝑘 , 𝑘 ∈ 𝐾 , which is described as:

∥∇𝐹 (𝚯1) − ∇𝐹 (𝚯1)∥ ≤ 𝐿∥𝚯1 − 𝚯2∥,∀𝚯1,𝚯2, (12)
∥∇𝑘𝐹 (𝚯1) − ∇𝑘𝐹 (𝚯1)∥ ≤ 𝐿𝑘 ∥𝚯1 − 𝚯2∥,∀𝚯1,𝚯2 . (13)

Assumption 2.1 (Uniform Sample Distribution). We assume that
after sufficient rounds 𝑟 , the sampling distribution of each sample
𝑥𝑖 approaches the uniform distribution as 𝑝𝑟 (𝑥𝑖 |𝑟 = 𝑟 ) ≈ 1/𝑆 .

Assumption 2.2 (Unbiased Gradient). The expectation of the
stochastic gradient is presented as

E𝑆𝑟 [𝑔𝑘 (𝜽𝑟𝑘 ,S
𝑟 )] = 1∑

𝑟 𝑆
𝑟

∑︁
𝑟

∑︁
S𝑟

∇𝑘𝐹 (𝜽𝑟𝑘 ,S) . (14)

When Assumption 2.1 holds, the expectation can be simplified as

E𝑆𝑟 [𝑔𝑘 (𝜽𝑟𝑘 ,S
𝑟 )] = 1

𝑆

∑︁
S𝑟
𝑓 (𝚯𝑟 ,S) = ∇𝑘𝐹 (𝜽𝑟𝑘 ,S) . (15)

Assumption 2.3 (Bounded Variance). Given the unbiased gradi-
ent, we further obtain a bounded variance as

E𝑆𝑟 ∥𝑔𝑘 (𝜽𝑟𝑘 ,S) − ∇𝑘𝐹 (𝜽𝑟𝑘 ,S)∥
2 ≤ 𝜎2

𝑆
. (16)

𝜎 is a small constant regarding variances of the sampling process.
Lemma 1. The local gradient evaluated by global model 𝚯𝑟 in

Eq. (2) and by local model 𝜽𝑟
𝑘
cannot be regarded as unbiased. This

is because the evaluation of 𝑔𝑘 (𝜽𝑟𝑘 ) contains stale embeddings from
other edges, which introduces bias from the local gradient on the
global view. Following the proof in [14], such bias is bounded as

E
𝐾∑︁
𝑘=1

𝜂𝑘 ∥∇𝑘𝐹 (𝚯𝑟 ) − 𝑔𝑘 (𝜽𝑟𝑘 )∥
2 ≤ 2𝐸2 (𝐾 + 3)

𝐾∑︁
𝑘=1

𝜂3
𝑘
𝐿2
𝑘

𝜎2

𝑆

+ 2𝐸2
𝐾∑︁
𝑘=1

𝜂3
𝑘
(𝐴 + 3𝐿2

𝑘
)E∥∇𝑘𝐹 (𝜽𝑟𝑘 )∥

2 + 2𝐾 𝜎
2

𝑆
, (17)

where 𝐴 =
∑𝐾
𝑘=1 𝐿𝑘 is a constant determined by local smoothness.

Theorem 1.With the above assumptions, when the minimum

learning rate among all edges satisfies 𝜂𝑚𝑖𝑛
𝑘

≤
√︃
𝐿2+4(𝐶+3𝐿2

𝑘
)−𝐿

2𝐶+6𝐿2
𝑘

, we
have the following bound on the gradient of global loss

1
𝑅

∑︁𝑅−1
𝑟=0 E∥∇𝐹 (𝚯

𝑟 )∥2 ≤ 2𝐾
𝛾𝑅
E[𝐹 (𝚯0) − 𝐹 (𝚯𝑅)]

+ (2 + 4𝐸2 (𝐾 + 3)
∑︁𝐾

𝑘=1 𝜂
3
𝑘
𝐿2
𝑘
) 𝜎

2

𝛾𝑆
. (18)

𝛾 is the sum of learning rates over all edges. On the right-hand
side, the first item indicates the convergence rate and the second
item is the residual error. Please refer to Appendix A.1 for the proof.

Remark 1 (Impact of modalities). The number of modalities 𝐾 is
positively related to both the convergence rate and the residual error.
The model with more modalities will result in a faster convergence
but a higher residual error, making SM3FL more challenging.
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Corollary 1 (Maximum rounds for target loss). For the multi-
modal learningmodel, set 𝜀 as the convergence loss.When 𝑆 > 𝛼𝜀−1

is satisfied, the number of rounds to achieve the target loss is

𝑅(𝑆 |𝜀) = 𝑆𝛽𝜀−1

𝑆 − 𝛼𝜀−1 . (19)

Here, we regard (2+4𝐸2 (𝐾 +3)∑𝐾
𝑘=1 𝜂

3
𝑘
𝐿2
𝑘
) 𝜎2
𝛾 and 2𝐾

𝛾 E[𝐹 (𝚯
0)−

𝐹 (𝚯𝑅)] as two positive constant 𝛼 and 𝛽 , respectively. The proof is
given in Appendix A.2.

