
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023 1611

Revealing Smart Selective Jamming Attacks in
WirelessHART Networks

Xia Cheng , Member, IEEE, Junyang Shi , Mo Sha , Life Member, ACM,

and Linke Guo , Senior Member, IEEE

Abstract— As a leading industrial wireless standard,
WirelessHART has been widely implemented to build wireless
sensor-actuator networks (WSANs) in industrial facilities,
such as oil refineries, chemical plants, and factories. For
instance, 54,835 WSANs that implement the WirelessHART
standard have been deployed globally by Emerson process
management, a WirelessHART network supplier, to support
process automation. While the existing research to improve
industrial WSANs focuses mainly on enhancing network
performance, the security aspects have not been given enough
attention. We have identified a new threat to WirelessHART
networks, namely smart selective jamming attacks, where
the attacker first cracks the channel usage, routes, and
parameter configuration of the victim network and then jams
the transmissions of interest on their specific communication
channels in their specific time slots, which makes the attacks
energy efficient and hardly detectable. In this paper, we present
this severe, stealthy threat by demonstrating the step-by-step
attack process on a 50-node network that runs a publicly
accessible WirelessHART implementation. Experimental results
show that the smart selective jamming attacks significantly
reduce the network reliability without triggering network
updates.

Index Terms— WirelessHART networks, selective jamming,
industrial wireless sensor-actuator networks, denial-of-service
attack.

I. INTRODUCTION

INDUSTRIAL Internet of Things (IoT) is revolutionizing
the process industries and promises to be one of the largest

potential economic effects in the future. According to the
McKinsey report on future disruptive technologies, industrial
IoT will contribute up to $47 trillion in added value globally by
2025 [2]. Industrial networks connect sensors and actuators in

Manuscript received 8 September 2021; revised 29 September 2022;
accepted 5 November 2022; approved by IEEE/ACM TRANSACTIONS ON

NETWORKING Editor Y. Zhang. Date of publication 30 November 2022;
date of current version 18 August 2023. The work of Xia Cheng, Junyang
Shi, and Mo Sha was supported in part by NSF under Grant CNS-1657275,
Grant CNS-2046538, and Grant CNS-2150010. The work of Linke Guo was
supported in part by NSF under Grant IIS-1949640 and Grant CNS-2008049.
Part of this article was published in Proceedings of the INFOCOM [DOI:
10.1109/INFOCOM42981.2021.9488805]. (Corresponding author: Mo Sha.)

Xia Cheng and Mo Sha are with the Knight Foundation School of Com-
puting and Information Sciences, Florida International University, Miami,
FL 33199 USA (e-mail: xcheng@fiu.edu; msha@fiu.edu).

Junyang Shi was with the Department of Computer Science, State University
of New York at Binghamton, Binghamton, NY 13902 USA. He is now with
Google New York, NY 10011 USA (e-mail: jshi28@binghamton.edu).

Linke Guo is with the Department of Electrical and Computer Engineering,
Clemson University, Clemson, SC 29634 USA (e-mail: linkeg@clemson.edu).

Digital Object Identifier 10.1109/TNET.2022.3224358

industrial facilities, such as oil refineries, steel mills, and man-
ufacturing plants, and serve as the communication infrastruc-
tures for various industrial IoT applications. Most industrial
IoT applications have stringent demands for reliable and real-
time communication in harsh industrial environments. Failure
to meet such demands may lead to production inefficiency,
financial loss, and safety threats. Traditionally, specifically
chosen wired solutions, such as the highway addressable
remote transducer (HART) communication protocol [3], have
been designed to meet those stringent demands. Cables con-
nect sensors and forward sensor readings to a control room
where a controller makes control decisions, then sends com-
mands to actuators. However, wired networks are often costly
to deploy and maintain in harsh environments and difficult to
reconfigure to accommodate new application requirements.

To reduce the cost and enhance the flexibility, industrial
wireless sensor-actuator network (WSAN) technology has
been developed and serves as a cost-effective way to con-
nect sensors, actuators, and controllers in industrial facilities.
Battery-powered wireless modules have been designed to
easily and inexpensively retrofit existing sensors and actuators
in industrial facilities without the need to run cables for
communication and power. To meet the stringent reliability,
real-time, and low-power requirements, the industrial WSAN
standards, such as WirelessHART [4], make a set of specific
design choices including employing the IEEE 802.15.4 physi-
cal layer, the time slotted channel hopping (TSCH) technology,
and reliable graph routing that distinguish themselves from
traditional wireless sensor networks (WSNs) designed for best-
effort services [5]. Over the last decade, a large number of
wireless networks that implement those standards have been
deployed in industrial facilities. For instance, Emerson process
management, one of the leading WirelessHART network sup-
pliers, has deployed 54,835 WirelessHART networks globally
and gathered 19.7 billion operating hours of experience [6].
A decade of real-world deployments has demonstrated the
feasibility of using WirelessHART networks to achieve reliable
low-power wireless communication in industrial facilities and
exposed many limitations such as poor scalability [5] and
error-prone configuration [7].

While the existing research to improve industrial WSANs
focuses mainly on enhancing network performance, the secu-
rity aspects have not been given enough attention. After careful
analysis of the WirelessHART standard and extensive experi-
mentation, we have identified a new threat to WirelessHART

1558-2566 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8145-7656
https://orcid.org/0000-0003-0089-289X
https://orcid.org/0000-0002-2701-0159
https://orcid.org/0000-0002-3658-7435

1612 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

networks, namely smart selective jamming attacks, where the
attacker first cracks the channel usage, routes, and parameter
configuration of the victim network and then jams the trans-
missions of interest on their specific communication channels
in their specific time slots. Compared to the constant jamming
and random jamming, the smart selective jamming attacks
are energy efficient and hardly detectable, and therefore pose
a more severe, stealthy threat to WirelessHART networks.
In this paper, we present this severe, stealthy threat by
demonstrating a step-by-step attack process. Specifically, this
paper makes the following contributions:

• We investigate the security vulnerability of Wire-
lessHART networks and demonstrate how an attacker
cracks the updating period and the link selection threshold
used in a WirelessHART network;

• We model the effectiveness of smart selective jamming
attacks and present a step-by-step attack process;

• We implement the attack process and test it on a physical
testbed [8] with 50 devices that run the publicly acces-
sible WirelessHART implementation [9]; Experimental
results show that the smart selective jamming attacks
can significantly compromise network reliability without
triggering any network updates;

• We provide a set of insights on how we may secure
WirelessHART networks against smart selective jamming
attacks.

The remainder of this paper is organized as follows.
Section II presents the background of WirelessHART net-
works. Section III introduces our threat model. Section IV
demonstrates the step-by-step attack process. Section V
describes our experimental studies. Section VI reviews related
work. Section VII concludes the paper and discusses our future
work.

II. BACKGROUND ON WIRELESSHART NETWORKS

A WirelessHART network is composed of a gateway, mul-
tiple access points, and a set of field devices (sensors and
actuators) that form a multi-hop mesh network. A centralized
network manager, a software module that runs on the gateway,
is responsible for the network management, such as collecting
link statistics, generating routes and transmission schedule,
and maintaining the network operation. WirelessHART adopts
the IEEE 802.15.4 physical layer and employs the TSCH
technology in the MAC layer. TSCH divides time into slices of
fixed length that are grouped into a slotframe. Channel hopping
is used to mitigate effects of multipath fading and improve
the robustness and the network capacity. Under TSCH, a pair
of communicating devices uses the following function to
determine their communication channel:

f = F [(ASN + Cset) mod Slen], (1)

where ASN is the absolute slot number, defined as the total
number of slots elapsed since the network started, Cset is
the channel offset, which maps to one of available physical
channels, F is the lookup table that maps each channel offset
to its corresponding channel, and Slen is the length of a
sequence of available physical channels.

Fig. 1. A graph routing example. The solid lines represent the primary paths
and the dashed lines represent the backup paths.

Fig. 2. DLPDU specified in the WirelessHART standard.

WirelessHART supports both source and graph routing. For
each data flow, source routing provides a single route between
source and destination, while graph routing provides a primary
path and a series of backup routes to enhance the network
reliability by taking advantage of route diversity. Figure 1
shows the example routes between the Source node and two
access points. A packet may take backup routes (through
nodes D, E, F, G, or H) to reach AP 1 or AP 2 if it fails on
the primary routing path (through nodes A, B, and C). A data-
link protocol data unit (DLPDU) is used to carry the routing
information and provides means for reliable communication
in the data-link layer (DLL). As Figure 2 shows, a DLPDU
consists of address specifier, network ID, DLL payload, mes-
sage integrity code (MIC), and other fields. DLPDU Specifier
indicates the priority and data type of the message. There are
four priority levels from high to low: Command, Process-Data,
Normal, and Alarm. A network protocol data unit (NPDU) is
carried in the DLL payload, which is composed of Graph ID,
user data, and other fields. WirelessHART does not require
the devices to encrypt the DLPDU and NPDU headers due
to the overhead concern. The source and destination addresses
of a communicating link are defined as link source/destination
address, while the address of the device that originally gener-
ated the packet and the final destination address of the packet
are defined as route source/destination address.

