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Abstract—The non-intrusive human activity recognition has been envisioned as a key enabler for many emerging applications

requiring interactions between humans and computing systems. To accurately recognize different human behaviors, ubiquitous

wireless signals are widely adopted, e.g., Wi-Fi signals, whose Channel State Information (CSI) can precisely reflect human

movements. Unfortunately, nearly all Wi-Fi-based recognition systems assume a clean wireless environment, i.e., no interference will

compromise the developed algorithms, which, apparently, is not feasible in practice. Even worse, for systems using Wi-Fi 2.4GHz

signals, the widely existing interference from coexisting protocols, such as ZigBee, Bluetooth, and LTE-Unlicensed, can easily

compromise the recognition process, posing a hard limit on further enhancing the accuracy. Therefore, this work uncovers a new signal

adversarial attack against Wi-Fi-based human activity recognition systems, by intentionally injecting interference using coexisting

protocol signals. The contaminated Wi-Fi signal will distort CSI estimation and finally output a false recognition result. Different from

traditional jamming attacks, this new adversarial attack is intelligent and stealthy in terms of avoiding being detected from traffic

analysis. Along with both theoretical analysis and extensive real-world experiments, we have shown this newly-identified attack can

easily compromise many existing Wi-Fi-based human recognition systems while still bypassing existing schemes for malicious signal

detection.

Index Terms—Wireless adversarial example, cross-technology interference, channel state information, human activity recognition

Ç

1 INTRODUCTION

HUMAN activity recognition, a branch of smart human
sensing, has become increasingly vital in advanced

human-computer interaction [1] and has been widely inte-
grated with Virtual Reality technology, health monitoring,
smart homes, safe driving, security surveillance, etc. The
ubiquitousness of human activity recognition applications
persuades both academic and industrial communities to
explore the ability of non-intrusive sensing. As such,
leveraging changes of invisible wireless signals to capture
unique activity characteristics becomes a good candidate
for further expanding the methodology of human sensing.
Among all the commonly accessible signals, the Wi-Fi signal
is the handiest one due to its rich information and wide
deployment. Most existing Wi-Fi-based human activity rec-
ognition systems extract Channel State Information (CSI)
for deriving high-accuracy human activities. In particular,
the CSI, originally used as a metric to estimate the channel
condition, can reflect many regular activities because of its

sensitivity to human movements occurred in the transmis-
sion paths [2].

In practice, wireless transmissions are vulnerable to the
dynamic and complex environments. This vulnerability
becomes even more severe when multiple wireless proto-
cols share the same spectrum. These coexisting signals
interfere with each other and worsen the transmission envi-
ronment. Though many works have put efforts in designing
advanced de-noising schemes for CSI sequences and lower-
ing the negative effects of environments, existing recogni-
tion systems can still get compromised by powerful
attackers. For example, a common wireless jammer can take
advantage of the MAC-layer protocol, e.g., Carrier-Sense
Multiple Access with Collision Avoidance (CSMA/CA), to
maliciously congest the entire transmission link by adding
noises. However, this type of jamming attack is highly per-
ceptible by the transmission pair because it will jeopardize
the expected Wi-Fi transmissions. Hence, in this paper we
discover a new type of powerful and inconspicuous attack,
IS-WARS, to compromise the Wi-Fi-based activity recogni-
tion system without impacting normal Wi-Fi transmissions.
We take advantages of the cross-technology signals to craft
a Wi-Fi adversarial example to stealthily compromise the
CSI, in order to misclassify the corresponding activities.
Compared with the traditional jamming attack, this new
attack is more serious in terms of its stealthiness and poten-
tial consequences. Taking the smart health monitoring as an
example, an abnormal behavior (e.g., falling) can be misclas-
sified as common activities for elderlies living alone,
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resulting in the missing of emergency calls and first aids. To
successfully craft the adversarial signals, there are several
critical challenges to be considered,

� Added noises should be imperceptible. The Wi-Fi MAC-
layer protocols will immediately detect the increas-
ing level of noises and drop the crafted adversarial
signals.

� Added noises should bypass the de-noising scheme. To
cause the misclassification of received adversarial
example, the level of noises cannot be too small to be
removed by de-noising schemes adopted in the rec-
ognition system.

The above contradicting requirements cannot be easily
fulfilled by simply adding noises for generating the adver-
sarial example. To address these challenges, we apply the
cross-technology interference (CTI) on overlapped fre-
quency bands for crafting. The attacker sends controllable
noises to intentionally cause the CTI, which will finally con-
taminate the received CSI sequences. In practice, many
overlapping protocols, such as ZigBee and Bluetooth, can
cause severe CTI to Wi-Fi traffic over ISM 2.4GHz bands [3],
[4], [5]. While most of the previous studies try to avoid CTI
to enhance communication performances [6], [7], [8] and
some works show that the CSI amplitudes influenced by
CTI can be leveraged for cross-technology communication
[9], [10], they use machine learning models to handle the
features of CTI-interfered CSI as a black box so the detailed
and quantified effect of how CTI will impact the CSI
remains underexplored. Therefore, for this paper, we will
first discuss the principles of state-of-the-art human activity
recognition systems, then provide a thorough study on how
CTI can modify the CSI sequence, and finally, demonstrate
the attacking process of stealthy attacks using the CTI. Our
main contributions are listed as follows,

� This paper provides a comprehensive study on
quantifying the impact of CTI on normal Wi-Fi
transmissions.

� This work identifies a new intelligent and stealthy
adversarial attack on many Wi-Fi-based human
activity monitoring systems using received CSI
sequences and demonstrates the difficulty in mitigat-
ing the CTI-based attack.

� Extensive real-world experiments demonstrate the
existence and feasibility of the attack.

The rest of this paper is organized as follows. Section 2
gives preliminaries about Wi-Fi-based activity recognition.
Section 3 provides an overview of our attack IS-WARS, fol-
lowed by a feasibility analysis in Section 4. Section 5 shows
the detailed design of IS-WARS. Section 6 thoroughly evalu-
ates attack performance. Section 7 discusses related works
and Section 8 concludes the paper.

2 PRELIMINARIES

2.1 CSI in Wi-Fi-Based Recognition

Compared to other usable channel properties (e.g., Received
Signal Strength (RSS), phases) for activity recognition, CSI,
which is a widely used metric in multiple-input/multiple-
output (MIMO) radio systems [11] to estimate the channel
condition of transmission links, contains more fine-grained

information than RSS and is less vulnerable to noises than
phase information alone.

Suppose a MIMO communication system has NTX trans-
mitter antennas andNRX

receiver antennas. xx is the sent sig-
nal and nn denotes the noise. The received signal can be
modeled as

yy ¼ HHxxþ nn;

where HH is the CSI matrix. Hðf; tÞHðf; tÞ, which is the CSI matrix
measuring channel frequency response in different subcar-
riers with center frequency f at time t, can be calculated at
the receiver side by solving a set of equations using a known
transmitted/received signal pair via Hðf; tÞHðf; tÞ ¼
Y ðf; tÞY ðf; tÞ=Xðf; tÞXðf; tÞ

Hðf; tÞHðf; tÞ ¼

h11 h12 � � � h1NTx

h21 h22 � � � h2NTx

..

. ..
. . .