5 PROBLEM STATEMENT AND SOLUTION
In this section, we aim to minimize the wall-clock time in MFL to
facilitate delay-sensitive computing tasks. Specifically, Corollary 1
suggests that a larger sample size reduces the number of rounds re-
quired for a target loss. However, increasing the number of samples
collected in each round causes a higher communication and com-
putation time cost, as illustrated in Eq. (3) and (4). This may not be
feasible for MEC networks with limited resources. Hence, a sample
collection strategy for efficient MFL needs careful consideration.
Additionally, Eq. (3) to (6) demonstrate that the selection of the
target edge for each modality significantly impacts the time spent
on service migration, data uploading, and edge computation, which
necessities the design of an optimal service migration strategy.

5.1 Problem Formulation
We minimize the wall-clock time w.r.t the target edge 𝑛𝑟

𝑘
for all

modalities and the sample collection ratio 𝜌𝑟 in each round by
solving the following optimization problem

P1: min
𝜌𝑟 ,{𝑛𝑟

𝑘
}𝐾
𝑘=1

∑︁𝑅

𝑟=1

(
𝑇 𝑟𝑐𝑚 (𝑛𝑟

𝑘
, 𝑘) +𝑇 𝑟𝑐𝑝 (𝑛𝑟𝑘 , 𝑘)

)
, (20a)

s.t. 𝑛𝑟
𝑘
≠ 𝑛𝑟

𝑘
′ ,∀𝑘 ≠ 𝑘

′
, (20b)

𝛽 > 0, 𝛼 > 0, (20c)

𝜂𝑚𝑖𝑛
𝑘

≤

√︃
𝐿2 + 4(𝐶 + 3𝐿2

𝑘
) − 𝐿

2𝐶 + 6𝐿2
𝑘

, (20d)

𝑆 ≥ 𝑆𝑟 =
∑︁𝑀

𝑚=1 𝑆
𝑟
𝑚 ≥ 𝛼𝜀−1, (20e)

where Eq. (20b) denotes that each edge learns from a singlemodality;
Eq. (20c) and Eq. (20d) set the range for 𝛼 , 𝛽 , and 𝜂𝑚𝑖𝑛

𝑘
, respectively;

and Eq. (20e) limits the total number of samples every round for
learning convergence, which is found in Eq. (18) and Eq. (19).

The optimal solution to P1 requires a known round 𝑅 for target
loss as well as the exact dynamic mobile device locations and edge
computing resources in all rounds, which, however, is agnostic in
real-world scenarios. Instead, we obtain its sub-optimal solution
with the optimal decision for each round, for which we reformulate
P1 into an online optimization problem

min𝜌𝑟 ,{𝑛𝑟
𝑘
}𝐾
𝑘=1
𝑇 = 𝑅

(
𝑇 𝑟𝑐𝑚 (𝑛𝑟

𝑘
, 𝑘) +𝑇 𝑟𝑐𝑝 (𝑛𝑟𝑘 , 𝑘)

)
, (21a)

s.t. 𝐸𝑞.(20𝑏) − (20𝑒) . (21b)
Eq. (21a) represents the estimated wall-clock time, which consists of
the estimated convergence round from Corollary 1 and the duration
of the current round given device locations and edge resources. The
edge server estimates the wall-clock time 𝑇 by supposing mobile

devices stay in the same location. Thus, the optimal 𝑛𝑟
𝑘
and 𝜌𝑟 do

not change across rounds. In round 𝑟 , in total 𝑆𝑟 = 𝑀𝑆𝜌𝑟 data
samples will be collected for training. We estimate the expected
𝑅(𝑆𝑟 ) by replacing 𝑆 in Eq. (19) with𝑀𝑆𝜌𝑟 . After substituting 𝑅(𝑆𝑟 )
into Eq. (20a), we rewrite the above optimization problem as

P2: min
𝜌𝑟 ,{𝑛𝑟

𝑘
}𝐾
𝑘=1

𝑇 =
𝜌𝑟 𝛽

(
𝑇 𝑟𝑐𝑚 (𝑛𝑟

𝑘
,𝑘 )+𝑇 𝑟𝑐𝑝 (𝑛𝑟𝑘 ,𝑘 )

)
𝜌𝑟 −𝛼 , (22)

s.t. 𝐸𝑞.(20𝑏) − (20𝑒) . (23)

We let 𝛽 = 𝛽𝜀−1 and 𝛼 = 𝛼 (𝑀𝑆𝜀)−1 for simplicity.
Obviously, the joint optimization of float value 𝜌𝑟 and {𝑛𝑟

𝑘
}𝐾
𝑘=1

is a Mix Integer Non-Linear Problem (MINLP). We tackle this issue
by first decoupling the above two variables and solving the optimal
migration strategy followed by the optimal sample collection ratio.
Specifically, we enumerate edges for each modality to generate
an edge-modality matrix. Each element in the matrix records the
time cost for the corresponding edge-modality pair, which is a non-
linear function of 𝜌𝑟 . By proving the convexity w.r.t 𝜌𝑟 , we can
get an optimal 𝜌 and the corresponding edge-modality preference
matrix, based onwhich the edge-mobility pairs minimizing the wall-
clock time are determined. With the given optimal {𝑛𝑟∗

𝑘
}𝐾
𝑘=1, we

further obtain the optimal 𝜌𝑟∗ from 𝜌𝑟∗
𝑛,𝑘
,∀𝑛, 𝑘 based on its feature

of curvature. The details are discribed in the following.