Each network device generates a health report periodi-
cally (e.g., one every 15 minutes) and transmits it to the
network manager. The network manager can make use of
such information to determine whether it should regenerate
the routes and reschedule the transmissions. Although the
WirelessHART standard provides an example of the generation
interval of health reports (15 minutes), it leaves vendors to
decide the actual value used in their networks. WirelessHART
also leaves vendors to decide how to adjust routing based

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: REVEALING SMART SELECTIVE JAMMING ATTACKS IN WirelessHART NETWORKS 1613

Fig. 3. Overview of smart selective jamming.

on the statistic information gathered from health reports. For
instance, Emerson recommends that wireless field devices used
for control and high speed monitoring have a higher packet
reception ratio (PRR) threshold (70%) than general monitoring
devices (60%) [10]. In addition to health reports, each network
device maintains a PathFailureTimer for each routing path,
which is reset to a constant (PathFailInterval) when a DLPDU
from that neighbor is received. When the PathFailureTimer for
a neighbor reaches zero, a Path-Down alarm is generated and
sent to the network manager.

III. THREAT MODEL

We consider a malicious device (attacker) in a Wire-
lessHART network which is deployed in an open field or
facility (e.g., an oil drilling plant) to support industrial wireless
monitor and control applications.

Attacker’s Objective. The intention of the attacker is to
reduce the network reliability (i.e., the packet delivery ratio
(PDR) of a target data flow) as much as possible by launching
selective jamming attacks without being detected. To achieve
this objective, the attacker must address the following four
challenges:

• Deployment-specific parameters: There exist several
important parameters including the link selection thresh-
old for routing and the network updating period, which
the WirelessHART standard allows vendors to decide.
Moreover, a vendor may use different values for the same
parameter in different deployments. The attacker must
derive those values by observing the network behavior at
runtime.

• Fluctuation of low-power wireless links: Unexpected
transmission failures caused by the normal low-power
link fluctuations may expose the attacker when per-
forming attacks. The attacker must consider the network
dynamics and adjust its attacks based on its runtime
observations on the network condition.

• Uncertainty of jamming effectiveness: Many factors
play an important role in the jamming effectiveness, such
as the locations of the attacker, benign transmitter, and
victim, the attacker’s signal strength at the victim, and
the timing when the jamming signal reaches the victim.
The attacker must profile its jamming effectiveness and
consider that when performing attacks.

• Limited power supply: The malicious device has limited
power supply and cannot perform computation-intensive
tasks, such as cracking information from data protected
by the Advanced Encryption Standard (AES) 128-bit
encryption.

Attacker’s Resource. The attacker is assumed to be a
device that has moderate computational capability and is
capable of monitoring the transmission activities on each
channel (the transmissions of DLPDU packets and their
acknowledgments) and generating signals on each channel
in the 2.4 GHz ISM band (e.g., a Raspberry Pi 3 Model B
[11] that integrates with a Wi-Spy USB Spectrum Ana-
lyzer [12]). The attacker is powered by batteries or energy
harvesting and deployed or airdropped into the WirelessHART
network. We assume that the attacker does not have any
prior knowledge on the deployment-specific parameters used
in the WirelessHART network and can only gather informa-
tion from the unencrypted packet headers transmitted in the
network.

IV. SMART SELECTIVE JAMMING ATTACKS

In this section, we provide a step-by-step presentation on
the attack process.

A. Overview

To achieve the attacker’s objective presented in Section III,
the smart selective jamming attack consists of two phases:
cracking phase and attacking phase. The attacker gathers the
needed information by eavesdropping on transmissions in
the network and performing exploratory jamming attacks in
the cracking phase and launches the attacks in the attacking
phase. Figure 3 shows the five steps in the cracking phase:
(1) The attacker cracks the TSCH channel hopping sequences
by silently observing the channel activities (see Section IV-B);
(2) With the cracked channel usage information, the attacker
cracks the routes by analyzing the eavesdropped transmis-
sions (see Section IV-B); (3) With the cracked channel usage
and routing information, the attacker launches exploratory
jamming attacks to crack the network updating period by
observing the time interval between two consecutive routing
changes (see Section IV-C); (4) In an updating period, the
attacker launches exploratory jamming attacks to identify
the link selection threshold for routing (see Section IV-D);
and (5) The attacker models its jamming effectiveness upon
the previous exploratory jamming attacks (see Section IV-E).
Table I summarizes the key parameters, which enable an
attacker to launch the smart selective jamming attacks. With
the information gathered in the cracking phase, the attacker
launches the smart selective jamming attacks to the target
data flow (see Section IV-F). To maximize the damage to the
network reliability, the attacker needs to carefully select a data
flow as its target (see Section IV-G).

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

1614 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

TABLE I

PARAMETERS NEEDED FOR SMART SELECTIVE JAMMING

B. Cracking the Channel Usage and Routes
The attacker can use the method presented in the paper [13]

to crack the channel usage. Here, we provide a brief summary
of that method. The channel hopping sequences generated by
the network devices when using Eq. 1 show a strong cyclic
pattern. The attacker can identify the channel usage repetition
cycle by observing the channel usage of a link. After deriving
the channel usage repetition cycle, the attacker can identify
the time slots that are scheduled for transmissions in each
cycle and then create a table for each link. The table pairs
each slot with a scheduled transmission to a communicating
channel based on the observed channel activities. With those
tables, the attacker can predict the channel used by each link
in each time slot in the future. In addition, the attacker can
derive the number of time slots in a slotframe and the number
of active channels, and also synchronize its clock with the
victim network.

The attacker can use the method presented in the paper [14]
to derive both source and graph routes from the eavesdropped
packet headers. Here we present the method that cracks graph
routes. The attacker can follow the same method to crack
source routes by skipping the step of cracking backup routes.
To crack the graph routes, the attacker can follow the following
four steps:

1) Eavesdropping on the on-air packets: The attacker
eavesdrops on each packet and records its capture time;

2) Grouping and sorting the eavesdropped packets:
The attacker separates the eavesdropped packets into
different groups by the Graph IDs stored in their packet
headers and then sorts the packets in each group accord-
ing to their capture time;

3) Identifying the primary route: As each DLPDU header
stores the source and destination addresses of the com-
municating link, the attacker identifies all relay nodes
located on the primary routing path by checking the
sorted packets one by one until the link destination
address is the same as the route destination address;

4) Identifying the backup routes: The attacker identifies
the backup routes by selectively jamming each link on
the primary routing path.

Figure 4 shows an example on cracking the primary routing
path. We assume that six packets have been eavesdropped
by the attacker and three of them belongs to Graph 12 (the
data flow from node 023 to node 047). The attacker sorts the
packets according to their capture time T + 4, T + 7, and
T + 9, and identifies three links 023 → 024, 024 → 007, and
007 → 047. Thus, the primary routing path is 023 → 024 →
007 → 047. The attacker identifies the backup routes of node
023 by jamming the link 023 → 024 and repeats the process
until obtaining all backup routes.

Fig. 4. Example of cracking the primary routing path.

C. Deriving the Network Updating Period

After obtaining the routing information, the next step is
to derive the network updating period UP . As discussed in
Section II, the network manager examines link statistics peri-
odically and generates new routes and transmission schedule
when needed. UP is the time interval between two consecutive
examinations. The network manager removes a link from
routing if its PRR is below the preset PRR threshold PRRT .
UP and PRRT are deployment-specific parameters, which
are not transmitted over the network. Therefore, the attacker
cannot get them directly from the standard or information
stored in the packet headers. However, the attacker can detect
UP by measuring the time duration between two consecutive
routing changes. In a stable network, the attacker is likely
to observe an UP that is larger than its actual value because
the network manager may skip network updates if no change
is needed. To ensure the correctness of derived UP , the
attacker must perform exploratory jamming attacks on the
most vulnerable link located on the primary routing path to
make sure of routing changes. The most vulnerable link must
be the first hop of a data flow since the data source node always
transmits packets following its schedule and a relay node may
skip a transmission if it fails to receive the packet correctly.
It is beneficial for the attacker to select the weakest first-
hop link (with the lowest PRR) among all data flows because
the received signal strength (RSS) at the receiver of that link
must either be low or close to the interference-plus-noise floor.
When performing exploratory jamming, the attacker records
the time when the link is removed from routing. The attacker
repeats the above process again and obtains UP by measuring
the time duration between two consecutive routing changes.