. ..
.

hNRx 1
hNRx2

� � � hNRxNTx

2
6664

3
7775; (1)

where hmn is the complex transmission coefficient from the
transmitter’s antenna m to the receiver’s antenna n. Most of
the human behavior recognition systems leverage the
changes incurred in hmn and other derived metrics, e.g.,
Doppler shift, to determine the corresponding activities.

2.2 CTI in Heterogeneous Environment

Due to the wireless coexistence in the 2.4GHz ISM band, CSI
can be easily contaminated by interferences from devices
using not only traditional Wi-Fi protocols (e.g., 802.11 b/g/
n/ac) but also other wireless standards in the overlapped
spectrum, such as IEEE 802.15.1 Bluetooth and IEEE
802.15.4, i.e., ZigBee, WirelessHART, and ISA100. The latter,
known as Cross-Technology Interference, could bring a det-
rimental impact to the reliability of Wi-Fi communication,
e.g., significant packet loss in a highly crowded heteroge-
neous environment. Existing works have demonstrated that
the preambles of Wi-Fi packets can be impacted and the CSI
amplitudes will be greatly altered by on-going ZigBee pack-
ets during Wi-Fi transmission when Wi-Fi traffic is not
backoff [9].

2.3 Signal De-Noising and Threats

Despite that CTI’s interference to CSI has been proved, we
have to take the broad spectrum of de-noising approaches
into consideration, such as smooth filter [12], low-pass filter
[13], principal component analysis (PCA) [14], linear inter-
polation fitting [15], Kalman filter [16], and wavelet trans-
form [17]. Most of them have been employed in the Wi-Fi-
based recognition system to discard unavoidable noises and
further capture more accurate human activities. Unfortu-
nately, these de-noising schemes can only help remove the
out-band noise. The noise caused by CTI cannot be easily
detected and eliminated, which will inevitably contaminate
CSI [18]. If no adequate de-noising approaches specifically
for CTI noise, it is highly possible that sending malicious
cross-technology wireless signals can impact the CSI and
further compromise Wi-Fi-based recognition systems.

Recently, there are some noise detecting methods specifi-
cally designed for CTI. For example, authors in [10]
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proposed cyclostationarity analysis that uses the distinct
repeating patterns shown by different signals to differenti-
ate between Wi-Fi signals and CTI. They compute the Spec-
tral Correlation Function (SCF) in the frequency domain on
each subcarriers. For the subcarriers whose amplitude and
phase information are distorted by CTI, some peaks are suf-
ficiently visible on corresponding SCF, while SCF without
interference does not exhibit any peak. However, it can only
detect the CTI that distributing on a small range of frequen-
cies and tries to recover the interfered subcarriers. It is effi-
cient for detecting unintended CTI but not that useful if the
CTI is carefully distributed over a bunch of subcarriers.

3 SYSTEM OVERVIEW AND ASSUMPTIONS

3.1 Problem Definition

We consider a device-free indoor Wi-Fi-based human activ-
ity recognition system as described in Fig. 1. When there is
a human subject moving around, the Wi-Fi signals sent
fromWi-Fi senders are interfered with human body’s reflec-
tion, so the signals received contain specific and unique
changes incurred by different types of human activity. The
goal of the recognition system is to find features in each set
of numerical changes and map them to the designated activ-
ities. The idea of our attack is to deploy a cross-technology
signal source, e.g., a ZigBee device, to intentionally send a
malicious signal, expecting to create an adversarial example
to change CSI at the receiver side and finally cause incor-
rectly identification of the recognized activity. For example,
the uncompromised Wi-Fi receiver 1 can correctly recognize
the user’s behavior as “sweeping the floor”, while the Wi-Fi
device 2 suffering the CTI from a nearby ZigBee attacker
fails to output the correct behavior.

To design this new attack, named as Intelligent and
Stealthy adversarial attack to Wi-Fi-based Human Activity
Recognition System (IS-WARS), we mainly consider two
different mechanisms in current literature, 1) Classification-
based Approach. A large quantity of data with known activity
labels is collected. Their patterns are learned via clustering,
machine learning methods, etc. and further used for classi-
fying unknown ones [19], [20], [21], [22], [23]; 2) Model-based
Recognition. They theoretically model the relationship
between channel properties and human activities, such as
Fresnel zone model and velocity model. Common quantities
include Angle of Arrival (AoA), Time of Flight (ToF), speed,
distance, Doppler shift, and phase [24], [25], [26], [27].

3.2 IS-WARS Attacker Model

A complete IS-WARS attack process includes three steps, 1)
sense and observe wireless environment (e.g., sniff Wi-Fi
packet), 2) generate interference, and 3) bypass de-noising

and cause classifications. Based on the challenges discussed
in Section 1, an IS-WARS attacker needs to achieve the fol-
lowing three objectives:

Objective 1. Before launching an attack, an attacker can obtain
preliminary knowledge about the system through sensing and
observing. Here, we demonstrate two levels of abilities an attack
has.

� Basic: Obtain superficial knowledge about the recogni-
tion system, such as the frequency band that Wi-Fi
senders/receivers are working on, the average statistics
of CSI sequences, by sensing and observing the wireless
environment. The attacker must know the information
of the channel that the Wi-Fi packets are transmitted
on. The attacker can sniff CSI multiple times to mea-
sure the impact of interference due to the low cost of
sensing the system’s small-scale, indoor environment.

� Advanced: To launch a strong attacker, the attacker
may be able to acquire some more advanced informa-
tion about the system. For example, the attacker may
know the deployed locations of Wi-Fi senders/receivers
in some cases, such as when the system is deployed in a
public indoor area. If the attacker spends enough time
sniffing, they can even know how CSI sequences
impacted by human activities may look like. The
attacker is not necessarily to be very close to the scene
when sniffing. The CSI characteristics, including the
distinct variances caused by human movements, are
detectable even if there is a wall between the sniffer and
the receiver [28]. The technical details that cannot be
sensed or observed easily, e.g., how the system pro-
cesses the signals, may not be known to the attacker.

Objective 2. The IS-WARS attack has to “intelligently” adapt
to different wireless environments and device settings based on
the acquired knowledge about the recognition system. Mean-
while, the attack should be “stealthy” enough to prevent the
Wi-Fi receiver from knowing that the malicious interference
has been embedded in the received signal. The generated inter-
ference should be high enough to incur CSI changes but rela-
tively low to not impact normal Wi-Fi transmission and
decoding.

Objective 3. The generated malicious CTI noises should survive
after the de-noising schemes deployed both by the Wi-Fi receiver
and by the recognition system.

4 FEASIBILITY STUDY

4.1 Theoretical Analysis of CTI Impact on CSI

The Wi-Fi receiver can overhear ZigBee transmission on
designated subcarriers overlapped with ZigBee communi-
cation channels. However, most commodity Wi-Fi devices
are not capable of understanding cross-technology mes-
sages and only hear ZigBee signal as an added power on
the original Wi-Fi signal, which is reflected on CSI as a part
of channel status.

4.1.1 Effects to Signal-to-Interference-Plus-Noise Ratio

Assuming the WiFi receiver Wi has one single antenna and
is in the transmission range of the ZigBee transmitter Zj, Zj

Fig. 1. IS-WARS attack overview.
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is working on the spectrum overlapped with Wi, the
received signal yyk at the kth timestamp can be reformulated
as

yyk ¼ hhk þ
X
j

hh
Zj

k

 !
xxk þ nnk;

where hhk is the CSI without CTI, hh
Zj

k is the CTI perturbation
caused by Zj, xxk is the transmitted signal, and nnk is the
noise.