5.2 Edge-Modality Preference Matrix
As demonstrated in Eq. (22), once the optimal sample collection
ratio 𝜌𝑟∗ is determined, the optimal migration strategy {𝑛𝑟∗

𝑘
}𝐾
𝑘=1

is deterministic. However, the coupled relationship make it im-
possible to directly obtain the first variable. Therefore, instead of
straightforward representing the migration strategy w.r.t the glob-
ally optimal 𝜌𝑟∗, we introduce an edge-modality preference matrix
T𝑁𝑥𝐾 (𝜌𝑟∗𝑛,𝑘 ) = [𝑇 (𝜌𝑟∗

𝑛,𝑘
)]𝑁×𝐾 to denote the estimated minimal

wall-clock time for every potential edge-modality pair w.r.t its own
optimal sample collection ratio 𝜌𝑟∗

𝑛,𝑘
in round 𝑟 . In other words, the

𝜌𝑟∗
𝑛,𝑘

is their preferred sample collection ratio. Consequently, we
convert the MINLP problem into a assignment problem.

From communication model described by Eq. (4) and Eq. (5) as
well as computation models by Eq. (6), the initial edge-modality
matrix T𝑁𝑥𝐾 (𝜌𝑟𝑛,𝑘 ) is represented as

T𝑁𝑥𝐾 (𝜌𝑟𝑛,𝑘 ) = [𝑇 (𝜌𝑟
𝑛,𝑘

)]𝑁×𝐾 =
𝜌𝑟
𝑛,𝑘
𝛽

𝜌𝑟
𝑛,𝑘

− 𝛼 [𝑇 𝑟 (𝜌𝑟
𝑛,𝑘

)]𝑁×𝐾

=
𝜌𝑟
𝑛,𝑘
𝛽

𝜌𝑟
𝑛,𝑘

− 𝛼 [𝑇 𝑟𝑠𝑚 + max𝑚 𝑇 𝑟𝑢𝑝,𝑚 (𝜌𝑟
𝑛,𝑘

) +𝑇 𝑟𝑐𝑝 (𝜌𝑟𝑛,𝑘 )]𝑁×𝐾 , (24)

where 𝑇 𝑟 (𝜌𝑟
𝑛,𝑘

) is the estimated time cost of each edge-modality
pair in round 𝑟 . As each edge-modality pair is enumerated, we
replace 𝑛𝑟

𝑘
and 𝜌𝑟 in P2with 𝑛 and 𝜌𝑟

𝑛,𝑘
, respectively. Since𝑇 𝑟𝑢𝑝 and

𝑇 𝑟𝑐𝑝 rely on 𝜌𝑟
𝑛,𝑘

, we integrate them by putting aside 𝜌𝑟
𝑛,𝑘

as follows

max𝑚 𝑇 𝑟𝑢𝑝,𝑚 (𝑛, 𝑘) = 𝜌𝑟
𝑛,𝑘

max𝑚 ℎ(𝑚,𝑛, 𝑘) = 𝜌𝑟𝑛,𝑘𝐻 (𝑛, 𝑘), (25)

𝑇 𝑟𝑐𝑝 (𝑛, 𝑘) = 𝐸𝑀 (𝜗𝑘
𝜉𝑟𝑛

) = 𝜌𝑟
𝑛,𝑘
𝐿(𝑛, 𝑘), (26)
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where ℎ(𝑚,𝑛, 𝑘) = 𝑆𝑞𝑘/(𝐵𝑚 log2 (1 +
𝑃𝑚ℎ (𝑑𝑟𝑚,𝑛 )

𝑁𝑜
)) is the uploading

time for device𝑚. With Eq. (25) and Eq. (26), 𝑇 𝑟 (𝜌𝑟
𝑛,𝑘

) is written as

𝑇 𝑟 (𝜌𝑟
𝑛,𝑘

) = 𝜌𝑟
𝑛,𝑘

(𝐻𝑟 (𝑛, 𝑘) + 𝐿𝑟 (𝑛, 𝑘)) +𝑇 𝑟𝑠𝑚 (𝑛, 𝑘) . (27)

For simplicity, we denote Ψ𝑣,𝑟
𝑛,𝑘

= 𝐻𝑟 (𝑛, 𝑘) + 𝐿𝑟 (𝑛, 𝑘) and Ψ𝑠,𝑟
𝑛,𝑘

=

𝑇 𝑟,𝑠𝑚 (𝑛, 𝑘). We then are able to obtain the edge-modality preference
matrix by solving the following problem P3

P3:min
𝜌𝑟
𝑛,𝑘

𝑇 (𝜌𝑟
𝑛,𝑘

) =
(𝜌𝑟
𝑛,𝑘

)2𝛽

𝜌𝑟
𝑛,𝑘

− 𝛼 (Ψ𝑣,𝑟
𝑛,𝑘

+ Ψ𝑠,𝑟
𝑛,𝑘

),∀𝑛, 𝑘 (28a)

s.t. 𝐸𝑞.(20𝑏) − (20𝑒) . (28b)