Algorithm 1 Exploratory Jamming to Crack UP

Output: UP

1 Compute PRR of each first-hop link within its jamming
range and select the one with the lowest PRR;

2 for i = 1; ; i + + do
3 if i%m != 0 then
4 Jam the transmission over the selected link;
5 end
6 if Observe routing changes then
7 Record the time and break;
8 end
9 end

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: REVEALING SMART SELECTIVE JAMMING ATTACKS IN WirelessHART NETWORKS 1615

To reduce the chance of being detected, the attacker must
avoid destroying a link completely because a link failure
triggers the Path-Down alarm (presented in Section II), which
significantly increases the chance of exposing the attacker.
Algorithm 1 illustrates the algorithm of launching exploratory
jamming to crack UP . The attacker executes Algorithm 1 twice
when cracking UP . We set m to three in our implementation,
because attacking two-thirds of transmissions with a jamming
success ratio of 60% reduces the PRR of a link by at least 40%,
which is enough to trigger a routing update while keeping the
link alive. One of the primary design goals of the exploratory
jamming is to trigger the routing update only once, which
minimizes exposure to the network manager that manages the
victim network.

D. Deriving the Link Selection Threshold

As discussed in Section II, the network manager uses only
the links with the PRRs larger than PRRT for routing. If a
route has a degraded link performance (PRR < PRRT),
it will be removed from routes. To make the jamming attacks
stealthy, the attacker must crack PRRT and attack the target
data flow without triggering network updates by keeping
the PRRs of all links above PRRT . To crack PRRT , the
attacker gradually reduces the PRR of a link by launching
exploratory jamming with a progressive increase in intensity
in a series of network updating periods. The attacker starts
from the lowest PRR observed in the routes and tests each
possible value of PRRT in descending order until triggering
a network update. Ideally, the attacker should trigger the
network update only once when cracking PRRT . However,
the fluctuation of low-power wireless link performance and
imperfect jamming effectiveness may in reality trigger more
network updates. Therefore, the attacker must use a carefully
designed method to launch exploratory jamming. To reduce the
chance of triggering additional network updates, the attacker
should launch exploratory jamming to the most stable link in
the network. Attacking a stable link also reduces the chance of
triggering the Path-Down alarm. Here, we illustrate a method
that cracks PRRT without triggering more than one network
update (see Figure 13 for evaluation results).

Algorithm 2 shows the process of testing whether a possible
value of PRRT (PRRtest) is the actual value in an updating
period. Algorithm 2 has two modules: the Estimation module
and Examination module. The Estimation module divides a
network updating period into two sub-periods: observation
sub-period and jamming sub-period. In the observation sub-
period, the attacker silently observes the channel activities,
counts the number of transmission failures, and updates the
length of the jamming sub-period based on the runtime
observations. In the jamming sub-period, the Examination
module decides which transmissions should be jammed to
ensure the resulting PRR is equal to PRRtest. The input
of Algorithm 2 consists of four parameters: the PRR value
that is currently in testing PRRtest; the jamming success
ratio Rjam; the network updating period UP ; and the target
link (Link). Algorithm 2 first computes the variable div
that divides a network updating period into the observation

Algorithm 2 Exploratory Jamming to Crack PRRT

Input : PRRtest, Rjam, UP , Link
Output: PRRT

1 Initialize div according to Eq. 5;
2 for i = 1; i ≤ UP ; i + + do
3 if i == div then
4 Update the div according to Eq. 5;
5 end
6 if i > div then
7 Jam the current transmission on Link if there are

enough transmissions to compensate Tf ;
8 end
9 end

10 if Observe the removal of target route from routing then
11 PRRT = PRRtest, then break;
12 end
13 else
14 if A PRR lower than PRRtest observed then
15 Set PRRtest to it;
16 end
17 else
18 Reduce PRRtest by a preset testing step;
19 end
20 end

and jamming sub-periods by using Eq. 5 (line 1) with the
assumption that there is no transmission failure caused by link
fluctuation in the observation sub-period. The loop (line 2 – 9)
traverses all slotframes in the updating period (from 1 to
UP). In the divth iteration, Algorithm 2 adjusts the div
based on Eq. 5 if some transmission failures caused by
link fluctuation are observed in the observation sub-period
(line 3 – 5). Algorithm 2 keeps adjusting div until the newly
computed div is equal to the previous value, and then starts
the jamming sub-period. If the transmission failures caused
by link fluctuation are uniformly distributed in the updating
period, the above process of adjusting div based on runtime
observations in the observation sub-period is a guarantee that
the PRR in this network updating period is equal to PRRtest.
In reality, the transmission failure caused by link fluctuation
may not follow the uniform distribution. If the transmission
failures happen more frequently in the jamming sub-period,
the resulting PRR will be smaller than PRRtest, which makes
the cracked PRRT inaccurate. To address this issue, the
attacker can employ a time series forecasting algorithm to
estimate the transmission failures which will happen in the
jamming sub-period and keep adjusting the estimation based
on the actual observations in the jamming sub-period to ensure
there are enough transmissions to compensate for unexpected
failures. In our implementation, we use the Holt-Winters
method that is one of the most effective time series forecasting
algorithms [15]. The number of estimated transmission failures
(Tf) can be expressed as

Tf = FRpre × TR, (2)

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

1616 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fig. 5. Example of verifying PRRtest process, PRRtest is 0.5, UP

includes 8 slotframes and the jamming success ratio is 0.8.

where FRpre is the transmission failure ratio that is predicted
by the Holt-Winters method and TR is the number of the
transmissions left in the remaining updating period.

Algorithm 2 first assumes that the current transmission can
be jammed successfully and there will be Tf transmission
failures caused by link fluctuation in the remaining network
updating period. Algorithm 2 decides to jam a transmission if
there are enough transmissions to compensate Tf (the resulting
PRR is higher than PRRtest) (line 6 – 8). If Algorithm 2
observes a route removal, it gets PRRT (line 10 – 12). If not,
Algorithm 2 sets PRRtest to the next value (line 17 – 19) or
a lower PRR which is owned by a route (line 14 – 16).

Figure 5 shows an example execution of Algorithm 2,
where PRRtest is 0.5. In the example, we assume that the
network updating period includes eight slotframes and the
attacker has an 80% jamming success ratio. Algorithm 2 first
computes div and finds that the jamming sub-period should
have five slotframes. Let us assume that the attacker observes
one transmission failure in the first three iterations. Therefore,
Algorithm 2 adjusts the length of jamming sub-period to four
in the end of Iteration 3. In Iteration 4, the attacker observes a
transmission failure and adjusts the length of jamming sub-
period to three. In Iteration 5, because the updated div is
equal to the previous one (three), Algorithm 2 starts the
jamming sub-period. In Iteration 6, Algorithm 2 estimates
that there will be one possible transmission failure caused by
link fluctuation based on Eq. 2, therefore it decides to jam
the current transmission. In Iteration 7, Algorithm 2 decides
to skip the attack on the current transmission because if the
transmission failure happens in the last slotframe, the PRR
will be 0.375 which is lower than PRRtest. In Iteration 8,
Algorithm 2 decides to jam again to ensure that the resulting
PRR is equal to PRRtest.

E. Modeling the Jamming Effectiveness

The attacker can model the jamming effectiveness based on
the observations in the previous exploratory jamming attacks.

Fig. 6. Example of links shared by multiple data flows.

Our analysis is based on a publicly accessible WirelessHART
implementation, which employs three transmission attempts
for each packet [9]. The first two attempts go through the pri-
mary route and the last attempt uses backup routes. To analyze
the upper bound of jamming effectiveness, we assume that the
primary routing path of the target data flow has n links and
the attacker always successfully jams the third transmission
attempt through the backup routes.

To simplify our explanation, we first assume that the
attacker has a 100% jamming success ratio and the target data
flow does not share routes with other data flows, and will
drop these two assumptions later. The attacker first estimates
the upper bound of the PDR degradation, which it can possibly
cause on the target data flow by jamming an individual link i.
Under graph routing, a packet uses the backup routes if the first
two attempts through the primary routing path fail. To avoid
triggering network updates, the attacker must keep the PRR
of the victim link not less than PRRT . Thus,

PRR =
Ti − FDi − Ji

Ti + FDi + FSi + Ji
≥ PRRT , (3)

where FDi denotes the number of packets that fail in both
two attempts on the primary routing path, FSi denotes the
number of packets that fail on the first attempt but succeed on
the second attempt, Ji denotes the number of jammed packets
in the jamming sub-period, and Ti denotes the total number of
packets which are scheduled for transmission in the updating
period.

When the PRR is equal to PRRT , Ji achieves the maximum
value. Accordingly, the upper bound of the PDR degradation
on the target data flow that is possibly caused by jamming an
individual link i (Ji/Ti) is

1 − PRRT − (1 + PRRT)FDi/Ti − PRRT FSi/Ti

1 + PRRT
. (4)

In reality, the attacker cannot achieve a 100% jamming
success ratio. The attacker must reserve more slotframes in
the jamming sub-period to compensate jamming failures. The
number of packets (the length of the jamming sub-period)
scheduled for performing jamming is

(1 − PRRT)Ti − (1 + PRRT)FDi − PRRT FSi

Rjam(Rjam + PRRT)
. (5)

The attacker can compute its jamming success ratio Rjam

by comparing the number of scheduled transmissions and the
number of acknowledgments after jamming.