The Wi-Fi packets will not back-off if the Signal-to-Inter-
ference-plus-Noise Ratio (SINR) detected in Wi-Fi transmis-
sion is qualified, while the CTI is still affecting the
estimated CSI. Therefore, the ground truth SINR hk and the
SINR from system’s view h0k can be derived as follows:

hk ¼
jhhkj2pk

pnk þ
P

j jhh
Zj

k j2pk
; h0k ¼

jhhkj2pk þ
P

j jhh
Zj

k j2pk
pnk

; (2)

where pk the signal power at kth timestamp and pnk is the
noise power complying to a normal distribution.

4.1.2 Factors in CTI-Enabled CSI Perturbation

We try to find out why CSI can be perturbed by the presence
of ZigBee signals from the aspect of signal propagation,
which is often described by the path loss. Suppose that Pr

i;j

is the power of signal emitted from Zj and received at Wi,
denoted as jhhZj

k j2pk in Equation (2). The relationship
between Pr

i;j and the power of the transmitted signal by Zj,
i.e., Pt

j , is as follows if free space path loss is considered

PLðdi;jÞ ¼ 10log
Pt
j

P r
i;j

¼ PLðdiÞ þ 10nlog
di;j
di

� �
þ fj; (3)

where PLð�Þ is the path loss, di is the close-in reference dis-
tance, di;j is the distance between Wi and Zj, n is the path
loss exponent, and fj is the shadow fading factor with a
normal distributionNð0; s2

fÞ.
From Equation (3), it is clear that PLðdi;jÞ is determined

by di;j and PLðdi;jÞ � PLðdiÞ follows a normal distribution:

PLðdi;jÞ � PLðdiÞ � N 10nlog
di;j
di

� �
; s2

f

� �
:

The transmit power Pt
j is another dominant factor for Pr

i;j,
and thus, also for the CSI jhhZj

k j2.

4.1.3 Why Using CTI

In our work, we will focus on ZigBee-Wi-Fi interference.
The advantages of using ZigBee-Wi-Fi CTI come in four
folds.

First, compared to other noise addition schemes, CTI is
more controllable and fine-tuned by adjusting the above
deterministic factors, e.g., Pt

j and di;j.
Second, it is possible to achieve “stealthiness” described in

Objective 2 if CTI-impacted SINR successfully deceives the
Wi-Fi receiver. Devices that can generate CTI, e.g., ZigBee
pads, can be small enough to be unnoticeable. They are
handier and cheaper than Software-defined Radios like

USRP, which allows a wider application of IS-WARS
attacks.

Third, ZigBee transmission power can be as low as 1mw
(two orders of magnitude lower than Wi-Fi’s), making the
CTI-based attack less detectable and the possibility of trig-
gering collision avoidance during interference lower, while
its transmission range (10–100 meters) is sufficient for
attacking a small-scale Wi-Fi-based system.

Last but not least, deploying ZigBee protocol in our
attack is free from modification on protocol design. It does
not offer complex interference avoidance features like the
adaptive frequency hopping technique used in Bluetooth.
Moreover, the data rate of ZigBee is comparatively slower
than other wireless protocols in the 2.4GHz spectrum. With-
out manually putting constraints on data rate, the travel
time of a ZigBee packet is long enough to cover the entire
transmitting Wi-Fi packets, which makes it more difficult
for legitimate receivers to discover and mitigate interfer-
ence. Hence, attacking with ZigBee signals is more reliable
than other coexisting protocols.

4.2 Empirical Study on CTI-Impacted CSI

We conduct an empirical study to evaluate CSI statistics and
show that CTI is capable of interfering with CSI in practice.

4.2.1 Experiment Setting

We set a pair of Wi-Fi transceivers (1m to each other) and a
ZigBee source locating in the middle to generate interfer-
ence at different transmission powers. For each interference
level, we collect 10 CSI sequences from received Wi-Fi traf-
fic with a time duration of 20 seconds.

4.2.2 Performance Evaluation

The means and variances of amplitudes and phases, which
are represented as the ratios of the differences between con-
taminated CSI sequences’ statistics and clean samples’ sta-
tistics to clean samples’ statistics, are shown in Fig. 2. In
Fig. 2a, when the interference level is -15 dBm, though
sometimes the ratio is below 0 due to random fluctuations,
the average ratio is approximately 0.1, which means that the
average amplitude of interfered signals is around 1.1 times

Fig. 2. Ratio of interfered signals versus clean signals.
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the amplitude of clean signals. We can tell that the averages
of amplitudes in Fig. 2a are larger than those of clean sam-
ples, and are increasing with the interference level (from
-18dBm to -9dBm). If the interference level exceeds a thresh-
old (-9 dBm in our cases), the interference reflected by
amplitudes becomes smaller because the Wi-Fi transmitter
backoffs in response to the existence of noises or the Wi-Fi
receiver discards highly-contaminated, corrupted packets.
The large variances of interfered amplitudes may lead to
inaccurate recognition. From Fig. 2c, the differences
between average phases between interfered signals and
clean signals are much smaller than those of amplitudes.
However, the ranges of phases are significantly expanded
with an increased number of outliers and large variances.
Therefore, we can confidently deduce that the robustness of
CSI-based recognition systems will be jeopardized by the
interference and the abnormality of attacks may be more
unnoticeable from phase statistic monitoring.

4.3 Existing Recognition Systems and Their
Vulnerabilities

Existing approaches are either domain-related or domain-
free, where domain is a pair of activity and the correspond-
ing environment factors, such as location and orientation.
We summarize them into three categories: Mathematically
derived profiles, Fresnel zone model, and black-box classifi-
cation as in Table 1 and explore their vulnerabilities as
below.

4.3.1 Mathematical Profiles

In [2], Wang et al. model the domain-related velocity profile
from multi-path length changes and rewrite Hðf; tÞ as a
summation of responses on multiple travel paths. They
divide the power of CSI jHðf; tÞj2 into dynamic portion
jHdðfÞj2 and static portion jHsðfÞj2. jHðf; tÞj2 holds the
speed vk of human subject moving on kth path as follows:

jHsðfÞakðf; tÞj cos 2pvkt

�
þ 2pdkð0Þ

�
þ fsk

� �
;

where akðf; tÞ is the attenuation, � is the wavelength, dkð0Þ is
the initial path length on kth path, and fsk is an initial phase
offset.

CTI creates perturbations a
Zj

k ðf; tÞ on akðf; tÞ. So, com-
pared to the ground truth vk, the CTI-interfered velocity
profile v0k derived has an error of

arccos
akðf; tÞ

akðf; tÞ þ
P

j a
Zj

k ðf; tÞ
cos

2pvkt

�
þ 2pdkð0Þ

�
þ fsk

� �8<
:

9=
;:

Widar 3.0 [24] works on another velocity profile, body-
coordinate velocity profile (BVP). It is a domain-free quantity
that describes the velocities at different body parts involved
in the gesture movements. It first estimates a human sub-
ject’s location and orientation via ToF, AoA, and Doppler
Frequency Shift (DFS) D in the dynamic portion of CSI, and
then derives BVP from DFS without domain impacts. The
CSI representation of BVP is similar to that of velocity pro-
file. Therefore, though the static portion is fully ignored,
dynamic DFS D can still be mistaken with perturbed CSI
and results in wrong BVP. The location and orientation
inference could also be obfuscated from AoA and ToF,
which leads to wrong base points when discarding domain
effects. Specifically, the signal phase of the l-the path, ith
packet, jth subcarrier and kth sensor [25] is

ftlði; j; kÞ � fctl þ Dfjtl þ fcDskDsk � flfl � fDl
Dti;

where tl, flfl, and fDl
are the ToF, AoA, and DFS of the lth

path. For a contaminated phase with CTI-introduced errorP
j f

Zj

l , the error is distributed among ToF, AoA, and DFS.