Now, we attempt to prove that there exists a optimal and unique
𝜌𝑟∗
𝑛,𝑘

for each edge-modality pair. The first and second derivative of
𝑇 (𝜌𝑟

𝑛,𝑘
) w.r.t 𝜌𝑟

𝑛,𝑘
in Eq. (28b) are

𝑑𝑇 (𝑛, 𝑘)
𝑑𝜌𝑟

= 𝛽
Ψ𝑣,𝑟
𝑛,𝑘

(𝜌𝑟 )2 − 2𝛼Ψ𝑣,𝑟
𝑛,𝑘
𝜌𝑟 − 𝛼Ψ𝑠,𝑟

𝑛,𝑘

(𝜌𝑟 − 𝛼)2 . (29)

𝑑2𝑇 (𝑛, 𝑘)
𝑑2𝜌𝑟

= 𝛽
Ψ𝑣,𝑟
𝑛,𝑘
𝛼2 + Ψ𝑠,𝑟

𝑛,𝑘
𝛼

(𝜌𝑟 − 𝛼)3 > 0. (30)

Since 𝑑2𝑇 (𝑛,𝑘 )
𝑑2𝜌𝑟

> 0, 𝑇 (𝑛, 𝑘) is a convex function of 𝜌𝑟 . Hence, by
setting Eq. (29) equal to 0, we are able to obtain the optimal 𝜌𝑟∗

𝑛,𝑘

for each (𝑛, 𝑘) in T𝑁×𝐾 as

𝜌𝑟∗
𝑛,𝑘

= 𝛼 +

√√√
𝛼2Ψ𝑣,𝑟

𝑛,𝑘
+ 𝛼Ψ𝑠,𝑟

𝑛,𝑘

Ψ𝑣,𝑟
𝑛,𝑘

, (31)

which is the solution to P3. By substituting 𝜌𝑟∗
𝑛,𝑘

into Eq. (24), the
edge-modality preference matrix obtained in round 𝑟 becomes

T𝑁×𝐾 (𝜌𝑟∗𝑛,𝑘 ) =

[(

√√√
𝛼Ψ𝑣,𝑟

𝑛,𝑘

𝛼Ψ𝑣,𝑟
𝑛,𝑘

+ Ψ𝑠,𝑟
𝑛,𝑘

+

√√√
𝛼2Ψ𝑣,𝑟

𝑛,𝑘
+ 𝛼Ψ𝑠,𝑟

𝑛,𝑘

Ψ𝑣,𝑟
𝑛,𝑘

+ 2𝛼) (𝛽Ψ𝑣,𝑟
𝑛,𝑘

+ Ψ𝑠,𝑟
𝑛,𝑘

)]𝑁×𝐾 ,

(32)

where each element 𝑇 (𝜌𝑟∗
𝑛,𝑘

) represents the minimal time cost of
the potential edge-modality pair (n,k).

5.3 Service Migration and Sample Collection
We now explore the optimal service migration strategy through
the given edge-modality preference matrix. Since each modality
is parallelly processed by edges, the overall wall-clock time is de-
termined by the slowest modality, who has the longest estimated
wall-clock time. Thus, the optimization problem P2 can be regarded
as minimizing the maximum estimated wall-clock time over a set
of modalities, which drops into a Makespan minimization problem.

In accordance with the idea of LPT algorithm, which provides
a polynomial time-complexity solution to the Makespan problem,
we propose the following modality assignment procedure. First, we
denote the set of modality existing in the preference matrix T𝑁×𝐾
as K𝑇 . For each modality 𝑘 ∈ K𝑇 , we select out a set of edges with
minimum estimated wall-clock time, where

{𝑛𝑟
𝑘
} = {arg min𝑛 𝑇 (𝑛, 𝑘), 𝑘 ∈ K𝑇 }. (33)

Algorithm 1 Sample collection and Server migration strategy
Input: Edge resource 𝜉𝑟𝑛 , device distance to edges D𝑟𝑚,𝑛 , target loss 𝜀
Output: Number of samples to be collected 𝑆𝑟 , edges to work for MFL N𝑟

in this round
1: Initialize the selected edge set N𝑟 = ∅
2: Calculate the𝐻𝑟 , 𝐿𝑟 , and𝑇 𝑟𝑠𝑚 for all potential edge-modality pairs with

Eq. (25), Eq. (26) and Eq. (3).
3: Find the optimal 𝜌𝑟∗

𝑛,𝑘
for each edge-modality pair (𝑛,𝑘 ) with Eq. (31)

4: Generate the preference matrix T𝑁 ×𝐾 by Eq. (32)
5: for j do = 1, 2, . . . , K
6: Obtain edge-modality candidates for remaining modalities by Eq. (33)
7: Sort the candidates by estimated time in descending order.
8: Select out the first pair (𝑛𝑟

𝑗
, 𝑗 ) with the longest wall-clock time.

9: Add the edge 𝑛𝑟
𝑗
into final edge list N𝑟 .

