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Abstract—Edge computing is envisioned to enable rapid fed-
erated intelligence on edge devices to satisfy their dynamically
changing AI service demands. Semi-Asynchronous FL (Semi-
Async FL) enables distributed learning in an asynchronous
manner, where the server does not have to wait all local models
for improving the global model. Hence, it takes a small time
to well-train a global model. However, system heterogeneity in
edge computing results in staleness issue, which will deteriorate
training accuracy. In this paper, we propose to accelerate Semi-
Async FL while ensuring training accuracy by designing a
Similarity-Aware Aggregation (SAA) strategy. SAA is able to
enhance the aggregation quality and thus decrease the wall-clock
time, the training time for a certain accuracy. Particularly, we
leverage the global model similarity to describe the local model
influence and let those with higher influence contribute more to
global aggregation. We further measure the similarity between
global model update deviations as directional similarity, which is
then used for determining aggregation timing. We theoretically
provide a convergence analysis to SAA. Our extensive experi-
mental results empirically show that the proposed SAA strategy
reduces up to 53.7% wall-clock time and 59.4% wall-clock round
for Semi-Async FL compared with several benchmark schemes.

Index Terms—Semi-Asynchronous Federated learning, Model
Staleness, Similarity-Aware Aggregation.

I. INTRODUCTION

Edge computing, as a transformative shift in computing
systems, brings computational resources and data storage
closer to data sources, which enables the efficient processing
and analysis of vast data volumes on edge devices in a timely
fashion [1], [2]. Being able to exploit the abundant data on
edge devices and their computational abilities, Federated learn-
ing (FL) offers valuable insights into various edge computing
applications, such as smart cities and intelligent industries [3]–
[5]. In synchronous federated learning (Sync FL), the central
server maintains a global model and synchronizes updates
from all participating clients at each training round. Clients
compute local updates using their private data and send them
to the server, which aggregates the updates only after all clients
have completed their computations. This synchronized aggre-
gation ensures consistency across iterations and continues until
the global model converges to a desired accuracy.

The proliferation of edge devices, coupled with their dynam-
ically changing demands for AI services, necessitates rapid
training of FL over edge computing. However, the disparate
communication and computation capabilities of edge devices
lead to system heterogeneity, causing considerable variances

(a) Training accuracy (b) Wall-clock time

Fig. 1: Comparison of different FL schemes (EMNIST)

in response time — the time spent on local model updating
in FL. In Sync FL, the server must wait for stragglers,
clients with slow response time, to perform global aggregation.
This significantly increases the wall-clock time, time spent to
achieve a certain accuracy of the global model. This hinders
the fast deployment of federated intelligence, particularly in
large-scale systems such as Intelligent Transportation Systems
[6]. Asynchronous FL (Async FL) addresses this by allowing
the server to update the global model once receiving the local
model from any client. Nevertheless, Async FL in heteroge-
neous systems always introduces significant staleness to weak
devices, where outdated client updates harm the aggregation
quality as shown in Fig. 1. To balance these issues, Semi-
Async FL enables the server to perform aggregation from
a subset of clients synchronously while allowing others to
train local models asynchronously at their own pace. As a
result, it manages to achieve a close final accuracy with Sync
FL but save 1/3 wall-clock time. Moreover, Semi-Async FL
significantly outperforms Sync FL during the early stages
of training, making it an optimal candidate for the rapid
deployment of federated intelligence.