4.3.2 Fresnel Zone Model

Fresnel zone is a series of concentric ellipsoids representing
the signal strength of propagation in free space. When a
human object is moving, they cross zone boundaries and
introduce phase shifts, leading to constructive or destruc-
tive interference in the received signal. In [29], they model
the sum of dynamic part and static part in a slightly differ-
ent way

jHðf; uÞj2 ¼ jHsðfÞj2 þ jHdðfÞj2 þ 2jHsðfÞjjHdðfÞj cos u;

where u is the phase difference between the static vector and
dynamic vector. In their model, they assume that the ampli-
tude of the dynamic vector is stable.

The contaminated phase difference between the static
vector and dynamic vector become u0 ¼ u þPj u

Zj . The
path-length difference between direct path and reflected
path as Dd :¼ cDu

2pDf is derived for classification, where Du is
the difference between us of two subcarriers and Df is the

TABLE 1
A Summary of Recognition Systems and Their Vulnerabilities
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subcarrier spacing. The contaminated D0d is D0u=Du times of
the ground true Dd.

4.3.3 Black-Box Classification

A black-box approach in [21] uses Convolution Neural Net-
works (CNNs) to train and classify activity data with two
labels, domains and ground truth, to remove domain-spe-
cific quantities. The quantity extracted from CSI is repre-
sented as VV ¼ SoftplusðWzWzZZ þ bzbzÞ, where WzWz and bzbz are
parameters to be learned and the softplus function is an acti-
vation function to introduce linearity, ZZ is the output of fea-
ture extractor. Another softmax layer obtains the
probability vector yiyi of activities of mapped feature repre-
sentation HHi and output the activity label with the highest
probability. Here, everything in CSI may lead to misclassifi-
cation. The attacking goal turns into how to make the
unclassified data cross CNN’s decision boundaries. This is
impossible to be analyzed from formulation due to the com-
plexity of neural networks. We will show how IS-WARS
attack performs against neural networks by experiments
later.

4.4 De-Noising Performance Against CTI

A majority of de-noising schemes used in Wi-Fi-based rec-
ognition systems are originated from eigenvalue-based
methods, such as Principal Component Analysis (PCA),
which works more effectively than filters [30]. The basic
idea of PCA is to perform eigen-decomposition on the corre-
lation matrix of CSI to calculate the eigenvectors and then
eliminate out-band noises and quasi-static offsets by recon-
structing the principal components from eigenvectors. The
CSI is orthogonally transformed into a new coordinate sys-
tems such that the greatest variance, i.e., noise, of the data is
projected on the first coordinate, which is called the first
principal component. The interfered phase on kth path

cos
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�
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j
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and DkðtÞ is the
length of the path changes between time 0 and t. The first

PCA component is discarded for de-noising. Due to the

orthogonality of PCA components, the discarded one is

either cos part or sin part. Obviously, the error introduced

by CTI,
P

j f
Zj
s ðtÞ � f

Zj

k ðtÞ
h i

, still remains in other compo-

nents. Therefore, the de-noising scheme will not effectively

work against CTI noises, for which Objective 3 will be

satisfied.
As for the cyclostationary analysis [10], it locates the sub-

set of stained subcarriers by finding the spiked peak/valley
of CSI amplitudes over all subcarriers. When the level of
CTI is carefully controlled and widely spread, the peaks are
not significant for detection.

5 DESIGN OF IS-WARS

5.1 Wi-Fi Packet Sniffing

In correspondence with the aforementioned adversarial
model and analysis, the attacker is assumed to have a sniffer
to sense the Wi-Fi environment and a ZigBee device to gen-
erate CTI. The sniffer can be deployed near the scene within
desired period of time before launching the attack in order
to retrieve rich background information, including average
CSI amplitudes, which can be used to pre-analyze different
CSI patterns. The attacker can use this background informa-
tion to determine suboptimal settings IsIs

0 for their initial
attack. For example, to decide an initial CTI power level, the
attacker will jointly consider a set of distance and transmit
power to ensure that the CTI power received at the Wi-Fi’s
side meets the expectation of attack after suffering from
path loss (Equation (3)). Moreover, the attacker may choose
to attack the Wi-Fi device with the highest received packet
power because it allows more intense CTI while preserving
normal traffic. Theoretically, the Objective 1 is always ful-
filled regardless of other settings. Under this objective, the
attacker has freedom to change interference given the analy-
sis in Section 4.1.

5.2 Malicious CTI Generation

In North America, the 2.4 GHz Wi-Fi works on 2401 MHz to
2473 MHz. Though the bandwidth of ZigBee channels is
only 2 MHz (1/10 of Wi-Fi channel’s bandwidth), ZigBee
channels can cover a frequency range from 2402 MHz to
2480 MHz. Thus, it is sufficient for ZigBee devices to affect
as many WiFi channels and subcarriers as wishes. To meet
the Objective 2, it is of great importance to ensure the gener-
ated CTI could be adequate enough to invoke wrong recog-
nition but without impacting normal Wi-Fi transmissions.
For the IS-WARS attacker, changing the perturbation on CSI
can be easily achieved by increasing the power of interfer-
ence level, while the stealthiness can only be fulfilled by
jointly considering the normal symbol decoding at the
receiver side. The CSI can be estimated from the received
symbols yyk ¼ hhk þ

P
j hh

Zj

k

� �
xxk þ nnk with known ground

truth symbols in Section 4.1.1, which is usually transmitted
on pilot subcarriers

ĥhk ¼ yykxx
�
k ¼ hhk þ

X
j

hh
Zj

k

 !
jxxkj þ nnkxx

�
k: (4)

Given the estimated channel status, Maximum Likeli-
hood (ML) detector is more frequently used way to find the
optimal transmitted symbols from the received signals,
where the receiver finds the optimally transmitted signal
vector x̂x via Maximum Likelihood criterion that minimizes
the euclidean distance to the received signal vector yy and
perform an exhaustive search across all valid sequences for
the transmitted symbol as x̂x ¼ argminjjyy� Ĥ̂Hxxjj2. It is
impractical to give a mathematical constraint on Ĥ̂H for
stealthiness or compute solutions every time, so our idea is
to lower the sensitivity of CSI estimation to noise in order to
reduce the possibility of decoding failure.

The sensitivity of the solution to small changes in the
input data is measured by condition number kðĤ̂HÞ of Ĥ̂H,
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which evaluates how much error in the output results from
an error in the input and gives a bound on how inaccurate
the message decoding will be. The condition number is
defined as

jjDxxjj
jjxxþ Dxxjj � kðĤ̂ĤĤHÞ jjDyyjjjjyyjj ; (5)

and formulated as

k Ĥ 0Ĥ 0� 	 ¼ smax Ĥ 0Ĥ 0� 	
smin Ĥ 0Ĥ 0� 	 ; (6)

where jj � jj is the matrix norm. If the condition number is
large, a small change in the transmitted signal will generate
larger perturbations in yy, which indicates low reliability and
higher probability of solution finding failure. smaxðĤ 0Ĥ 0Þ and
sminðĤ 0Ĥ 0Þ are maximal and minimal singular values of Ĥ 0Ĥ 0,
respectively.