In most WirelessHART networks, multiple data flows exist
and share one or more routes. Figure 6 shows an example. The

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: REVEALING SMART SELECTIVE JAMMING ATTACKS IN WirelessHART NETWORKS 1617

Algorithm 3 Smart Selective Jamming
Input : PRRT , UP , Rjam

1 Initialize div[] according to Eq. 6;
2 for k = 1; k ≤ UP ; k + + do
3 if k ==

∑n
i=1 div[] then

4 Update div[] according to Eq. 6;
5 end
6 if k >

∑n
i=1 div[] then

7 Sort links by their PRRs in descending order;
8 for j = 1; j ≤ n; j + + do
9 if Linkj is not jammed in last iteration then

10 Update FRpre[j];
11 Jam the current transmission if there are

more transmissions to compensate Tf ;
12 end
13 end
14 end
15 end

data flows 147 → 121 (the target) and 149 → 121 share the
routes between node 113 and 103 and between node 103 and
121. To continue our analysis on the upper bound of jamming
performance, let us assume that all TSi packets are transmitted
successfully on route i for all data flows except the target data
flow within the network updating period. Eq. 4 can be revised
as f(i) =

(1 − PRRT)(1 + TSi

Ti
) − (1 + PRRT)FDi

Ti
− PRRT

FSi

Ti

1 + PRRT
.

(6)

According to Eq. 6, the upper bound of the PDR degradation
is significantly increased if the target link is shared by multiple
data flows.

The upper bound of the PDR degradation on the target data
flow which is possibly caused by jamming all n links is

PDR =
n∑

i=1

f(i). (7)

F. Launching Smart Selective Jamming Attacks

With the cracked information, the next step is to launch
the selective jamming attacks. Algorithm 3 presents how the
attacker selects the target links and their transmissions for
jamming by employing the Estimation module and Exami-
nation module. The input includes PRRT , UP and Rjam.
Algorithm 3 first creates an array div[] that stores the ini-
tialized value of the dividing point of each link on the
primary routing path according to Eq. 6 without considering
the transmission failures caused by link fluctuation (line 1).
The outside loop (line 2 – 15) traverses all slotframes in the
network updating period (from 1 to UP). In the observation
sub-period, the program keeps monitoring the transmission
activities and adjusts the values of div[] (line 4) in the iteration
that is previously scheduled as div according to the sum of
div[] (line 3), until the sum of the updated div[] is equal to
the previous one. Then, the PRRs of the links are updated and

Algorithm 4 Target Data Flow Selection Method

Input : Flow[]
Output: Target

1 for j = 1; j ≤ m; j + + do
2 for i = 1; i ≤ n; i + + do
3 Count the number of transmission failures caused

by link fluctuation;
4 Calculate the upper bound of the PDR degradation

on Flow[j] caused by jamming Linki according to
Eq.6;

5 end
6 Calculate the transmission failure ratio of Flow[j];
7 Estimate the upper bound of the PDR degradation on

Flow[j] according to Eq.7;
8 end
9 for k = 1; k ≤ Up; k + + do

10 for j = 1; j ≤ m; j + + do
11 if Flow[j] is transmitting a packet with the highest

priority then
12 Select it as Target and break;
13 end
14 end
15 if Target is Null then
16 Sort Flow[] by the upper bound of the PDR

degradation in descending order;
17 if A data flow with the highest PDR degradation

then
18 Select it as Target;
19 end
20 else
21 Sort the flows with similar potential PDR

degradation values by the transmission failure
ratio in ascending order;

22 Select the data flow with the lowest
transmission failure ratio as Target;

23 end
24 end
25 end

sorted in descending order (line 7) during the jamming sub-
period. While traversing available links on the primary routing
path from the link with the highest PRR (line 8), the attacker
skips jamming a link if it was jammed in the last iteration
(line 9) to avoid triggering the Path-Down alarm. Otherwise,
Algorithm 3 makes the jamming decision by applying the
same Examination module used in Algorithm 2 (line 11).
In our implementation, we also use the Holt-Winters method
to predict FRpre for each link and adopt a conservative policy
to make sure the PRR of each link is always above PRRT

by taking more than Tf transmission failures into account.

G. Selecting the Target Data Flow

After modeling the jamming effectiveness, the attacker
begins to estimate the upper bound of the PDR degradation
it can cause on each data flow within its overhearing range
and selects the most important or most vulnerable one as its

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

1618 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

target. The attacker first identifies the priority levels of the
packets that are transmitting over each data flow. If there exists
a single data flow whose messages have the highest priority
(e.g., packets indicated by “Command”), the attacker selects
it as its target. If two or more data flows share the same
priority, the attacker selects the data flow with the highest
upper bound of the PDR degradation possibly caused by the
smart selective jamming attacks as its target. If two or more
data flows share similar PDR degradations, the data flow
with the lowest transmission failure ratio is selected as the
target. Algorithm 4 illustrates the target data flow selection
process. The input of Algorithm 4 includes all data flows
within the attacker’s overhearing range Flow[]. Algorithm 4
first collects the transmission statistics of each data flow in a
two-level nested loop (line 1 – 8). The outside loop traverses
all data flows (from Flow[1] to Flow[m]), while the inside
loop traverses the links of a data flow (from Link1 to Linkn).
Algorithm 4 counts the number of transmission failures caused
by the link fluctuation (line 3) and calculates the upper bound
of the PDR degradation on this data flow caused by jamming
each link separately according to Eq. 6 (line 4). By adding
up the transmission failures on each link, the transmission
failure ratio caused by the link fluctuation on each data flow
is calculated (line 6). Algorithm 4 then estimates the upper
bound of the PDR degradation on each data flow according
to Eq. 7 (line 7). The outside loop (line 9 – 25) traverses all
slotframes in the network updating period (from 1 to UP). If a
data flow is transmitting data with the highest priority among
all data flows, this data flow is selected as the target to jam the
transmissions of high importance (line 10 – 14). Otherwise,
Algorithm 4 sorts all data flows by the upper bound of the
PDR degradation in descending order and selects the data
flow, which has the highest potential PDR degradation caused
by jamming attacks, as the target (line 16 – 19). To avoid
switching the target back and forth due to slight variations on
the upper bound of the PDR degradation, the difference of
the upper bound of the PDR degradation between the target
data flow and any other data flow should be larger than a
threshold. The threshold can be set equal to or larger than
the variation of the upper bound of the PDR degradation on
a data flow in two consecutive periods. We set this variation
threshold to 2% in our implementation. If no data flow is
selected because of those similar PDR degradation values,
Algorithm 4 sorts all data flows with similar PDR degradation
values by the transmission failure ratio in ascending order and
selects the data flow with the lowest transmission failure ratio
as the target (line 20 – 23). As discussed in Section IV-D,
when the transmission failures caused by link fluctuation
happen less frequently and more uniformly, the attacker is
more likely to achieve the desirable jamming effectiveness
by keeping the PRRs of all links equal or close to PRRT .
The attacker executes Algorithm 4 periodically to handle the
network changes. We set the execution period to UP in our
implementation.

Figure 7 shows an example of the target data flow selection
process. In this example, we assume that there are three data
flows within the overhearing range of an attacker (Flow 1,
Flow 2, and Flow 3). The primary routing paths of those

Fig. 7. Example of the target data flow selection process.

Fig. 8. Testbed consisting of 50 TelosB motes placed throughout 22 office
and lab areas on the second floor of an office building. The device IDs range
from 000 to 049.

data flows consist of four hops, three hops, and four hops,
respectively. At the start of a network updating period, the
attacker calculates the transmission failure ratio of each data
flow (FR1, FR2, and FR3) and then estimates the upper
bound of the PDR degradation on each data flow (PDR1,
PDR2, and PDR3) according to Eq.6 and Eq.7. We assume
that these three data flows share the same priority level.
Therefore, the attacker begins to compare PDR1, PDR2,
and PDR3. Both PDR1 and PDR3 are greater than PDR2,
because Flow 1 and Flow 3 include one more hop on their
primary routing paths. The difference between PDR3 and
PDR1 is 2.4%, larger than the preset variation threshold (2%).
Therefore, the attacker selects Flow 3 as its target and performs
smart selective jamming attacks to the packet transmissions
on Flow 3 in each slotframe of the current updating period.
However, when Flow 1 or Flow 2 is transmitting a message
with a higher priority level, the attacker changes its target
temporarily and performs smart selective jamming attacks to
the most important packet transmissions.