Nevertheless, the presence of stragglers results in varying
frequencies of clients participating in asynchronous global
model updating. This brings staleness in local models as they
are trained from the global models of the old versions. The
existence of staleness will prevent the global model from
learning enough knowledge about the datasets at stale clients,
which will decrease the training accuracy in the end [7], [8].
Existing solutions such as weight allocation [9]–[11], device
selection [12]–[14], and resource allocation [15]–[17] get less
stale local models more involved in aggregation. The rationale
behind this is that a less stale local model has higher influence
on global model updates. Apart from staleness, are there any
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metrics to assess the local model influence to aggregation?
In this paper, we propose a novel Semi-Async FL steered by

similarity measurements, aiming to expedite the implementa-
tion of federated intelligence over edge computing systems.
We attempt to reduce wall-clock time via accommodating
uploaded local models with various staleness. Wall-clock time
in Semi-Async FL is derived by adding up the duration of each
round across all rounds. If we can improve the global model
update quality in each round, both individual round duration
and the overall number of rounds will decrease. To achieve
it, we propose a similarity-aware aggregation (SAA) strategy
to answer the following questions: (1) how to figure out
influential local models and better engage them in aggregation;
and (2) when to asynchronously update the global model. We
summarize our key attributions of this paper as follows:

• We describe the influence of a local model update on the
global update based on the similarity between the stale
global model it used and the fresh model, which is used
to adjust its contribution during aggregation accordingly.

• We guide the aggregation through quantifying its stability
based on the similarity between two consecutive global
model update deviations for higher accuracy.

• We propose a similarity-aware aggregation (SAA) strat-
egy to improve the Semi-Async FL performance with a
theoretical convergence guarantee.

• We evaluate the SAA strategy on real-world datasets,
demonstrating that SAA dramatically outperforms bench-
marks in reducing the wall-clock time.

II. RELATED WORK

Similarity in Federated Learning. There are a few
works considering the similarity in FL [18]–[21]. In [18],
Zhang et al. designed similarity metrics including the model
update latency and similarity between clients’ gradients for
clustering. KL divergence was applied in [19] to measure
the similarity between client models as well as optimize the
cluster relationship. The clustering structure is inferred based
on the similarity between clients’ gradient updates in [20]. In
conventional Sync-FL, similarity plays an important role in
client selection. In FAIR system [22], the similarity between
the upload model and global model was calculated to filter out
the low-quality update of clients. Nevertheless, the relation
between similarity and model quality is not well addressed.
Wang et al. [23] directly considered the similarity among local
datasets for device sampling. In their work, D2D offloading
and data information sharing are permitted between trusted
neighbours. However, the assumption of the trusted clients
is not applicable for real-world implementation due to the
high cost of device verification. Furthermore, these works use
similarity as a supplementary metric for client sampling or
clustering only in Sync-FL. Few works in the literature have
discussed the similarity in Semi-Async FL.

Staleness in Aggregation. A mainstream approach to
mitigate negative influence from stale local models is to re-
weight their models during the aggregation. A general weight
design is to assign the weight to each client by using a

polynomial function based on the round variance. A cluster-
based FL mechanism was introduced in [24], where clients in
each cluster perform in a synchronous manner. They discuss
high-level staleness and set a staleness threshold for each
cluster to implement different weight functions at different
stale levels. However, those clients who exceed the threshold
are either treated as untrained models in global update [25]
or simply discarded [8], [26], [27]. Unlike these works, we
ground from similarity observations to improve the quality of
global model updates, which is able to enhance Semi-Async
FL performance in the end.

III. PRELIMINARY CASE STUDIES AND MOTIVATION

We first outline the Semi-Async FL workflow, focusing on
the staleness issue, followed by our observations related to
model similarity that inspire our SAA strategy.

A. Semi-Async FL

Semi-Async FL allows the server to execute aggregation
upon receiving some local models that are trained from global
models derived several rounds ago. As in Fig. 2, in round
k + 1, Clients A and B upload their local models calculated
from stale global model wk

g that are derived from round k−1.
The server then aggregates these local models to update the
global model while Clients C and D are working on their own
pace. Unfortunately, the staleness in local models will cause
an increasing error to the aggregation [26].