Therefore, from Equation (5), the attacker, who has the
ability of Wi-Fi packet sniffing, has to minimize the condi-
tion number kðĤ̂HÞ. Along with decreasing kðĤ̂HÞ to avoid the
decoding failure, the attacker has to ensure that the pertur-
bation triggered is large enough to cause misrecognition.
The problem turns into as follows:

min k Ĥ 0Ĥ 0� 	
s.t. V ĥ̂h

0
i; . . . ; ĥ̂h

0
j

h i� �
�V ĥ̂hi; . . . ; ĥ̂hj

h i� �
	 TV;

(7)

where Vð½ĥ̂h0
i; . . . ; ĥ̂h

0
j
Þ is the quantities derived from a set of

perturbed CSI readings for recognition and TV is the mini-
mum difference between noisy quantities and clean ones
that can lead to misclassification.

Finding the optimal solution for kðĤ 0Ĥ 0Þ is an NP hard
problem due to the nonlinear and non-convex nature of
singular values, but it can be changed into a convex optimi-
zation problem with existing relaxation methods. For exam-
ple, authors in [31] relax the nonconvex problem of
controlling singular values in to a set of optimization prob-
lems on convex subsets. Then, we can find the optimal
solution on the convex problem KðsmaxðĤ 0Ĥ 0Þ; sminðĤ 0Ĥ 0ÞÞ con-
verted from ðĤ 0Ĥ 0Þ.

5.3 Iterative Optimal Solution Finding

We propose to find the optimal interference on the con-
verted convex problem in an iterative way by observing the
resulting noisy CSI matrix Ĥ 0Ĥ 0 from interference. At the very
beginning, the attacker holds a vector of parameters IsIs with
attacker-chosen factors that can change the interference
posed on CSI. The possible candidates include the transmit
power level of Zj, the frequency range that Zj works on, the
location of the attacker ðlocx; locy; loczÞ, and the distance di;j
to the system sensorWi.

To improve the suboptimal initial attack settings and find
the optimal solutions of IsIs, a function fðIsIsÞ is derived from
Equation (7), which is formulated by combining the con-
straint and minimization goal together

fðIsIsÞ ¼ K smax Ĥ 0Ĥ 0� 	
; smin Ĥ 0Ĥ 0� 	� 	

Ĥ 0ðIsIsÞĤ 0ðIsIsÞ þ d IsIsð Þ; (8)

where Ĥ 0ðIsÞĤ 0ðIsÞ is CSI matrix interfered by IsIs and dðIsIsÞ is

max log
Vð½ĥðIsIsÞĥðIsIsÞ0i; . . . ; ĥðIsIsÞĥðIsIsÞ0j
Þ
Vð½ĥðIsIsÞĥðIsIsÞi; . . . ; ĥðIsIsÞĥðIsIsÞj


Þ
 !

;�log ðTVÞ
 !

: (9)

Then, we apply a method similar to Zeroth Order Stochastic
Descent [32]. If the optimal is not reached, an interference
setting IskIsk is randomly picked in IsIs to be updated by sub-
tracting a small amount computed from the approximate
gradient gi and Hessian estimate Si

gi :� fðIsIs þ �eieiÞ � fðIsIs � �eieiÞ
2�

; (10)

Si :� fðIsIs þ �eieiÞ � 2fðIsIsÞ þ fðIsIs � �eieiÞ
�2

; (11)

where � is a small constant and eiei is a standard basis vector
with only the ith component as 1. IskIsk is modified based on
the values of gi and Si.

Optimal IskIsk is located when the newly updated IskIsk is
similar to the old one, which is equivalent to that the approxi-
mated gradient is almost zero as summarized inAlgorithm1.
Therefore, the resulting IskIsk and IsIs find a balance between
stealthiness and effectiveness. After deciding the optimal IsIs,
the attacker finds the optimal location (distance), transmit
power, etc., andmay leave the device at the spot for a contin-
uous attack. The computation complexity of this optimiza-
tion depends linearly on the dimensionality [33].

Algorithm 1. Basic IS-WARS Attack

Result: Optimal IsIs
Sense Wi-Fi environment;
Initialize a suboptimal attacking profile IsIs

0;
while The incurred interference does not meet the attacker’s expec-
tation do
Obtain the CSI sequences Ĥ 0ðIsĤ 0ðIsiÞ under current attacking
profile IsIs

i ;
Compute fðIsIsÞ;
Pick an interference setting IsjIsj

i in IsIs
i;

Choose a small constant � and a standard basis vector eiei
with only the jth component as 1 ;

Slightly modify IsjIsj
i by computing gradient gi and Hessian

estimate Si;
Choose a scaling factor h;
if Si � 0 then
IsjIsj

iþ1 ¼ IsjIsj
i � hgi;

else
IsjIsj

iþ1 ¼ IsjIsj
i � hgi=Si;

end
Monitor the newly incurred interference on CSI;

end

5.4 Advanced Scheme

The stealthiness property in the basic scheme is not as
desired in the sense that the attacking device will stay at its
optimal location. Moreover, based on the analysis in Sec-
tion 4, existing recognition systems rely more on dynamic
portions and frequency domain properties of CSI. A stable
attacker affects more from the aspect of CSI amplitudes but
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produces less perturbation in the frequency domain. To
generate a more untraceable and powerful interference, we
add a dynamic property to the IS-WARS attack, e.g, the
attacking device is moving at a certain speed. If the interfer-
ence source is moving, its signal arouses Doppler shift from
the view of Wi-Fi receiverWi as

DZjf ¼ Dv

c
f0; (12)

where Dv is the relative velocity toWi.
Not only will it directly affect the Doppler-shift-related

profiles for recognition (e.g., the DFS profile, D, used in
BVP), Df also creates a Carrier Frequency Offset (CFO) in
signals, which deviates the CSI phase fðtÞ by 2pDft with
time t and further affects the CSI power/amplitudes and
thus, resulting in a new Ĥ 0Ĥ 0. Based on the fact that Df is posi-
tive when the source and the receiver are moving towards
each other, the attacker is able to control the constructive or
destructive effect of dynamic adversarial property on CSI
sequences. By including the relative velocity Dv in IsIs, the
strategy is optimized in the same fashion as Algorithm 1.

6 PERFORMANCE EVALUATION

In this section, we analyze the attacking performance on
profiles and then implement our attack on a real system.

6.1 Evaluation Settings

6.1.1 Attacker Setting

To verify that our attack is feasible in the most constrained
situation, we only consider an attacker that can achieve
Objective 1-Basic in Section 3.2 instead of Objective 1-
Advanced. Thus, the sensing and observation ability of the
attacker is limited to sensing the frequency band that Wi-Fi
senders/receivers are working on and extracting the CSI
from sensed packets. Their attacking profiles only consists
of the transmit power level, the location of the attacker, and
their moving speed.