10: Remove the corresponding modality and edge from T𝑁 ×𝐾 .
11: end for
12: Set the sample collection ratio as 𝜌𝑟∗ = min{argmax𝜌𝑟∗ {Ψ

𝑣,𝑟

𝑛,𝑘
, 𝑛 ∈

N𝑟 }, 1
𝑀

}
13: Obtain the optimal number of samples 𝑆𝑟 = 𝜌𝑟𝑀𝑆

Return: 𝑆𝑟 , N𝑟

Algorithm 2 Service Migration-assisted Mobile MFL (SM3FL)
Input: Server fusion model 𝜽𝒇 , edge models {𝜽𝒌 }𝐾𝑘=1 and learning rate set

{𝜂𝑘 }𝐾𝑘=1, for K modalities, target loss 𝜀 , epochs per round 𝐸.
Output: Trained global model Θ, wall-clock time𝑇𝑤𝑐 .
1: Training round 𝑟 = 0. Wall-clock time𝑇𝑤𝑐 = 0
2: while 𝐹 (𝚯𝒓 ) > 𝜀 do
3: Edges report available computing resource 𝜉𝑟𝑛 to the edge server
4: Devices report current locations to the edge server
5: Edge Server determines the sample collection threshold 𝑆𝑟 and the

target edges set N𝑟 through Algorithm 1
6: Edges perform service migration based on N𝑟
7: Devices collect and upload data to target edges
8: After receiving 𝑆𝑟 samples from devices, the edge server and edges

perform training by (9) for E epochs
9: Update the wall-clock time by𝑇𝑤𝑐 = 𝑇𝑤𝑐 +𝑇 𝑟𝑐𝑚 +𝑇 𝑟𝑐𝑝
10: 𝑟 = 𝑟 + 1
11: end while

We then sort them in a descending order as {𝑛𝑟
𝑘
(𝑖), 𝑖 = 1, . . . , |K𝑇 |},

where 𝑖 is the order. Since the wall-clock time is decided by the
slowest modality, the edge-modality pair represented by {𝑛𝑟

𝑘
(0)}

is first settled. After that, we remove the corresponding edge and
modality from the preference matrix and we haveK𝑇 = K𝑇 /𝑘 . The
above steps are repeated until all modalities are assigned to edges.

Given the optimal target edge for each modality, we now decide
the optimal 𝜌𝑟∗ from [𝜌𝑟∗

𝑛,𝑘
]𝑁×𝐾 . The key challenge lies in: no

matter which 𝜌𝑟∗
𝑛,𝑘

is selected, it is not the optimal one for other edge-
modality pairs. Hence, 𝜌𝑟∗ will always increase the wall-clock time
for those edge-modality pairs. To address this issue, we minimize
the total increment of wall-clock time𝑇 in all optimal edge-modality
pairs. Since 𝜌𝑟 > 2𝛼 , the first derivative w.r.t 𝜌𝑟 in Eq. (29) is a
linear function of Ψ𝑣,𝑟

𝑛,𝑘
with the positive slope, demonstrating that

a higher cost of Ψ𝑣,𝑟
𝑛,𝑘

leads to the faster changes of𝑇 under different
𝜌𝑟∗
𝑛,𝑘

. Therefore, we select the 𝜌𝑟∗
𝑛,𝑘

associated with the modality that
results in the highest Ψ𝑣,𝑟

𝑛,𝑘
. By doing this, we mitigate the increment
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Figure 4: Sample collection
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Device
(round r)

Data upload

Device move

Migration

Figure 5: Experiment map

Modality Text Acoustic Vision
Size per sample (bits) 500K 1M 2M
Local learning model GloVe Bi-LSTM Bi-LSTM
Embedding shape 128 256 256
Number of params 2,560,000 596,480 792, 320
Density 𝜗 (Cycles/sample ) 2000 1000 1000
Learning rate 𝜂 5e-5 0.001 0.001

Table 1: Experiment setting for CMU-MOSI dataset

of 𝑇 for other edge-modality pairs. An example is shown in Fig.
4, vision is the modality that causes the highest Ψ𝑣,𝑟

𝑛,𝑘
brought by

the largest sample size. While selecting its corresponding 𝜌𝑟∗ as
the optimal value might increase the overall wall-clock time, 𝜌𝑟∗
guarantees the minimum increment of 𝑇 .

5.4 Complexity analysis
The complexity of Algorithm 1 is mainly derived from three parts,
which are obtaining the upload time for each edge-modality pair
in Eq. (4), determining the service migration as in Line 5-11 of Al-
gorithm 1, and setting the sample collection ratio as in Line 12 of
Algorithm 1. The max operation in Eq. (4) requires going through
all devices for all edge-modality pairs, resulting a complexity of
O(𝑁𝐾𝑀). As for the service migration strategy, Eq. (33) has a
complexity of O(𝑁𝐾) and selecting out the pair with longest es-
timated wall-clock time has that of O(𝐾). Since it is repeated for
all 𝐾 modalities, the complexity of service migration is O(𝑁𝐾2).
Following with it, the complexity of deciding the sample collection
ratio is O(𝑁 ). Therefore, the complexity of Algorithm 1 becomes
O(𝑁𝐾 (𝑀 + 𝐾)). When the𝑀 ≫ 𝐾 as followed by the real-world
scenarios, the overall complexity approximates O(𝑁𝐾𝑀).

6 EVALUATION
In this section, we evaluate the performance of the SM3FL frame-
work on a desktop with the GeForce RTX 3060 graphic card.

6.1 Experiment Settings
System setting.We deploy a MEC system over a 4G cellular net-
work in an area of 10𝑘𝑚 × 10𝑘𝑚. We involve 50 mobile devices, 8
edges, and an edge server for MFL. The transmission power of each
device 𝑃𝑚 is limited to 23dBm and the bandwidth is 𝐵𝑚 = 20MHz
located at the center frequency of 2100MHz. The power spectral
density of AWGN is set to 10−14.7𝑚𝑊 /𝐻𝑧. The WINNER II model
is adopted to estimate the urban wireless channel.