V. EVALUATION

To demonstrate the threat, we first perform a series of
microbenchmark experiments to measure the time consumed
to crack the routes, network updating period, and link selection
threshold, and examine the chance of triggering network
updates. We then perform microbenchmark experiments to

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: REVEALING SMART SELECTIVE JAMMING ATTACKS IN WirelessHART NETWORKS 1619

TABLE II

DATA FLOWS SETUPS

Fig. 9. Time consumed to crack the primary routing path under different
conditions.

measure the time consumed by the target data flow selection
method to identify the new target data flow. Next, we evaluate
the jamming performance of the smart selective jamming
attacks without enabling the target data flow selection method
and compare it against five baselines. Finally, we evaluate
the jamming performance of attacking the data flow provided
by the target data flow selection method and compare it
against the performance achieved by attacking other data
flows. We perform all experiments on our testbed that consists
of 50 TelosB motes [16] placed throughout 22 office and lab
areas on the second floor of an office building [8]. Figure 8
shows the testbed deployment. We configure the network to
have two access points and 48 field devices that operate
on five different channels in all experiments. As Table II
lists, we set up five data flows with different sources, des-
tinations, data periods, and priorities for the experiments in
Section V-A, V-B, and V-D. Each time slot lasts 10ms. Our
testbed runs a publicly accessible WirelessHART implemen-
tation, which adopts the IEEE 802.15.4 physical layer, TSCH,
and graph routing that employs three transmission attempts
for each packet [9], while the attacking program runs on
a Raspberry Pi with a 1.2GHz 64-bit quad-core processor
and 1.0 GB memory. To examine the performance of the
attacking program in different environments, we create three
different wireless conditions (i.e., low-interference, medium-
interference, and high-interference) by using JamLab [17] to
generate controlled interference with various strengths and
disable JamLab to create the clean environment where the
averaged PRRs of all links on the target data flow are above
98%. As a comparison, the averaged PRRs of all links on the
target data flow range from 89% to 91% in the low-interference
environment, the averaged PRRs vary between 80% and 83%
under interference in the medium-interference environment,
and the averaged PRRs range from 73% to 75% in the high-
interference environment. We repeat experiments 100 times in
each environment.

A. Cracking the Routes

In the first set of experiments, we configure the attack-
ing program to start cracking after eavesdropping on the

Fig. 10. Time consumed to crack the backup routes.

transmissions during a certain number of slotframes and mea-
sure the number of eavesdropped slotframes consumed by the
cracking program to crack the routes. The primary path used
by the target (Flow 2) consists of seven nodes and six links.
Our attacking program first identifies the primary routing path
and then detects the backup routes by launching exploratory
jamming to each link located on the primary routing path.
Our attacking program achieves 100% success rate of cracking
the routes under all wireless conditions. Figure 9 plots the
boxplots of the time consumed by the attacking program to
eavesdrop on the transmissions and then crack the primary
path. As Figure 9 shows, the attacker can gather enough
information to crack the primary routing path with a median
value of one slotframe in the clean, low-interference, and
medium-interference environments and up to four slotframes
in the high-interference environment. This is because there is
a high chance of using the primary routing path to deliver
packets when the interference is weak, which makes the
cracking easy. With the presence of strong interference, it takes
longer for the attacker to identify the entire primary routing
path because frequent failures on a link located on the primary
routing path prevent the exposure of the following links.

Figure 10(a) plots the cumulative distribution function
(CDF) of the time consumed by the attacker to crack the
backup routes by launching the exploratory jamming to the
links located on the primary routing path. The cracking process
finishes within 13 slotframes under all wireless conditions.
The cracking speed is slightly slower when the environment
is noisier, leading to an increase in the chance of transmission
failures on both primary and backup routes. Therefore, the
relay nodes fail to receive the packets more frequently in the
noisy environments, which prevents the following nodes from
being used. Under such scenarios, the attacker cannot perform
exploratory jamming to those unused relay nodes and has to
wait till the next slotframe. As a comparison, Figure 10(b)

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

1620 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Fig. 11. Time consumed to crack the network updating period UP .

Fig. 12. Time consumed to crack the link selection threshold PRRT .

plots the CDF of the time consumed by the attacker to
crack the backup routes without launching the exploratory
jamming. As Figure 10(b) shows, the time consumption
decreases significantly when the interference increases. It takes
at least 2,678 slotframes for the attacker to identify all backup
routes in the clean environment, while it takes up to only
106 slotframes in the high-interference environment. This is
because the backup routes are heavily used when the ambient
environment is noisy. The long tails indicate that it may take
a long time for the attacker to crack the routes if the attacker
only observes silently, which emphasizes the importance of
launching the exploratory jamming to speed up the cracking
process.

B. Cracking UP and PRRT

In the second set of experiments, we launch the attacking
program to crack the network updating period UP and link
selection threshold PRRT and measure the time consumption
and the chance of being detected. We observe 100% crack-
ing accuracy for both UP and PRRT in all environments.
Figure 11 plots the time consumption of cracking UP under
different wireless conditions when it is set to 51,200 time slots.
As Figure 11 shows, the attacking program needs at least
two updating periods (median value) to derive the value of
UP . It needs one more updating period in the clean and low-
interference environments because it is more difficult for the
attacker to trigger the routing updates by launching exploratory
jamming when the environment is clean.

We set PRRT to 60%. The lowest PRR values observed
by the attacker in the clean, low-interference, medium-
interference, and high-interference environments are 92%,
85%, 78%, and 71%, respectively. The corresponding number
of updating periods scheduled for exploratory jamming are
33, 26, 19, and 12, respectively. Figure 12 plots the time
consumed to crack PRRT beyond the scheduled updating
periods. The attacker has a jamming success ratio of 0.87 and
reduces the testing PRR by 1% every time when launching

Fig. 13. Number of triggered network updates when cracking the link
selection threshold.

Fig. 14. Time consumption under different jamming success ratios.

exploratory jamming. As Figure 12 shows, the time consump-
tion decreases when the interference increases. The median
time consumption is 6UP , 5UP , 4UP , and 2UP in the clean,
low-interference, medium-interference, and high-interference
environments, respectively. This is because the attacking pro-
gram must use a larger jamming sub-period in the cleaner
environment, which results in the increase of jamming failures
and the difficulty of keeping the PRR within the expected
range.

Figure 13 plots the number of network updates triggered
by the exploratory jamming attack, which is one by design.
It is very difficult for the network manager to detect the
jamming attacks by observing an occasional network update.
As Figure 13 shows, the chance of triggering additional
network updates is very low under all wireless conditions.
Therefore, the exploratory jamming is hardly detectable.

To study the impact of the jamming success ratio, we repeat
the experiments when the attacking program has different
jamming success ratios by varying its transmission power.
Figure 14 plots the time consumed to crack PRRT beyond
the scheduled updating periods in the low-interference envi-
ronment when the jamming success ratios are 0.60, 0.69, 0.78,
0.87, and 0.96, respectively. As Figure 14 shows, the median
time consumption of cracking PRRT decreases significantly
when the jamming success ratio increases. The median time
consumption decreases from nine updating periods at 0.60,
to six updating periods at 0.78, and then to one updating period
at 0.96. These results show that the attacker can quickly crack
the threshold PRRT if it has a high jamming success ratio.

C. Selecting the Target Data Flow

In this set of experiments, we evaluate our target data
flow selection method by measuring the time consumption of
selecting a new target when the network topology or condition
changes. We configure six data flows with the same priority
but different sources, destinations, and data periods on our

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: REVEALING SMART SELECTIVE JAMMING ATTACKS IN WirelessHART NETWORKS 1621

TABLE III

DATA FLOWS SETUPS FOR TARGET DATA FLOW SELECTION

Fig. 15. Time consumption of selecting the new target data flow when we
configure Flow 4 to share different numbers of links (from one to five) on
its primary routing path with Flow 6’s in a randomly selected time slot of an
updating period. Flow 4 and 6 do not share any links on their primary routing
paths before we make changes.

testbed, as Table III lists. We manually change the primary
routing paths of different data flows and measure the time
consumed by the attacker to identify new targets. Figure 15
plots the time consumption of identifying the new target flow
when we configure Flow 4 to share different numbers of links
(from one to five) on its primary routing path with Flow 6’s in
a randomly selected time slot of an updating period. We repeat
each experiment 100 times. As Figure 15 shows, the attacking
program spends less time on selecting the new target data
flow when the number of shared links between Flow 6 and
Flow 4 increases. For example, the median time consumption
is two updating periods while only one link is shared, while
the median values are one updating period while more links
are shared. This is because sharing one link on their primary
paths only introduces a very small change on the upper bound
of the PDR degradation on Flow 6. Therefore, the attacking
program needs more time to confirm that Flow 6 should be
the new target. When more links are shared, it is easier for the
attacking program to select the new target because the changes
on the upper bound of the PDR degradation are much larger
than than the preset threshold.