6.1.2 Environmental Setting

The experiment is done in a 3m� 5m room as shown in
Fig. 3a. The distance between the Wi-Fi sender and the Wi-
Fi receiver is 1.5 meters. We choose Nexus 5 smartphones as
the WiFi devices, which are installed with Nexmon [34], a
C-based firmware patching framework enabling raw Wi-Fi
signal transmission and CSI extraction. The Wi-Fi transmis-
sion happens in 2.4GHz and on single antenna. The interfer-
ence sources are ZigBee devices setting on different
frequency bands, TI SimpleLink Multi-Standard CC26x2R

Wireless MCU LaunchPads. The devices used are shown in
Fig. 3b, where the human subject is waving.

6.1.3 Experimental Settings

Wi-Fi devices are set to work on Wi-Fi Channel 1 (2401
MHz-2423 MHz with center frequency 2412 MHz) and the
ZigBee interference sources can work on a combination of
ZigBee Channel 11 (center frequency 2405 MHz), Channel
12 (center frequency 2410 MHz), Channel 13 (center fre-
quency 2415 MHz), or Channle 14 (center frequency 2420
MHz) to cover as many as Wi-Fi subcarriers as they want.
Two activities categories are designed for experiments. The
first one is gentle movements, including resting in bed, wav-
ing, clap, and push and pull, during which the human sub-
ject stays at the same location. The second category is
vigorous activities involving location changes, including
walking, sitting down, entering and leaving the room. In
total, twenty volunteers were recruited for data collection.

For the basic attack scenario, the attacker’s location is
fixed. In the advanced scheme, the attacker walks with rela-
tive speed to the Wi-Fi receiver. Under each set of settings,
2-3 CSI sequences with a monitoring time of 20 seconds are
recorded.

6.2 Throughput Analysis

We first monitor the wireless environment when a ZigBee
device, 1.5 meters away from the Wi-Fi receiver, is emitting
interference signals. The Wi-Fi sender sends 8� 800 packets
under 8 different levels of CTI. This process is repeated for
10 times. We have verified that all captured packets can be
correctly decoded. The numbers of packets received by Wi-
Fi receiver are recorded and the packet success transmission
rates, as well as network throughputs, are evaluated as
shown in Table 2. We can tell that CTI will not greatly affect
throughput and thus, it is hard to distinguish an attacker
from the network performance perspective, which verifies
the objective of achieving stealthiness. When the CTI level is
-18 dBm, the ZigBee interference sensed by the Wi-Fi
receiver is so low that it does not affect the network perfor-
mance at all. However, slight drops in performance are
observed when CTI level is -9 dBm, -12 dBm, and -15 dBm,
which is in correspondence with the change of CSI ampli-
tudes in Fig. 2a.

6.3 Attacking Mathematical Profiles

Next, we break down the interfered CSI sequences and ana-
lyze how the derived profiles affected by interference. The
attack effectiveness is directly reflected by profiles because
the basic principle of real systems is matching profiles with
the closest known label. If the statistics of an interfered sam-
ple becomes closer to a wrong class than the correct one, it
definitely leads to incorrect classification. The reason for
comparing the distance changes between labeled and unla-
beled profiles instead of comparing against a certain thresh-
old is that reliable recognition systems rarely set thresholds
manually and instead, their thresholds/decision boundaries
are learned from data. We will not talk about Fresnel zone
model because it is directly related to CSI amplitudes and
phases, which have been proven to be influenceable by CTI.

Fig. 3. Experimental settings.
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6.3.1 Location Velocity Profile

After PCA de-noising, authors in [2] apply Discrete Wavelet
Transform (DWT) to decompose the first five PCA compo-
nents into 12 levels and average the results to capture the
movement information presented in different PCA compo-
nents. The recognition is done by calculating the likelihood
of each activity’s hidden Markov model. Therefore, we
extract DWT-decomposed coefficients of interfered samples
and compare them with coefficients of clean samples. We
set the decomposition level to 6 because our data experience
boundary effects if the level is 12. The average distances of
coefficients between two classes of activities are shown in
Fig. 4, where M1 and M2 are two different gentle motion
types, while M3 and M4 are vigorous.

In Fig. 4, we measure four types of distances: Between
coefficients of clean samples from M1 and clean samples
from M2, between coefficients of clean samples in M1,
between coefficients of noisy samples in M1 and clean sam-
ples in M2, and between coefficients of noisy samples in M1
and clean samples in M2. Intuitively, the distances between
clean samples from two different motion classes are larger
than those from the same class. After experiencing the
attack, however, not only the distances between noisy sam-
ples to samples in its actual class become larger, but also we
witness an increase in the distances between noisy samples
and samples from a wrong class. Moreover, for 5 out of 6
coefficients, the gap between the distances of noisy samples
to M1 and M2 is smaller. All aforementioned results indi-
cate that our attack successfully blurs the boundary between
M1 and M2 for interfered CSI, so the system will more likely
guess a random class to fit noisy CSI in. For vigorous activi-
ties, the differences between classes are larger, but the coef-
ficient changes still suffer from the attack.

6.3.2 BVP

BVP in [24] is estimated as an l0-optimization problem from
the Doppler spectrum, which is derived from CSI ampli-
tudes and phases after basic PCA de-noising. We use the

authors’ open-source codes to compute Doppler spectrum
and visualize some examples in Fig. 5, where Motion 1 is
push/pull and Motion 2 is clap.

In Fig. 5, more peaks show up in interfered Doppler spec-
trum of Motion 1 while a featured peak in the clean spec-
trum of Motion 2 is replaced by a bunch of small peaks.
Moreover, the spectrum apart from the peaks in Fig. 5d is
changed by the interference and becomes similar to that in
Fig. 5b. Visually, the interfered Motion 2’s Doppler spec-
trum is closer to the spectrum of the other class. To verify
this observation, we calculated the correlation coefficients
between spectrum matrices. The correlation between clean
Motion 1 and clean Motion 2 is 0.1616, demonstrating their
distinctiveness, but there is a sharp increase in the correla-
tion between interfered Motion 2 and clean Motion 1, which
is 0.6509, while the correlation between interfered Motion 2
and clean Motion 2 is only 0.3651. Thus, it is highly possible
for the system to classify the interfered Motion 2 CSI as
Motion 1. Though the correlation between interfered
Motion 1 and clean Motion 1 is slightly higher than the cor-
relation between interfered Motion 1 and clean Motion 2
(0.4994 compared to 0.4341), the advantage of correct classi-
fication over misclassification is so subtle that the expected
classification accuracy will certainly be downgraded by IS-
WARS attack. This result also applies to the average spec-
trum matrices of all other activities.

6.4 Improvement With Advanced Attacking Scheme

In an advanced attack, the attacker is moving at a speed of
0.02 m/s. We introduce an additional setting, whether the
transmission path of the interference signal to the Wi-Fi
receiver is Non-Line-of-Sight (NLOS), into the performance
analysis, where NLOS is modeled by placing the source
behind the door. The performance under NLOS is measured

TABLE 2
Network Performance Under Different Levels of CTI

0 dBm -3 dBm -6 dBm -9 dBm -12 dBm -15 dBm -18 dBm clean

# of Received Packets 682 684 686 663 632 652 706 701
Successful Transmission Ratio 85.25% 85.5% 85.75% 82.88% 79% 81.5% 88.25% 87.63%
Throughput (kbps) 38.74 40.57 39.54 37.81 36.04 37.26 40.26 40.65

Fig. 4. DWTcoefficient distances. Fig. 5. Doppler spectrum of detected motions.
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in advanced attacks because it is possible for the interfer-
ence source to be occasionally blocked by obstacles during
moving, but the effects of NLOS are also valid on basic
attacks.