Fig. 2: Working procedure of the Semi-Async FL

B. Global Model Similarity

To shed light on the local model influence during aggrega-
tion in Semi-Async FL, we conduct an empirical study with
100 clients on a classification task using the CIFAR-10 dataset
[28] over 1200 rounds. The server performs aggregation once
receiving 10 local models. The data is split in a Non-IID
setting via the Dirichlet distribution with a concentration
parameter r = 0.1, creating severe imbalances among clients.
Fig. 3a illustrates the changes in cosine similarity between the
outdated and the newest global models during training. While
the general trend suggests that more outdated models tend
to exhibit lower similarity to the newest model, exceptions
are observed, which persists throughout the training process.
For demonstration purposes, we randomly select the 1000th
aggregation for illustration and present the similarity between
this round and its neighboring rounds in Fig. 3b. Here, the
local models of clients 31 and 69 are trained from the global
models derived in rounds 987 and 994, respectively. Although
the outdated global model used by client 31 lags behind that
used by client 69 by 7 rounds, it has a higher similarity with
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the newest global model, indicating that the contribution of
client 31 aligns more closely with the direction of the global
update (if the similarity is 1, the outdated model is identical to
the current global model, meaning staleness does not exist).
This observation suggests that simply using the number of
outdated rounds to measure a client’s staleness and its local
model influence on the global update does not accurately
reflect the real situation.

(a) Over 1200 aggregations (b) Partial aggregations

Fig. 3: Cosine similarity between global models

C. Global model Update Stability.

We further investigate how the deviation of the global
model update between consecutive aggregations affects the
convergence performance under the same experimental set-
tings as above. In particular, the global model deviation
between two consecutive rounds k and k − 1 is denoted as
△wk

g = wk
g − wk−1

g , where wk
g is the global model obtained

in round k. We define the model similarity between two
consecutive global models as Θ⟨wk

g , w
k−1
g ⟩ and corresponding

directional similarity as Θ⟨△wk
g ,△wk−1

g ⟩, where Θ⟨A,B⟩ is
the cosine function. The former one tells the similarity of
the results while the latter one reflects the consistency of the
driving forces behind such changes of the results. We calculate
the mean values and the standard variances (Std) of directional
similarities with different concentration parameters.

Non-IID (Dirichlet Distribution) IID
r 0.1 0.2 0.3 0.5 1 -

Mean -0.421 -0.4191 -0.419 -0.423 -0.4237 -0.428
Std 0.1167 0.1056 0.1000 0.0956 0.0858 0.0812

Acc(%) 60.08 63.43 64.64 66.86 67.34 69.88

TABLE I: Cosine similarity between the global model vari-
ances under different data distribution

As illustrated in Table. I, Θ⟨△wk
g ,△wwk

g ⟩ has a negative
mean value, indicating that deviation substantially vibrates
between two consecutive rounds. Meanwhile, the final accu-
racy is negatively correlated with the Std. of the directional
similarity that reflects the stability of the global model update.

IV. SYSTEM MODEL

We present an edge computing system involving a server
and a set of clients M = {1, 2, · · · ,M}. Clients, such
as smartphones and autonomous vehicles, are equipped with
heterogeneous computation and communication modules.

A. Model Training

The server and clients cooperatively perform Semi-Async
FL to train a global model with the objective of minimizing
the following global loss function,

min
w∈Rd

F (w) :=

M∑
m=1

pmFm(w), (1)

where Fm(w) is the local loss function of client m. The weight
pm is assigned to Fm(w) when updating the global model.

The entire training procedure is divided into multiple
rounds. In round k, the server temporarily caches the local
models uploaded by a set of clients {m ∈ Mk|Mk ⊆ M}
in its buffer [27]. At a specific time, those local models are
aggregated to update the global model from wk

g to wk+1
g as

wk+1
g = wk

g + ηg
∑

m∈Mk

pm(wk+1
m − wk

g ), (2)

where ηg is the global learning rate and wk+1
m denotes the up-

dated local model from the client m. Due to the asynchronous
training manner, wk+1

m may be trained from a stale global
model. For client m, we use round variance τm to represent
the round difference between the current round k and the round
when it initiated the last training k− τm. Hence, given a local
learning rate ηm, the local update for client m is described as

wk+1
m (τm) = wk−τm

g − ηm∇Fm(wk−τm
g ). (3)

B. Computation and Communication

Next, we describe the time cost of the local model training
and uploading for each client. It is divided into two main parts.