We also vary the transmission failure ratios of different data
flows and examine their impacts on the time consumption. For
instance, we use Jamlab to generate controlled interference
with different signal strengths, which decreases the transmis-
sion failure ratio of Flow 6 from 36% to 31%, 25%, 19%, 13%,
and 7%, respectively. Figure 16 plots the time consumption
of selecting the new target data flow. As Figure 16 shows,
the attacking program needs one more updating period (the
median value) to select the new target when the transmission
failure ratio decreases from 36% to 31%. This is because it
is more difficult for the attacking program to confirm that the
increase of the upper bound of the PDR degradation is larger
than the preset threshold when the transmission failure ratio

Fig. 16. Time consumed to identify the new target when we decrease the
transmission failure ratio of Flow 6 from 31% 7%.

Fig. 17. PDR degradation caused by different attacking methods:
C – Constant Jamming; R – Random Jamming; A – Smart Selective without
Examination; S – Smart Selective without Estimation; D – Smart Selective
Jamming; O – Optimal.

Fig. 18. Number of triggered network updates during attacks.

caused by the link fluctuation varies in a small range. The
results plotted in Figure 15 and 16 demonstrate that the target
data flow selection method can efficiently select a new target
when observing the change on the upper bound of the PDR
degradation under different conditions

D. Jamming Performance Without Target Data Flow
Selection

In this set of experiments, we evaluate the overall perfor-
mance of the smart selective jamming attacks on a given
data flow and compare it against five baselines: constant
jamming; random jamming; smart selective jamming without
its Estimation module; smart selective jamming without its
Examination module; and the optimal method. Please note that
the optimal method is based on backward data analysis using
Eq. 7 and only for the purpose of comparison. We configure
the attacking program to attack Flow 3 with four links on its
the primary routing path and set UP to 51,200 time slots, and
PRRT to 0.70.

Figure 17 plots the PDR degradation caused by different
jamming methods under different wireless conditions and
Figure 18 shows the number of triggered network updates
during attacks. As Figure 17 shows, constant jamming intro-
duces the largest damage (77% PDR degradation). However,
it has the highest chance of being detected because it triggers
4X more network updates. Random jamming triggers fewer
network updates, but it provides the smallest damage to the
network. Compared to constant and random jamming, the
smart selective jamming is much harder to be detected by
the network manager, because the median value of triggered

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

1622 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

TABLE IV

COMPARISON OF ENERGY CONSUMPTION

Fig. 19. PDR degradation when multiple data flows share links (S-Sel: Smart
Selective Jamming, Opt: upper bound).

network updates is zero. Meanwhile, the damage introduced
by the smart selective jamming is close to the one caused by
the optimal method. The median PDR degradations are 49%,
43%, 39%, and 33% in the clean, low-interference, medium-
interference, and high-interference environments, respectively.
These results confirm the correctness of our analysis (Eq. 5).
The upper bound of the PDR degradation caused by jam-
ming decreases, while the transmission failure caused by link
fluctuation due to interference increases. By comparing the
performance of A, S, and D, the Examination module and
Estimation module of the smart selective jamming method
effectively reduce the chance of being detected in noisy
environments.

We also evaluate the energy efficiency of the smart selective
jamming and compare it against other jamming methods.
Table IV lists the number of jamming packets and the energy
consumption within an updating period in the clean envi-
ronment. The smart selective jamming introduces 49% PDR
degradation by consuming only 2.2J , which is very close
to the one caused by the optimal method. As a comparison,
the constant jamming consumes 88.2J to generate 79% PDR
degradation, while the random jamming provides 4% PDR
degradation by consuming 17.6J . The results clearly show
that the smart selective jamming is much more energy efficient
than the traditional jamming methods.

To study the impact of shared links, we configure the
victim data flow to use links shared with other data flows
and repeat the experiments by varying the number of shared
links. Figure 19 presents the jamming performance achieved
by Smart Selective Jamming Algorithm in the low-interference
environment. As Figure 19 shows, while the target data flow
shares more links, the median value of the PDR degradation
increases significantly, from 43% (w/o sharing link) to 68%
(sharing three links). These increments accord with the results
computed according to Eq. 6. The successful transmissions of
other data flows compensate for the transmission failures due
to jamming and cover up the jamming attacks.

We also repeat the experiments when the attacking program
has different jamming success ratios. Figure 20 illustrates

Fig. 20. PDR degradation under different jamming success ratios.

Fig. 21. PDR Degradation when attacking different data flows. The numbers
of the links on the primary routes of six data flows are two, three, four, five,
six, and six, respectively.

the jamming performance in the low-interference environment
under different jamming success ratios. As Figure 20 shows,
the jamming performance experiences an increase while we
enhance the jamming success ratio. The median value of
the PDR degradation increases from 29% (0.60) to 41%
(0.78), reaches 46% (0.96). With a smaller chance of jamming
success, it is difficult for the attacking program to achieve
the expected number of jammed packets in the jamming sub-
period, even if we adjust the size of the jamming sub-period
according to the jamming success ratio.

E. Jamming Performance With Target Data Flow Selection

In this set of experiments, we evaluate the overall per-
formance of the smart selective jamming attacks when we
enable the target data flow selection method and compare it
against the performance when we randomly select a data flow
as the target. The PDR degradation caused by the attacking
program with the target data flow selection method is always
the greatest in all our experiments. For example, Figure 21
presents the measured PDR degradation when we launch the
smart selective jamming attacks to attack different data flows.
The target data flow selection method selects Flow 6 as its
target. As Figure 21 shows, the median PDR degradation
caused by jamming the transmissions on Flow 6 is 60.7%,
much higher than the damages caused when attacking other
data flows. For example, the median PDR degradation is only
24.3% if the attacking program attacks Flow 1, while the
median PDR degradation is 56.4% if the attacking program
attacks Flow 5. This is because the upper bound of the PDR
degradation on the target selected by the target data flow
selection method is the highest and the actual performance
achieved by launching the smart selective jamming attacks to
such a target is the greatest. The experimental results confirm

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: REVEALING SMART SELECTIVE JAMMING ATTACKS IN WirelessHART NETWORKS 1623

that the target data flow selection method can enhance the
jamming performance of the smart selective jamming attacks.

VI. RELATED WORK

Jamming attacks have been extensively studied in the liter-
ature of wireless mesh network and WSNs. Simply jamming a
channel or the whole spectrum continuously, namely constant
jamming, is energy inefficient and can be easily detected and
located [18], while random jamming aims to save energy but
is hardly effective [19]. Compared to constant and random
jamming, selective (reactive) jamming stays quiet when the
channel is idle but starts transmitting as soon as it senses
activity on the channel [18]; therefore it is more energy
efficient and more difficult to be detected [19], [20], [21],
[22]. For instance, Zhang et al. presented a reinforcement
learning based algorithm that helps the attacker adapt its jam-
ming methods to dynamic environments to improve the jam-
ming performance [22]. On the other hand, many approaches
have been proposed in the literature to detect jamming
attacks [23], [24], [25], [26], [27] and many countermeasures
have been developed to mitigate the jamming effects [28],
[29], [30]. For instance, Zou et al. presented a jamming-
resilient backbone construction algorithm [31]. Lu et al. stud-
ied modeling, evaluation, and detection of jamming attacks
in wireless networks [26], [27]. D’Oro et al. proposed solu-
tions to maximize the network performance when reactive
jamming attacks are ongoing [32]. Navda et al. [33] and
Liu et al. [34] suggested using channel hopping (frequency
hopping) to increase resilience to jamming attacks. There also
exist defense solutions designed for specific applications [35],
[36], [37], [38]. For instance, Proano et al. proposed to
defend against selective jamming attacks that are launched
by performing real-time packet classification at the physical
layer by combining cryptographic primitives with physical-
layer attributes [35]. Tiloca et al. developed a method that
randomly permutes the time slots and channel utilization pat-
terns for TSCH based wireless networks [36]. Samaddar et al.
proposed a scheduling method that increase the randomness
of the TSCH channel hopping sequence [37]. Pirayesh et al.
developed a jamming-resilient receiver that mitigates the
unknown interference using an optimized neural network to
secure ZigBee communications [38]. This paper focuses on
revealing the threat of smart selective jamming to Wire-
lessHART networks and motivating the developments of new
defense solutions, it is therefore complementary to the existing
work.