As shown in Fig. 5, the coordinates of all edges are from (2.5, 2.5)𝑘𝑚
to (7.5, 7.5)𝑘𝑚 by step of 2.5𝑘𝑚 on each axis, excluding the center
point. The computation capability of each edge varies every round,
following the normal distribution with 𝑓𝑚 ∼ 𝑁 (106, 3 × 106) cy-
cles/seconds. We set the reference distance as 3𝑘𝑚 and the model
migration speed as 100𝑀𝑏/𝑠 . The constant 𝛼 and 𝛽 in Eq. (31) is set
as 0.02 and 100 in SM3FL, respectively. The settings related to the
data modality are given in the followings.

Dataset and models. We evaluate the proposed SM3FL using a
real-world multi-modal dataset CMU-MOSI [30] on both regression
and binary classification tasks. The CMU-MOSI dataset contains
language, vision, and acoustic data from 2199 videos. There are in

total 1284 samples for training and 686 samples for testing. The
vision and acoustic are pre-embedded to vectors of size 35 and 74,
respectively. The specification of each modality is listed in Table 1.
In particular, GloVe [21] is a pre-trained word-embedding model but
can be fine-tuned with our dataset. Bi-LSTM is the bi-directional
LSTM model. The fusion model refers to the setting in [9]. SGD
optimizer and MSE loss are applied. The epoch for training all
local models and fusion model is set to 5 in each round. We use
Mean Absolute Error (MAE) and accuracy as evaluation metrics for
regression and classification tasks, respectively.

Benchmark schemes. We compare the performance of SM3FL
with the following benchmarks

• FedAvg: The base HFL proposed by [17]. Since edges own the
entire multi-modal models, service migration is not necessary.

• FedBCD: A communication-efficient VFL framework that al-
lows parallel local iterations [14]. However, neither service migra-
tion nor adaptive sample collection is performed by this framework.
The edges for each modality are randomly distributed at the begin-
ning and fixed during training, denoted as {𝑛0

𝑘
}𝐾
𝑘=1.

•MFL-NSM: The variant of SM3FL where no service migration
is enabled. The edge-modality pairs are fixed as {𝑛0

𝑘
}𝐾
𝑘=1 as well.

• MFL-FR: Another variant applying the service migration strat-
egy. In MFL-FR, we directly obtain the edge-modality matrix from
Eq. (24) with a fixed collection ratio without calculating Eq. (31).

6.2 Service Migration Strategy
We give an ablation study of service migration in comparison with
MFL-NSM and MDS, respectively. MDS aims at minimizing the av-
erage communication cost without considering the migration cost.
In detail, the square area is divided into quarters; each edge group
contains the edge at the corner and another two in the same quarter.
The edge group which is the closest to the average coordinates of
all devices will be selected.

In Fig. 6a, we set the target MAE as 1. The overall time in SM3FL
is 243s, around 16.5% less than that in MFL-NSM. We then analyze
the portion of data uploading, service migration, and computation
stages in total time. Here, we take the log function to the time spent
on each stage for clarity. The results are shown in Fig. 6b, where
SM3FL outperforms all other benchmarks in terms of the overall
time. MFL-NSM spends longer time than others in all three stages
because it cannot adapt to the device mobility and thus will only
select edges with sufficient computation resources. Note that the
blind migration carried by MDS severely corrupts the performance.
It is true that MDS reduces the data uploading time compared to
NFL-NSM, but it doesn’t consider the migration cost. This results
in high migration costs and the longest overall time.
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(a) MAE by time (b) Portion of different stages
Figure 6: Comparison of different migration strategies

(a) Cumulative # of migrations (b) Cumulative migration costs
Figure 7: Service migration of different modalities

(a) Imapct of migration on 𝜌𝑟 (b) Portion of different stages
Figure 8: The relationship between migration and sample collection

(a) MAE by time (b) MAE by rounds
Figure 9: Comparison of different sample collection decisions

We then explore how the service migration strategy exploits
the available computation resources on edges. In Fig. 10, the edge
distribution fits well with the computation demand in round 35.
When the available edge computation resource changes in the next
round, the previous edge-modality pairs may bring stragglers to the
training, such as the vision and acoustic modality. SM3FL migrates
their models to edge 6 and 4, respectively, to prevent performance
deterioration. It is worthwhile noting that text is not migrated to
the idle edge 5 with rich resources. The reason is that its migration
cost is higher than the potential benefits as shown in Fig. 10b.

(a) Service migration at round 36 (b) Migration time

Figure 10: Effectiveness of service migration strategy in SM3FL

We also record the migration behaviors of each modality in
SM3FL in Fig. 7. The vision modality is migrated 42 times, which is
four times of text and double of acoustic because vision data has
the largest size per sample among all 3 modalities and thus is more
likely to become the slowest modality in each round. Hence, the
benefit brought by migrating the sub-model for vision modality
is higher than other choices. This makes the service migration
strategy prone to migrate the sub-model for this modality. As for
other modalities, the text modality is migrated the least times due
to its high migration costs as shown in Fig. 10b. This explains that

in Fig. 7b, although text migrates much less frequently than audio,
its cumulative time cost is quite close to that of audio modality.