Computation. After retrieving the global model, client m
performs Em epochs of local training. Assuming the compu-
tation time per epoch is fk

m, the computation time for the local
training on client m in round k is given by

T k,comp
m = Emfk

m. (4)

Communication. Client m then uploads its local model
to the server over the stationary wireless environment [29].
Denote the size of the local model in bits as Qm. The time
spent in uploading its local model in round k is expressed as

T k,trans
m =

Qm

Bk
m log2(1 +

Pk
m|hk

m|2
Bk

mN0
)
, (5)

where Bk
m is the bandwidth allocated to client m in round k;

P k
m denotes its up-link transmit power; and N0 is the power

spectral density (PSD) of Additive White Gaussian Noise. The
overall time for each local model update by client m is

T k
m = T k,comp

m + T k,trans
m . (6)

Because of the abundant computation resource and the high
transmit power at the server, we ignore the computation time
at the server and the global model distribution time.

C. Problem Formulation

In Semi-Async FL, since the clients’ contribution to the
global model update and their response times vary across
rounds, the duration of every round is not consistent as well.
We leverage wall-clock time, denoted as Twc, to assess the
performance of Semi-Async FL. This term represents the
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overall training duration required to achieve a certain accuracy.
Correspondingly, the total count of rounds is labeled as a wall-
clock round. Assuming the wall-clock rounds as Kwc and the
duration of the k-th round as ∆T k, Semi-Async FL aims to
optimize the training process by minimizing Twc as follows

min

Kwc∑
k=1

∆T k =

Kwc∑
k=1

(T k
Mk − T k

1 ), (7a)

s.t. F (wKwc) ≤ F (w∗) + ϵ (7b)
pm ∈ [0, 1],∀m ∈M (7c)

Mk ≤ |M|,∀k. (7d)

T k
1 and T k

Mk denote the time consumed for the first and last
local updates in round k, respectively, where Mk = |Mk|.
Their expressions are in Eq. (6). Constraints (7b) and (7c)
encapsulate the loss requirement and establish the boundary
for the weight, respectively. Furthermore, Constraint (7d)
prevents a deadlock, where the server awaits further local
updates despite all clients having uploaded their local models.

V. SEMI-ASYNC FL WITH SAA STRATEGY

We aim to minimize the wall-clock time of Semi-Async
FL with a performance guarantee through a two-fold task:
reducing the duration of each round and decreasing the number
of wall-clock rounds. To achieve this, we focus on enhancing
aggregation quality, which is able to address both objectives
simultaneously. Drawing inspiration from our insights into
the similarity-based local model influence and the stability of
global model updates, we propose a novel Similarity-Aware
Aggregation (SAA) strategy for Semi-Async FL.

A. Global Similarity-based Weight Allocation

Following the insight from our first observation, we formally
measure the local model influence via the cosine similarity
between the current global model wk

g and the stale global
model wk−τm

g used for obtaining that local model as

sm,k
g = Θ⟨wk

g , w
k−τm
g ⟩,−1 ≤ sm,k

g ≤ 1, (8)

where a larger sm,k
g indicates that the local model wk+1

m (τm)
is more influential to current aggregation since the stale global
model it used for local update is more similar to the fresh one.

However, as illustrated in Fig. 3b, the absolute values of
sm,k
g for diverse local models are too proximate to discernibly

differentiate their impacts during the aggregation. To tackle
this issue, we leverage the Hinge function to augment model
similarity, employing it as the new weight to better emphasize
the distinct influence of each local model as follows,

pkm =
β

1− sm,k
g + β

. (9)

In Eq. (9), pkm ∈ [ β
2+β , 1]; and β, as a positive hyperparameter,

is the scaling factor. The global update in Eq. (2) then becomes

wk+1
g = wk

g + ηg
∑

m∈Mk

β(wk+1
m − wk

g )

1− sm,k
g + β

. (10)

From Eq. (10), a larger weight is allocated to a more influential
local model, enabling it to contribute more to the aggregation.