Jamming attacks have also been studied in the context
of Bluetooth, GPS, and cellular networks. For instance,
Albazrqaoe et al. developed a novel dual-radio architecture
where two Bluetooth-compliant radios coordinate with each
other on learning the hopping sequence of indiscoverable Blue-
tooth networks [39], [40]. Dr. Chien developed an adaptive
notch filter that is composed of a second-order infinite-impulse
response filter with a lattice structure to detect, estimate,
and block continuous jamming signals [41]. In recent years,
the MIMO-based jamming mitigation techniques are applied
in cellular networks [42]. For example, Akhlaghpasand et al.
developed a framework that consists of a linear estimator

and a bilinear equalizer to provide protection for mas-
sive MIMO systems in spatially correlated channels [43].
Vinogradova et al. proposed to employ the received signal
projection onto the estimated signal subspace to nullify the
jamming signal [44]. However, those anti-jamming methods
are not directly applicable to WirelessHART networks. In this
paper, we present a specific kind of selective jamming to
WirelessHART networks, namely smart selective jamming
attack, which aims to reduce the network reliability without
being detected. This paper starts by investigating the security
vulnerability of WirelessHART networks and then demon-
strates that the attacker can crack the channel usage, routes,
and parameter configuration of the victim network, and launch
the smart selective jamming attacks to the target data flow
provided by the target data flow selection method, which are
energy efficient and hardly detectable.

The WirelessHART standard offers multiple security fea-
tures that protect the network against such attacks as denial of
service (DoS), MAC spoofing, man in the middle (MITM),
and authentication and encryption cracking. For instance,
WirelessHART employs the AES 128-bit symmetric-key cryp-
tography to protect the packet payload and uses the MIC and
cyclic redundancy check (CRC) to detect errors. A series of
enhancements has been developed to enhance the security of
WirelessHART networks [45], [46], [47], [48]. Unfortunately,
the existing designs cannot prevent the attacker from launching
the smart selective jamming attacks, which has been reported
as a new, realistic threat to WirelessHART networks in this
paper.

VII. CONCLUSION AND FUTURE WORK

Our studies show that the attacker can reverse engineer the
channel usage and graph routes of the victim WirelessHART
network by silently observing the transmission activities, crack
the victim network’s parameter configurations with exploratory
jamming attacks, and then perform smart selective jamming
attacks to the target provided by the target data flow selec-
tion method to degrade network performance without being
detected. Compared to the constant jamming attacks and the
random jamming attacks, the smart selective jamming attacks
are energy efficient and hardly detectable, thus pose a more
severe, stealthy threat to WirelessHART networks. In this
paper, we present this severe, stealthy threat by demonstrating
the step-by-step attack process on a 50-node network that
runs a publicly accessible WirelessHART implementation.
Experimental results show that the smart selective jamming
attacks significantly reduce the network reliability without
triggering network updates.

Our studies suggest two potential solutions to help Wire-
lessHart Networks defend against smart selective jamming
attacks. As discussed in Section IV-B, an attacker can derive
the routing information of the victim network from the unen-
crypted fields stored in the packet headers. The attacker can
crack both primary and backup routes using a small amount
of time bounded by the data generation period, as plotted
in Figure 9 and 10(a). Among all information carried by the
packet header, Graph ID, original source address, and final
destination address are the key in the cracking process.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

1624 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Without such information, it is very hard for an attacker to
classify the packets and crack the routes. With the considera-
tion of the encryption and decryption overhead, it is beneficial
to only encrypt those three fields instead of all information
in the packet header. Our studies also show that the health
reports specified in the WirelessHART standard do not carry
the information, which can be used to relate a data flow’s
performance degradation to the links that cause it. This gives
the attacker an opportunity to attack a data flow without
triggering any alarms in the link level. As Figure 19 shows,
the attacker introduces severe damages to the target data flow
while keeping the PRRs of all links above their threshold
PRRT . Therefore, we suggest tagging the link statistics
with Graph IDs in the health reports to help the network
manager detect the selective jamming attacks. We leave the
development of new defense solutions to secure WirelessHart
networks based on the above-mentioned insights as our future
work.

REFERENCES

[1] X. Cheng, J. Shi, M. Sha, and L. Guo, “Launching smart selective
jamming attacks in WirelessHART networks,” in Proc. IEEE Conf.
Comput. Commun., May 2021, pp. 1–10.

[2] J. Manyika, M. Chui, J. Bughin, R. Dobbs, P. Bisson, and
A. Marrs. (2013). Disruptive Technologies: Advances That Will Trans-
form Life, Business, and the Global Economy. [Online]. Available:
http://www.mckinsey.com/

[3] HART. (2019). HART Communication Protocol and Foun-
dation (Now the FieldComm Group). [Online]. Available:
https://www.fieldcommgroup.org/technologies/hart

[4] WirelessHART. (2019). WirelessHART. [Online]. Available:
https://www.fieldcommgroup.org/technologies/wirelesshart

[5] C. Lu et al., “Real-time wireless sensor-actuator networks for industrial
cyber-physical systems,” Proc. IEEE, vol. 104, no. 5, pp. 1013–1024,
May 2016.

[6] Emerson. (2019). Emerson Wireless-Technology. [Online]. Available:
https://www.emerson.com/en-us/expertise/automation/industrial-
internet-things/pervasive-sensing-solutions/wireless-technology

[7] J. Shi and M. Sha, “Parameter self-configuration and self-adaptation
in industrial wireless sensor-actuator networks,” in Proc. IEEE Conf.
Comput. Commun., Apr. 2019, pp. 658–666.

[8] M. Sha. (2016). TestBed at the State University of New York at Bing-
hamton. [Online]. Available: https://users.cs.fiu.edu/~msha/testbed.htm

[9] WCPS. (2018). Wireless Cyber-Physical Simulator (WCPS). [Online].
Available: http://wsn.cse.wustl.edu/index.php/WCPS:_Wireless_Cyber-
Physical_Simulator

[10] Emerson. (2021). System Engineering Guidelines IEC 62591 Wire-
lessHART. [Online]. Available: https://www.emerson.com/

[11] Raspberry. (2019). Raspberry PI. [Online]. Available: https://
www.raspberrypi.org/

[12] Wi-Spy. (2020). Wi-Spy USB Spectrum Analyzer. [Online]. Available:
http://www.wi-spy.co.uk/

[13] X. Cheng, J. Shi, and M. Sha, “Cracking the channel hopping sequences
in IEEE 802.15.4e-based industrial TSCH networks,” in Proc. Int. Conf.
Internet Things Design Implement., New York, NY, USA, Apr. 2019,
pp. 130–141.

[14] X. Cheng, J. Shi, and M. Sha, “Cracking channel hopping sequences
and graph routes in industrial TSCH networks,” ACM Trans. Internet
Technol., vol. 20, no. 3, pp. 1–28, Aug. 2020.

[15] (2015). Holt-Winters Forecasting Method. [Online]. Available:
https://www.ons.gov.uk/ons/guide-method/user-guidance/index-of-
services/index-of-services-annex-b–the-holt-winters-forecasting-
method.pdf

[16] TelosB. (2013). TelosB Datasheet. [Online]. Available: https://
insense.cs.st-andrews.ac.uk/files/2013/04/tmote-sky-datasheet.pdf

[17] C. A. Boano, T. Voigt, C. Noda, K. Römer, and M. Zuniga, “JamLab:
Augmenting sensornet testbeds with realistic and controlled interference
generation,” in Proc. 10th ACM/IEEE Int. Conf. Inf. Process. Sensor
Netw., Apr. 2011, pp. 175–186.

[18] W. Xu, W. Trappe, Y. Zhang, and T. Wood, “The feasibility of launching
and detecting jamming attacks in wireless networks,” in Proc. 6th ACM
Int. Symp. Mobile Ad Hoc Netw. Comput. (MobiHoc), New York, NY,
USA, 2005, pp. 46–57.

[19] K. Grover, A. Lim, and Q. Yang, “Jamming and anti-jamming techniques
in wireless networks: A survey,” Int. J. Ad Hoc Ubiquitous Comput.,
vol. 17, no. 4, pp. 197–215, Dec. 2014.

[20] S. Fang, Y. Liu, and P. Ning, “Wireless communications under broad-
band reactive jamming attacks,” IEEE Trans. Dependable Secure Com-
put., vol. 13, no. 3, pp. 394–408, May 2016.

[21] M. Wilhelm, I. Martinovic, J. B. Schmitt, and V. Lenders, “Short paper:
Reactive jamming in wireless networks: How realistic is the threat?”
in Proc. 4th ACM Conf. Wireless Netw. Secur. (WiSec), New York, NY,
USA, 2011, pp. 47–52.

[22] L. Zhang, F. Restuccia, T. Melodia, and S. M. Pudlewski, “Jam sessions:
Analysis and experimental evaluation of advanced jamming attacks in
MIMO networks,” in Proc. 20th ACM Int. Symp. Mobile Ad Hoc Netw.
Comput., New York, NY, USA, Jul. 2019, pp. 61–70.

[23] M. Spuhler, D. Giustiniano, V. Lenders, M. Wilhelm, and J. B. Schmitt,
“Detection of reactive jamming in DSSS-based wireless communica-
tions,” IEEE Trans. Wireless Commun., vol. 13, no. 3, pp. 1593–1603,
Mar. 2014.