6.3 Adaptive Sample Collection Decision
As mentioned in Section 5, the decisions of sample collection ratio
and edge-modality pairs are coupled. This relationship is depicted
in Fig. 8. From Fig. 8a, 𝜌𝑟 ranges from 0.041 to 0.046 with an average
value of around 0.044. However, MDS indicates a higher demand
for sample collection as shown in the third bar. It is due to the high
communication cost for migration, which follows the positive rela-
tionship demonstrated by Eq. (31). An explanation for this positive
relationship is that: when the estimated time cost is high, more
samples are asked to be collected to improve the training quality of
the current round, thus the overall time can be minimized.

We then compare SM3FL with MFL-FR and the Full-Data con-
dition. In this comparison, 𝜌𝑟 = 0.35 is set for MFL-FR, slightly
lower than the range of SM3FL shown in Fig. 8a; Full-Data indicates
that training will not start until all data are collected. From Fig. 9b,
SM3FL demonstrates a similar performance with the Full-Data con-
dition at the scale of the round but reduces 10.4% overall time. As
for the wall-clock time, SM3FL is 16.9% and 10.1% less than MFC-FR
and Full-Data, respectively. Note that MFC-FR has the shortest over-
all time but the longest wall-clock time, because its training quality
of each round suffers from insufficient sample collection. Thus, we
can say, our dynamic sample collection decision minimizes the data
demand without sacrificing the training quality.

6.4 Performance Comparison
We compare SM3FL with benchmarks on MAE for regression and
accuracy for classification. For fairness, we set 𝜌𝑟 in both FedBCD
and MFL-FR equal to the average of SM3FL as 0.044. As shown
in Fig. 11a, the wall-clock time of FedAvg is double of the SM3FL.
Compared to FedBCD, either MFL-NSM or MFL-FR can reduce
the wall-clock time by around 10% with the benefits from either
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(a) MAE by time (b) Accuracy by time

Figure 11: Comparison of different FL frameworks

Framework Comm. C Comp. C Wall-Clock T MAE
FedAvg 241.152 721.05s 593.28s 0.9253
FedBCD 178.44s 570.10s 311.45s 0.9319
MFL-NSM 162.54s 521.68s 284.01s 0.9324
MFL-FR 163.83s 475.13s 270.38s 0.9307
SM3FL 189.35s 470.53s 247.57s 0.9185
Table 2: Comparison on cost, wall-clock time and final MAE

adaptive sample collection or service migration strategies. On top
of that, SM3FL integrates these techniques and thus surpasses all
benchmark frameworks. As depicted in Table. 2, it reduces 20.8%
wall-clock time from 311𝑠 in FedBCD to 247𝑠 . Moreover, benefiting
from service migration strategy, SM3FL also lowers 17.5% compu-
tation cost. For the classification task with target accuracy 75%,
SM3FL is still the best among all frameworks. It reduces around
25.3% wall-clock time of FedBCD. It is worth noting that FedAvg
cannot achieve the target accuracy even after the double wall-clock
time of SM3FL due to the high cost of the model exchange.

7 CONCLUSION
In this paper, we present a service migration-assisted multi-modal
FL framework SM3FL to support delay-sensitive learning tasks with
multi-modal data, which are anticipated in future MEC. In SM3FL,
the entire learning model is spitted into several sub-models, each
trained from single-modal data on a specific edge. The edge server
then fusions those sub-models to fit multi-modal learning tasks.
As learning from data with different modalities require various
communication and computation resources, SM3FL increases the
resource utilization efficiency by assigning each single-modal data
to a proper edge. Moreover, SM3FL enables the service migration
to overcome the learning efficiency degradation brought by device
mobility and edge heterogeneity. Particularly, online strategies of
both service migration and data sample collection are proposed
to minimize the wall-clock time, with which we fully leverage the
available resources for efficient training without causing failures.
Extensive simulations have shown that our proposed SM3FL frame-
work can dramatically reduce both the computation cost and the
wall-clock time compared to other benchmark frameworks.
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A PROOFS OF MAIN RESULTS
A.1 Proof of Theorem 1
Applying the Smoothness assumption to the global loss 𝐹 , we have

𝐹 (𝚯𝑟+1) − 𝐹 (𝚯𝑟 ) ≤⟨∇𝐹 (𝚯𝑟 ),𝚯𝑟+1 − 𝚯
𝑟 ⟩ + 𝐿/2∥𝚯𝑟+1 − 𝚯

𝑟 ∥2 .