The performance of advanced attack on mathematical
profiles is illustrated in Fig. 6. The y-axis in Fig. 6a are dis-
tances between a class A to be attacked and another class B
that the interfered samples for A are much easier to be mis-
classified into. Distances are averaged over all possible clas-
ses A. From Fig. 6a, the advanced attacker is more powerful
than the basic one as 4 out of 6 interfered coefficients move
closer to class B. The advanced attack under NLOS setting
is worse than the LOS one, but still outperforms the basic
one. Fig. 6b shows the correlation coefficients between clean
class A samples (no attack exists) and class B samples, class
A samples under basic attack and class B samples, class A
samples under advanced attack and class B samples, and
class A samples under advanced NLOS attack and class B
samples. The results are aligned with what in Fig. 6a, i.e.,
the interfered A samples under advanced attack, whose
coefficient is approximately 0.7, is the closest one to the B
samples. The NLOS setting brings negative effects to attack
performance, but the basic one is still the worst. The effec-
tiveness of advanced attack is proved.

6.5 Attacking a Real System

6.5.1 System Settings

As mentioned in Section 4, we implement our attack on a
real learning-based recognition system built on Convolu-
tional, long short-term memory, fully connected Deep Neu-
ral Networks (CLDNN) [35], which is a combination of
Convolutional Neural Network (CNN) layers, Long Short-
Term Memory (LSTM) layers, and Deep Neural Networks
layers. We recruit 10 volunteers to perform each motion for
5 times with a time duration of 100 seconds to collect
enough CSI data. In all, 25,000 seconds of samples are stored
for 5 activity labels. 80% of these CSI sequences are clean
ones labeled with activities for training, 10% of them are
unlabeled, clean samples for testing, and the remaining are
unlabeled, IS-WARS-attacked samples for testing.

6.5.2 Attack Performance

The accuracy of training and testing are illustrated in Fig. 7.
From the converged training accuracy (close to 100%) and
original testing accuracy (approximately 93%), we can tell
that this model is well-trained. However, the accuracy after
attack dropped to around 53%, which is close to random

guess. This huge drop proves the effectiveness of IS-WARS
on learning-based systems.

Next, we analyze the accuracy w.r.t. activity categories,
which is shown in the confusion matrices for gentle and vig-
orous activities, respectively, in Fig. 8. For the movements in
the gentle activity category, samples with ground truth
“rest” are likely to be misclassified into other categories
with a probability of 61.25%, while samples with other three
ground truth labels have a misclassification rate less than
50%. Thus, “rest” tends to be more vulnerable to the attack
compared to the other three activities because “rest” creates
less distinct turbulences on CSI sequences while IS-WARS
attack adds perturbation to make CSI sequences to be more
like CSI from activities involving hand movements. It also
explains why it is less possible for CSI sequences to be mis-
classified as “rest”. Vigorous activities are slightly more dif-
ficult to be attacked because they contain more dynamic
features. Nevertheless, there is still a chance to fool the rec-
ognition because the spatial information, which is used to
distinguish walking, entering the room, and leaving the
room, can be blurred under CTI.

6.5.3 Compare With Random Interference

To further validate the practicability and effectiveness of
both the activity recognition system and our attack, we
bring up several additional experimental scenarios featured
with random noises. The new designs are as below. All
devices are working on frequencies that overlap with the
frequencies used by recognition systems.

1) Random background noises from other types of source:
Some Wi-Fi devices are downloading data on the 2.4
GHz spectrum at a place at the scene.

2) Random background noises from the same type of source:
Some benign ZigBee devices are producing ZigBee
traffics.

Fig. 6. Invoked changes in profiles.
Fig. 7. Effect on CLDNN-based system’s accuracy.

Fig. 8. Confusion matrix.
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In the previous experimental scenario, experiments are
done in an apartment building with ongoing 2.4GHz Wi-Fi
traffics on all channels in the background. We have also col-
lected each activity multiple times to include the random-
ness of human activities. From the performance mentioned
above, we can tell that our attack is way more harmful than
random Wi-Fi interference. Therefore, we focus on the sec-
ond scenario.

In the previous experimental environment, the attacking
device was initially placed at a random place. Here, we
replace the attacking device with a benign ZigBee device.
The benign ZigBee is transmitting on ZigBee Channel 13
with a transmission level chosen from -21 dBm to 10 dBm.
This channel overlaps with Wi-Fi Channel 1 but will not
affect the attacker working on ZigBee Channel 11. Unlike
the attacker, the benign ZigBee will always stay at its initial
place and not change its initial transmission level. The
impacts of the benign ZigBee device with different power
levels are averaged. Table 3 shows the average effects of
random ZigBee interference and attacker. Since the benign
ZigBee device is placed at a fixed position near the Wi-Fi
transceiver, more Wi-Fi packets are held back from the
transmission or received as corrupted, which results in a
huge drop in the average ratio of successfully received
packets. On the contrary, the packets that survived interfer-
ence are mostly those experiencing a low level of ZigBee
CTI and less perturbed. Thus, they produce more accurate
recognition compared to packets interfered with by our
attack. Then, we add the attacking device back to the scene
and let the attack and the transmission of benign ZigBee
packets happen simultaneously. The success transmission
ratio does not change much. The impact on recognition
accuracy is almost the same as when there is only one
attacker at the spot and is much lower than there is only one
benign ZigBee device. Despite how much noise is in the
background, the attacker’s goal is still to try to minimize the
extra packet loss caused by malicious interference and max-
imize the drop in accuracy of recognizing activities using
successfully received packets.

6.6 De-Noising Performance versus Interference

We evaluate whether interference from other wireless sour-
ces will be discarded. Along with the aforementioned dis-
cussion, the de-noising scheme considered here is based on
PCA. Since humans cannot precisely control their activities
and it is hard to synchronize the timestamps of different
CSI samples, we leverage another technique, Dynamic Time
Warping (DTW) [36], to measure how far the unlabeled sig-
nals are from their ground truth. The euclidean distances
between interfered signals and the ground truth clean sig-
nals are divided by the average amplitudes of ground truth

clean sequences, denoted as “distance ratio”. We compute
the average distance ratios before and after de-noising
applied to both interfered ones and clean ones. Surprisingly,
the average distance ratio after de-noising is almost 10 times
more than the ratio before. The resulting sequence is drift-
ing farther away than the ground truth, so the de-noising
approach cannot discard interference without harming the
recognition accuracy.

7 POTENTIAL DEFENSES

Generally, a wireless human activity recognition system has
at least three components: Signal preprocessing, feature
extraction, and activity recognition. This section briefly pro-
vides some insights into how to defend against our pro-
posed attack in these three steps.

Defense During Signal Preprocessing. In the IS-WARS, the
attacker can cover all Wi-Fi subcarriers with CTI. If most
CTI can be removed from the signal, the possibility of a suc-
cessful attack will be significantly reduced. Thus, one possi-
ble defense is to recover the fully contaminated signal.

Defense During Feature Extraction. The recognition results
are directly influenced by the values of features. Current
features used in recognition systems, such as amplitudes
and phases, are very sensitive to noises. If less sensitive fea-
tures are explored, this could undermine the impact of CTI.

Defense During Activity Recognition. Lastly, the recogni-
tion scheme can be made more robust. For example, if
machine learning techniques are used for recognition, tech-
niques like deliberately training the model with CTI-inter-
fered signals should raise the model’s robustness against
CTI.