B. Directional Similarity-based Aggregation
The other challenge in enhancing global model update qual-

ity is to determine the aggregation timing. While integrating
local models from a larger number of clients with Non-IID
data distribution can improve aggregation quality, the server
will spend a longer time waiting for multiple local models,
thereby substantially increasing the wall-clock time. On the
other hand, frequent aggregation will compromise aggregation
quality since the global model cannot learn sufficient knowl-
edge from a limited number of clients. This underlines the
trade-off between waiting time and global model quality. To
solve this problem, we design a directional similarity-based
scheme, where the aggregation stability is used to guide the
aggregation timing. Since the training accuracy is positively
correlated to the standard deviation (Std.) of directional sim-
ilarity as mentioned in Section III, our aggregation scheme
aims at controlling the Std. to strike a balance between training
accuracy and wall-clock time.

Consistent with Section III, we denote the global model
update deviation in round k as △wk

g and the direction sim-
ilarity metric as Ck = Θ⟨△wk

g ,△wk−1
g ⟩. The stability of

aggregation is reflected by the Std. of Ck. Assuming the server
has collected a set of local modelsMk in round k, Ck is then
expressed as

Ck
Mk

= Θ⟨△wk
g ,△wk−1

g ⟩ (11)

= Θ⟨
∑

m∈Mk

pm(wk+1
m − wk

g ),△wk−1
g ⟩

=

∑
m∈Mk

Θ⟨wk+1
m − wk

g ,△wk−1
g ⟩ ∥ wk+1

m − wk
g ∥∑n

m=1 ∥ w
k+1
m − wk

g ∥
,

where the third equation is derived by substituting Eq. (3)
into the second equation. Upon comparing the first and third
equations, it is evident that the directional similarity is fun-
damentally the weighted collective of individual contribution
Θ⟨wk+1

m − wk
g ,△wk−1

g ⟩. For a more holistic comprehension,
Fig. 4 computes both individual contributions and directional
similarity upon the arrival of a new local model at the server,
under the same experiment setting in Section III-B.

Fig. 4: Individual contribution vs. directional similarity

Fig.4 shows that individual contributions typically are nega-
tive, implying that the directional similarity tends to approach
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the lower bound of −1 as more local models participate in the
aggregation. We establish a threshold ρ where the server will
not aggregate local models from the buffer until the collected
models meet the following conditions

Ck
Mk ≤ ρ, −1 ≤ ρ ≤ 1, (12)

We define Mk(ρ) as the number of models aggregated when
the threshold ρ is reached. With the presence of the threshold
ρ, the directional similarity is constrained within [−1, ρ],
which limits the Std. of the directional similarity to a relatively
narrow range. A lower ρ would substantially increase the
number of local models needed for depressing the directional
similarity below the threshold in each round, hence prolonging
the duration of each round. Conversely, increasing ρ would
impair the quality of aggregation as the server can only
learn from the limited data knowledge from a small set of
clients. Notably, when ρ = 1, the server performs exactly
FedAsync [26]. Based on this, we reformulate the wall-clock
time minimization problem in Eq. (7a) into the problem of
determining the aggregation timing, where

min
ρ

Kwc∑
k=1

∆T k =

Kwc∑
k=1

(T k
Mk(ρ) − T k

1 )) (13a)

s.t. (7b)− (7c) (13b)

Mk(ρ) ∈ [Ml(ρ),Mu(ρ)]. (13c)

The lower bound Ml(ρ) in Constraint (13c) guarantees the
minimum number of participating local models, and the upper
bound Mu(ρ) avoids the case that the threshold cannot be
satisfied even with an excessive number of local models.