[24] M. Strasser, B. Danev, and S. Capkun, “Detection of reactive jam-
ming in sensor networks,” ACM Trans. Sensor Netw., vol. 7, no. 2,
pp. 16:1–16:29, Aug. 2010.

[25] M. K. Hanawal, D. N. Nguyen, and M. Krunz, “Jamming attack on
in-band full-duplex communications: Detection and countermeasures,”
in Proc. 35th Annu. IEEE Int. Conf. Comput. Commun., Apr. 2016,
pp. 1–9.

[26] Z. Lu, W. Wang, and C. Wang, “Modeling, evaluation and detection
of jamming attacks in time-critical wireless applications,” IEEE Trans.
Mobile Comput., vol. 13, no. 8, pp. 1746–1759, Aug. 2014.

[27] Z. Lu, W. Wang, and C. Wang, “From jammer to gambler: Modeling
and detection of jamming attacks against time-critical traffic,” in Proc.
IEEE INFOCOM, Piscataway, NJ, USA, Apr. 2011, pp. 1871–1879.

[28] A. Sheikholeslami, M. Ghaderi, H. Pishro-Nik, and D. Goeckel,
“Energy-efficient routing in wireless networks in the presence of jam-
ming,” IEEE Trans. Wireless Commun., vol. 15, no. 10, pp. 6828–6842,
Oct. 2016.

[29] K. Firouzbakht, G. Noubir, and M. Salehi, “On the performance of adap-
tive packetized wireless communication links under jamming,” IEEE
Trans. Wireless Commun., vol. 13, no. 7, pp. 3481–3495, Jul. 2014.

[30] L. Zhang, Z. Guan, and T. Melodia, “Cooperative anti-jamming for
infrastructure-less wireless networks with stochastic relaying,” in Proc.
IEEE Conf. Comput. Commun., Apr. 2014, pp. 549–557.

[31] Y. Zou et al., “Fast distributed backbone construction despite strong
adversarial jamming,” in Proc. IEEE Conf. Comput. Commun.,
Feb. 2019, pp. 1027–1035.

[32] S. D’Oro, E. Ekici, and S. Palazzo, “Rate maximization under reactive
jamming attacks: Poster,” in Proc. 17th ACM Int. Symp. Mobile Ad Hoc
Netw. Comput., New York, NY, USA, Jul. 2016, pp. 367–368.

[33] V. Navda, A. Bohra, S. Ganguly, and D. Rubenstein, “Using channel
hopping to increase 802.11 resilience to jamming attacks,” in Proc. 26th
IEEE Int. Conf. Comput. Commun., Piscataway, NJ, USA, May 2007,
pp. 2526–2530.

[34] A. Liu, P. Ning, H. Dai, and Y. Liu, “USD-FH: Jamming-resistant
wireless communication using frequency hopping with uncoordinated
seed disclosure,” in Proc. 7th IEEE Int. Conf. Mobile Ad-Hoc Sensor
Syst. (IEEE MASS), Washington, DC, USA, Nov. 2010, pp. 41–50.

[35] A. Proano and L. Lazos, “Packet-hiding methods for preventing selective
jamming attacks,” IEEE Trans. Dependable Secure Comput., vol. 9,
no. 1, pp. 101–114, Jan. 2012.

[36] M. Tiloca, D. D. Guglielmo, G. Dini, G. Anastasi, and S. K. Das,
“DISH: DIstributed SHuffling against selective jamming attack in IEEE
802.15.4e TSCH networks,” ACM Trans. Sensor Netw., vol. 15, no. 1,
pp. 1–28, Feb. 2019.

[37] A. Samaddar, A. Easwaran, and R. Tan, “SlotSwapper: A schedule
randomization protocol for real-time WirelessHART networks,” ACM
SIGBED Rev., vol. 16, no. 4, pp. 32–37, Jan. 2020.

[38] H. Pirayesh, P. K. Sangdeh, and H. Zeng, “Securing ZigBee commu-
nications against constant jamming attack using neural network,” IEEE
Internet Things J., vol. 8, no. 6, pp. 4957–4968, Mar. 2021.

[39] W. Albazrqaoe, J. Huang, and G. Xing, “Practical Bluetooth traffic
sniffing: Systems and privacy implications,” in Proc. 14th Annu. Int.
Conf. Mobile Syst., Appl., Services, Jun. 2016, pp. 333–345.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

CHENG et al.: REVEALING SMART SELECTIVE JAMMING ATTACKS IN WirelessHART NETWORKS 1625

[40] W. Albazrqaoe, J. Huang, and G. Xing, “A practical Bluetooth traf-
fic sniffing system: Design, implementation, and countermeasure,”
IEEE/ACM Trans. Netw., vol. 27, no. 1, pp. 71–84, Feb. 2019.

[41] Y.-R. Chien, “Design of GPS anti-jamming systems using adaptive notch
filters,” IEEE Syst. J., vol. 9, no. 2, pp. 451–460, Jun. 2015.

[42] H. Pirayesh and H. Zeng, “Jamming attacks and anti-jamming strategies
in wireless networks: A comprehensive survey,” IEEE Commun. Surveys
Tuts., vol. 24, no. 2, pp. 767–809, Mar. 2022.

[43] H. Akhlaghpasand, E. Björnson, and S. M. Razavizadeh, “Jamming-
robust uplink transmission for spatially correlated massive MIMO sys-
tems,” IEEE Trans. Commun., vol. 68, no. 6, pp. 3495–3504, Jun. 2020.

[44] J. Vinogradova, E. Björnson, and E. G. Larsson, “Detection and mitiga-
tion of jamming attacks in massive MIMO systems using random matrix
theory,” in Proc. IEEE 17th Int. Workshop Signal Process. Adv. Wireless
Commun. (SPAWC), Jul. 2016, pp. 1–5.

[45] S. Raza, A. Slabbert, T. Voigt, and K. Landernäs, “Security consid-
erations for the WirelessHART protocol,” in Proc. IEEE Conf. Emerg.
Technol. Factory Autom., Piscataway, NJ, USA, Sep. 2009, pp. 242–249.

[46] L. Bayou, D. Espes, N. Cuppens-Boulahia, and F. Cuppens, “Security
issue of WirelessHART based SCADA systems,” in Risks and Security
of Internet and Systems. Cham, Switzerland: Springer, Jul. 2015.

[47] L. Bayou, D. Espes, N. Cuppens-Boulahia, and F. Cuppens, “Security
analysis of WirelessHART communication scheme,” in Foundations and
Practice of Security, vol. 10128. Cham, Switzerland: Springer, 2017,
pp. 223–238.

[48] C. Alcaraz and J. Lopez, “A security analysis for wireless sensor mesh
networks in highly critical systems,” IEEE Trans. Syst., Man, Cybern. C,
Appl. Rev., vol. 40, no. 4, pp. 419–428, Jul. 2010.

Xia Cheng (Member, IEEE) received the B.Eng.
degree in automation engineering from Tsinghua
University in 2006 and the M.Phil. degree from
Tsinghua University in 2011. He is currently
pursuing the Ph.D. degree with the Knight Foun-
dation School of Computing and Information Sci-
ences, Florida International University. His research
focuses on industrial wireless networks and network
security.

Junyang Shi received the B.S. degree in electri-
cal and electronic engineering from the Huazhong
University of Science and Technology in 2016 and
the Ph.D. degree in computer science from the State
University of New York at Binghamton in 2021.
He is currently a Software Engineer at Google. His
research focuses on industrial wireless networks and
the Internet of Things.

Mo Sha received the B.Eng. degree from Beihang
University in 2007, the M.Phil. degree from the
City University of Hong Kong in 2009, and the
Ph.D. degree in computer science from Washington
University in St. Louis in 2014. He is currently
an Associate Professor with the Knight Foundation
School of Computing and Information Sciences,
Florida International University (FIU). Before join-
ing FIU, he was an Assistant Professor with the
Department of Computer Science, State University
of New York at Binghamton. He has published more

than 50 research papers, served on the technical program committees of
19 premier conferences, and reviewed article for 22 journals. His research
interests include wireless networking, the Internet of Things, applied machine
learning, network security, and cyber-physical systems. He received the NSF
Career Award in 2021, the NSF CRII Award in 2017, and the Educator of
the Year in Computer Science Award and the Career Champion Award at
Binghamton University in 2018. He is a Senior Member and a Life Member
of ACM and a member of Sigma Xi.

Linke Guo (Senior Member, IEEE) received the
B.E. degree from the Beijing University of Post
and Telecommunications in 2008 and the M.S. and
Ph.D. degrees from the University of Florida in
2011 and 2014, respectively. He is currently an
Associate Professor with the Holcombe Department
of Electrical and Computer Engineering, Clemson
University. His research interests include security
and privacy in wireless networks, big data, and the
Internet of Things.

Authorized licensed use limited to: CLEMSON UNIVERSITY. Downloaded on September 13,2024 at 02:28:01 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