8 RELATED WORK

8.1 Applications of Human Activity Recognition

Two major application scenarios of wireless human activity
recognition are healthcare monitoring and gesture recogni-
tion. The recognition of healthcare applications involves
dangerous motions and emergent vital signal monitoring.
Dangerous motion recognition often utilizes the deployed
in-home wireless transceivers. One representative work is
WiFall [37], which uses CSI as an indicator of falling and
enables accurate alert of potential injuries. Vital signs,
including heartbeat, respiration, blood volume, etc., bring
displacement of body surface to be detected by wireless sig-
nal characteristics. In [38], authors build testbeds for respi-
ration monitoring based on commodity devices and prove
the effectiveness of wireless monitoring. Gesture recogni-
tion is a more general-purpose application, which has been
widely applied in Virtual Reality and human-computer
interaction. In [39], authors achieve contact-less gesture rec-
ognition via Commercial-Off-The-Shelf (COTS) RFID as a
tag array, benefiting users’ daily life in time-saving. How-
ever, the consequences brought by successfully attacking
these vital applications are severe.

8.2 Wireless Signal Interference

Because of spectrum overlapping, wireless signals are
always facing the threats of unexpected interference from
other signal sources. Existing works mostly focus on

TABLE 3
Performance Under Random ZigBee Interference

Success Transmission Accuracy

Clean 87.63% 93%
One Benign 49.11% 76%
One Attacker 84.10% 53%
Benign & Attacker 47.42% 59%
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detection [18], mitigating [8], achieving coexistence [3], or
exploiting the interference. However, these works analyze
from plain metrics, such as packet loss, to estimate interfer-
ence, without providing detailed analysis and cannot
reduce the loss caused by interference but bring heavier
burdens of assessing and hopping. In [9], Guo et al. use
SVM to classify Wi-Fi packets that are contaminated by Zig-
Bee packets. Wi-Fi packets are symboled as 0 and 1 in terms
of whether being contaminated or not. Then, they use 0s
and 1s to represent messages that both Wi-Fi and ZigBee
receivers can decode. The authors use CTI to fulfill cross-
technology communication (CTC), but the experiments can-
not provide any generalized conclusion.

8.3 Attacks to Wireless Systems

8.3.1 Jamming Attack and Countermeasures

Wireless jamming is a common attack to compromise the
service of wireless systems. The main objective of the jam-
ming device is to ensure that the legitimate nodes cannot
use the network by purposefully interfering with the physi-
cal transmission and reception of wireless communications.
As summarized in [40], there are four kinds of jammers:
Constant jammer, deceptive hammer, random jammer, and
reactive jammer, in which the deceptive jammer is similar
to our attacker. A deceptive jammer emits a legitimate bit
sequence which gives the network an impression of the
presence of a legitimate node. This impersonation makes
deceptive jammers more effective than constant jammers. In
[41], authors deploy deceptive jammer to confuse informa-
tion acquisition without arousing the awareness of the hos-
tile radar. Although this kind of jammer is intelligent, their
packets can be easily identified in CSI-based recognition
due to environmental differences and unique location pro-
files. They do not have the same objective as our attack and
are not stealthy enough to achieve a long-term negative
effect.

There are some works in countering the wireless jam-
ming attack, especially cross-technology jamming. In [42], a
ZigBee device will assume that it is suffering from a jam-
ming attack if there are too many failed attempts of trans-
mission when sensing channels, and it will force
transmission in busy channels. Suppose the ZigBee packet
is transmitted but corrupted due to cross-technology inter-
ference. In that case, the authors apply a band stop filter to
isolate slower rate Wi-Fi subcarriers, reduce total interfer-
ence, and then compensate the distorted ZigBee signals
with the Direct Sequence Spread Spectrum (DSSS) scheme.
However, it is difficult to do these steps vice versa. The filter
cannot completely remove the impact of CTI, and Wi-Fi sig-
nals cannot be compensated by DSSS because DSSS only
available in old version 801.11b and low data rates in
801.11g. The attacker in our attack can cover a Wi-Fi channel
with as many ZigBee channels as they desire, which makes
it very challenging for the receiver to recover corrupted sub-
carriers using the information in clean subcarriers,

8.3.2 Illegitimate RF Sensing and Existing

Countermeasures

Illegitimate RF sensing is a kind of attack where attackers
sensing and analyzing the Wi-Fi signal that bounced off the

human body to detect human activity for malicious pur-
poses, e.g., detect if there is anyone at home to prepare for
an illegal break-in. The basic principle of protecting against
illegitimate RF sensing is obfuscating the wireless signal
characteristics used for human activity recognition, such as
amplitude gain, delay, Doppler shift, etc.

In [43], the adversary uses a single-antenna receiver to
sniff the wireless transmission. They place a reflector near
the legal wireless receiver. The reflector can receive and
transmit signals and modify the reflected packet copies by
controlling three multipath components: Amplitude gain,
delay, and Doppler shift, before relaying copies to the legiti-
mate receiver. Their scheme preserves the normal data com-
munication, but since any features that reveal physical
information are distorted, the legal wireless receiver cannot
recognize human activity from the received signal as well.

To enable simultaneous protection and legitimate human
activity sensing, authors in [44] define a term named
“adversary region”, which is the place that adversaries can
perform attack without being visually noticed. In their
scheme, the reflector is placed outside the legitimate sensing
region. The reflector is equipped with a directional antenna
to scan the adversary region, broadcast modified copies,
and avoid sending the modified copies to the legitimate
receiver. This scheme has several limitations. First, knowing
the location and shape of the potential adversary region are
required to make this scheme work and the reflector has to
be placed in the adversary region, which leaves the indoor
area unprotected and increases the chance of being noticed
by the attacker, as well as the chance of failed protection.
Second, there is a huge decrease in recognition accuracy
shown in evaluation results. The recognition accuracy of
legitimate sensors drops from 0.9 to 0.78. Though this accu-
racy is still much higher than the one suffered from our
attack, it is definitely incredible harm to system perfor-
mance. Lastly, since the reflector is using a directional
antenna to scan the region, it is not guaranteed that the
reflector can obfuscate all copies sensed by the adversary,
as claimed by the authors. Receiving partially corrupted
results may block adversaries from successfully sensing
human activities, but it is possible for an attacker to separate
obfuscated packets from clear ones through analysis. More-
over, our attacker does not need the fully correct copies of
human-activity-interfered signals to perform attacks. Our
purposed attack remains threatening to existing systems.

9 CONCLUSION

Benefiting from ubiquitous wireless device deployments,
human activity recognition systems can achieve non-intru-
siveness and high accuracy at the same time leveraging the
rich channel information embedded in Wi-Fi signals. How-
ever, Wi-Fi-based recognition systems are vulnerable to
wireless attacks. In this work, we discover an intelligent but
stealthy attack on human activity recognition systems by
leveraging wireless signal interference. “Intelligence” is to
find optimal interference that can incur misrecognition
while preserving normal packet decoding, while “stealth”
means the attack remains unnoticeable because it does not
harm the function of systems. We thoroughly analyze this
new attack from both theoretical and experimental
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perspective, and demonstrate the feasibility of the attack on
real profiles and systems. To the best of our knowledge, we
are the first one to quantitatively analyze the influence of
wireless interference and demonstrate effectiveness in real-
world experiments.
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