C. Semi-Async FL with SAA strategy

Combining the global similarity-based weight function and
the directional similarity-based aggregation scheme, we pro-
pose an innovative Similarity-Aware Aggregation (SAA) strat-
egy in Semi-Async FL. Our strategy is illustrated in Alg. 1 and
Alg. 2. Particularly, each client uploads the local model and
the version of the global model it used for training that local
model to the server, as indicated in Line 2 and 3 of Alg. 2. The
server caches a list of stale global models, which is updated
every round following Line 15 in Alg. 1. The purpose of this
list is to calculate the global similarity for each uploaded local
model through Eq. (8).

Line 4-13 in Alg. 1 delineate ail the directional similarity-
based aggregation scheme. Given the heterogeneity of compu-
tational resources of clients and the random Non-IID distribu-
tion of data, establishing a mapping from the threshold ρ to the
set of participating clients Mk(ρ) is extremely challenging.
Directly solving for ρ is impractical, for which we design
a heuristic approach to obtain the optimal value of ρ for
aggregation timing. Specifically, we execute the SAA strategy
with a batch of ρ and select the one with the smallest wall-
clock time as the optimal value. Based on the experiments
detailed in the following sections, we empirically provide a

reasonable range for ρ, which is applicable to a variety of
datasets.

We highlight the advantages of SAA over traditional Semi-
Async FL methods [27]. The dynamic buffer in SAA allows
for better control over aggregation stability, addressing a
limitation in traditional methods that rely on a fixed buffer
size without considering adaptability. Meanwhile, the server in
SAA caches a list of stale global models, which enables a more
precise measurement of local model influence compared to
relying solely on round variance. Notably, the storage overhead
for caching such a list is minimal, especially when compared
to the terabytes of raw data typically handled by a high-
performance server.

Algorithm 1 Semi-Async FL with SAA Strategy - Server

Input: Model cache list Lw, global learning rate ηg , aggre-
gation threshold ρ, buffer size bound [Ml(ρ),Mu(ρ)].

Output: Trained global model wg , wall-clock time Twc.
1: Aggregation round k = 0, global model version Og = 0.
2: while F (wk

g )− F (w∗) > ϵ do
3: Reset the directional similarity Ck = 0. Clear the buffer

and set its size as Mk = 0.
4: while Ck > ρ do
5: Receive trained local model wk+1

m and client model
version Ok

m from client m through wireless channel.
6: Calculate model staleness pkm by Eq. (8) and (9).
7: Update the directional similarity Ck by Eq. (11).
8: Buffer size increases by Mk ←Mk + 1
9: if Mk = Mu(ρ) break

10: end while
11: while Mk ≤Ml(ρ) do
12: Repeat Step 5 - 8.
13: end while
14: Update global model wk+1

g by Eq. (10).
15: Update the cache list Lw ← {Lw, w

k+1
g }.

16: Global version increases by Og ← Og + 1.
17: Aggregation round increases by k ← k + 1.
18: end while

Algorithm 2 Semi-Async FL with SAA Strategy - Client

Input: Global model parameter from Server wg , global model
version Og , base local learning rate η, decaying factor γ.

Output: Trained local model parameter wk+1
m , version of the

global model used for training Ok
m.

1: Initialize the local model wk
m ← wk

g and the optimizer
with learning rate ηm ← γkηm.

2: Update the local model to wk+1
m by Eq. (3).

3: Record the local model version Ok
m ← Og .

Return: Trained local model wk+1
m , model version Ok

m.