By substituting the global update with the global gradient and
taking the expectation on both sides, we have

E[𝐹 (𝚯𝑟+1) − 𝐹 (𝚯𝑟 )] ≤ −E⟨∇𝐹 (𝚯𝑟 ), 𝜂𝑇G𝑟 ⟩ + 𝐿/2E∥𝜂𝑇G𝑟 ∥2

≤ −
∑︁𝐾

𝑘=1
𝜂𝑘

2𝑘 (E∥∇𝐹 (𝚯
𝑟 )∥2 + E∥G𝑟 ∥2 − E∥∇𝐹 (𝚯𝑟 ) − G𝑟 ∥2) + 𝐿2E∥𝜂

𝑇G𝑟 ∥2

≤ E
∑︁𝐾

𝑘=1
𝜂𝑘

2𝐾 ∥∇𝑘𝐹 (𝚯𝑟 ) − 𝑔𝑟𝑘 (𝜽
𝑟
𝑘
)∥2

−
∑︁𝐾

𝑘=1
𝜂𝑘

2𝐾 E∥∇𝐹 (𝚯
𝑟 )∥2 − E

𝐾∑︁
𝑘=1

𝜂𝑘 − 𝐿𝜂2
𝑘

2𝐾 ∥G𝑟 ∥2 . (34)

According to the definition of global gradient G in Eq. (9) and
Assumption 2.2, we have E∥G𝑟 ∥2 ≥ E∑𝐾

𝑘=1 ∥∇𝑘𝐹 (𝜃
𝑟
𝑘
)∥2. Replace

the global gradient in Eq. (34), we then obtain

E[𝐹 (𝚯𝑟+1) − 𝐹 (𝚯𝑟 )] ≤ E
𝐾∑︁
𝑘=1

𝜂𝑘

2𝐾 ∥∇𝑘𝐹 (𝚯𝑟 ) − 𝑔𝑟𝑘 (𝜽
𝑟
𝑘
)∥2

−
∑︁𝐾

𝑘=1
𝜂𝑘

2𝐾 E∥∇𝐹 (𝚯
𝑟 )∥2 − E

∑︁𝐾

𝑘=1

𝜂𝑘 − 𝐿𝜂2
𝑘

2𝐾 ∥∇𝑘𝐹 (𝜽𝑟𝑘 )∥
2 .

(35)

By replacing the first item in the above equation with the result
obtained from Lemma 1, we get

E[𝐹 (𝚯𝑟+1) − 𝐹 (𝚯𝑟 )] ≤ 2𝐸2 (𝐾 + 3)
∑︁𝐾

𝑘=1

𝜂3
𝑘
𝐿2
𝑘

𝐾

𝜎2

𝑆

+ 2𝐸2
∑︁𝐾
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𝜂3
𝑘
(𝐶 + 3𝐿2

𝑘
)

𝐾
E∥∇𝑘𝐹 (𝜽𝑟𝑘 )∥

2 + 2𝜎
2

𝑆
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𝜂𝑘 − 𝐿𝜂2
𝑘
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2 .

Switch E∥∇𝐹 (𝚯𝑟 )∥2 and E[𝐹 (𝚯𝑟+1) − 𝐹 (𝚯𝑟 )]. Let 𝛾 =
∑𝐾
𝑘=1 𝜂𝑘 ,

the sum of learning rates over all edges, we have

E∥∇𝐹 (𝚯𝑟 )∥2 ≤ 2𝐾
𝛾
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𝑘
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𝑘
− 𝜂𝑘 < 0 holds for ∀𝑘 , we obtain
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The E∥∇𝐹 (𝚯𝑟 )∥2 is bounded by
E∥∇𝐹 (𝚯𝑟 )∥2 ≤ E[𝐹 (𝚯𝑟 ) − 𝐹 (𝚯𝑟+1)]

+ (2 + 4𝐸2 (𝐾 + 3)
∑︁𝐾

𝑘=1 𝜂
3
𝑘
𝐿2
𝑘
) 𝜎

2

𝑆
. (37)

By averaging over all global rounds 𝑟 = 0, 1, . . . , 𝑅 − 1, we get
1
𝑅

∑︁𝑅−1
𝑟=0 E∥∇𝐹 (𝚯

𝑟 )∥2 ≤ 2𝐾
𝛾𝑅
E[𝐹 (𝚯0) − 𝐹 (𝚯𝑅)]

+ (2 + 4𝐸2 (𝐾 + 3)
∑︁𝐾

𝑘=1 𝜂
3
𝑘
𝐿2
𝑘
) 𝜎

2

𝛾𝑆
. (38)

The proof of Theorem 1 is finished.

A.2 Proof of Corollary 1
Referring to the work in [24], achieving target loss 𝜀 within 𝑅 round
can be represented with the equation given in Theorem 1 as

1
𝑅

𝑅−1∑︁
𝑟=0
E∥∇𝐹 (𝚯𝑟 )∥2 ≤ 𝜀. (39)

We then let the right-hand side of Eq. (18) satisfy

𝜀 =
2𝐾
𝛾𝑅
E[𝐹 (𝚯0) − 𝐹 (𝚯𝑅)] + (2 + 4𝐸2 (𝐾 + 3)

𝐾∑︁
𝑘=1

𝜂3
𝑘
𝐿2
𝑘
) 𝜎

2

𝛾𝑆
. (40)

Regarding the number of sample 𝑆 as variable, we can replace
(2 + 4𝐸2 (𝐾 + 3)∑𝐾

𝑘=1 𝜂
3
𝑘
𝐿2
𝑘
) 𝜎2
𝛾 with constant 𝛼 and 2𝐾

𝛾 E[𝐹 (𝚯
0) −

𝐹 (𝚯𝑅)] as 𝛽 . The requirement is rewritten as

𝜀 =
𝛽

𝑅
+ 𝛼
𝑆
. (41)

We then finish the proof by reorganizing 𝜀, 𝑅 and 𝑆 as

𝑅 =
𝑆𝛽𝜀−1

𝑆 − 𝛼𝜀−1 . (42)
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