D. Convergence Analysis

We analyze the convergence rate of the Semi-Async FL with
the SAA strategy. Referring to [27], we make the following
common assumptions on the FL model:
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Assumption 1 (L-smoothness) The Fm is L-smooth with
a positive L for client ∀m ∈ M. For ∀w1, w2, Fm(w2) −
Fm(w1) ≤ ⟨∇Fm(w1), w2 − w1⟩+ L

2 ∥ w2 − w1 ∥2
According to the Theorem 2.1.8 in [30], the following

condition holds as well,

∥ ∇Fm(w2)−∇Fm(w1) ∥2

≤ L⟨∇Fm(w2)−∇Fm(w1), w2 − w1⟩ (14)

Assumption 2 (µ-convexity) The Fm is strong convex with
a positive µ for client ∀m ∈ M. For ∀w1, w2, Fm(w2) −
Fm(w1) ≥ ⟨∇Fm(w1), w2 − w1⟩+ µ

2 ∥ w2 − w1 ∥2.
According to Theorem 2.1.19 in [30], the following also

holds

⟨∇Fm(w2), w2 − w1⟩

≤ Fm(w2)− Fm(w1) +
∥ ∇Fm(w2)−∇Fm(w1) ∥2

2µ
(15)

Assumption 3 (Global optimal) Assume that there exists
w∗ that minimizes the global loss function as ∇F (w∗) = 0.

Assumption 4 (Local optimal bound) Given w∗, the local
loss function is bound as ∥ ∇Fm(w∗) ∥2≤ G for all m ∈M.

Assumption 5 (Local learning rate bound) For any local
optimizer, the learning rate ηm is bounded as ηm ∈ [ηl, ηu],
where both lower bound and upper bound are non-negative.

Theorem 1. If η2
u

ηl
< L2

2µ and ηg < 2+β
βMl(ρ)(2ηlµ−η2

uL
2) hold,

the loss of the global model in Alg. 1 satisfies the following
equation after k rounds

F (wk
g )− F (w∗)

≤ [1− ηgβMl(ρ)

2 + β
(2ηlµ− η2uL

2)]
k

1+τmax (F (w0)− F (w∗))

+
(2 + β)Mu(ρ)η

2
uLG

βMl(ρ)(2ηlµ− η2uL
2)
. (16)

The first item on the right side can be presented as ζk(F (w0)−
F (w∗)), where the ζ denotes the convergence rate, and the
second item is a residual error, denoted as ϵ. The proof is
referred to in the Appendix.

Corollary 1. There is a trade-off in the faster convergence
rate and smaller residual error when selecting the scaling factor
β. Hence, there exists an optimal value of β.

Corollary 2. Given a fixed β and ηg , the upper bound of
buffer size Ml(ρ) should be smaller than ⌊ 2+β

βηg(2ηlµ−η2
uL

2)⌋ to
guarantee the convergence of the leaning model. The function
⌊x⌋ is the maximum integer that smaller than x.

E. Complexity Analysis

We mainly focus on the time complexity of the server
because the working procedure of clients is similar to that in
the conventional Semi-Async FL. For the learning model with
N -dimensions of parameters, we define the time complexity
of each element-wise operation on the entire model as O(N).
For the original Semi-Async FL with a fixed buffer size M ,
the total time complexity for each round is O(MN). The extra
computation of SAA consists of the operation of calculating
the global model similarity and directional similarity. The

cosine similarity operation requires (4N + δ) computations,
where δ refers to scalar computations and δ ≪ N . In the worst
case, the buffer size always reaches its maximum Mu(ρ).
Assuming that L times of searching for the optimal ρ are
executed, the time complexity becomes O(Mu(ρ)NL), which
is still linear in this worst case.

VI. PERFORMANCE EVALUATION

We conduct all experiments under FLSiM frame [27] on a
desktop with GeForce RTX 3060 graphic card.

A. Experiment Setup

System setting. We evaluate the SAA strategy with both
IID and Non-IID data distribution at multiple clients in edge
computing systems. The distance between each client and the
server is uniformly distributed between 100 and 500 meters.
Client transmission power (P ) is fixed at 23dBm, with a band-
width (Bm) of 20MHz centered at a frequency of 2100MHz.
We establish the Power Spectral Density (PSD) of Additive
White Gaussian Noise (AWGN) as 1e−14.7mW/Hz. To ac-
curately simulate the wireless environment in edge computing
systems, we adopt the widely accepted WINNER II channel
model [31] that is commonly used in urban areas. Furthermore,
in alignment with [27], we assume that the computation
time per epoch adheres to a half-normal distribution (fm ∼
NH(0, σ2)) with σ = 0.8.

Dataset and models. We conduct extensive experiments on
three real-world datasets with different neural network models.
The details are shown in Table. III. We apply SGD optimizers,
Cosine Annealing learning rate schedulers, and cross-entropy
loss functions for all experiments. The global learning rate ηg
during the aggregation is set as 1.

Since we are comparing the training efficiency of proposed
schemes with benchmarks, the experiments will be cut off
once the server has aggregated 10, 000 local models in total
for CINIC-10 and CIFAR-100 datasets, and 20, 000 for the
EMNIST dataset in all schemes, which are adequate for the
convergence in most cases.

Dataset EMNIST CINIC-10 CIFAR-100
Model LeNet-5 MobileNet-V2 ResNet18
# of clients 100 50 20
Learning rate 0.001 0.0005 0.01
Batch size 128 64 32

TABLE III: Dataset and training model

Benchmark schemes. We compare the Semi-Async FL
with our SAA strategy with three benchmark schemes.

• FedAsync [26]: The standard fully-Async FL, where
aggregation is performed once the server receives a local
model from any client. Thus, the number of total rounds
is equal to the total amount of client updates.

• FedBuff [27]: The Semi-Async FL with a fixed buffer
size and a round variance-based weight function. The
total number of total rounds is equal to the client updates
divided by the buffer size

• FedMAX: Its buffer size equals the buffer upper bound in
SAA, which is significantly larger than that in FedBuff.
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Dataset
(Model)

Evaluation
Metric

Weight Constant Polynomial Polynomial Similarity Similarity Similarity Similarity
Parameter \ α = 0.3 0.7 β = 1e− 5 1e− 4 1e− 3 1e− 2

EMNIST
(LeNet5)

Final Acc. IID 0.8431 0.8454 0.8475 0.8477 0.8547 0.8542 0.8442
Non-IID 0.8211 0.8197 0.8220 0.8240 0.8370 0.8350 0.8277

WC Time (s) IID (84%) 1420.4 1432.3 1293.3 1209.3 1083.1 1131.3 1244.1
Non-IID (83%) 1824.3 1733.8 1669.1 1650.7 1588.2 1587.4 1629.3

CINIC-10
(MobileNetV2)

Final Acc. IID 0.6608 0.6643 0.6638 0.6680 0.6743 0.6729 0.6690
Non-IID 0.6324 0.6340 0.6408 0.6410 0.6510 0.6520 0.6430

WC Time (s) IID (65%) 3880.1 4012.7 3882.4 3722.1 3667.5 3706.6 3768.3
Non-IID (60%) 5103.1 5111.7 5003.8 5013.8 4984.9 4974.3 5023.8

CIFAR-100
(ResNet18)

Final Acc. IID 0.4170 0.4211 0.4228 0.4205 0.4306 0.4340 0.4242
Non-IID 0.4043 0.4083 0.4075 0.4089 0.4151 0.4146 0.4045

WC Time (s) IID (41%) 2345.2 2287.1 2163.2 2071.6 2037.9 2025.3 2123.4
Non-IID (38%) 3014.8 3008.2 3011.6 2991.4 2812.7 2841.5 3008.7

TABLE II: The final accuracy (Final Acc.) and wall-clock time (WC Time) under different weight functions

(a) EMNIST, IID distribution (b) CINIC-10, IID distribution (c) CIFAR-100, IID distribution

(d) EMNIST, non-IID distribution (r=0.3) (e) CINIC-10, non-IID distribution (r=0.3) (f) CIFAR-100,non-IID distribution(r=0.9)

Fig. 5: The impact of ρ on the wall-clock round and wall-clock time for different target accuracy

Performance of the similarity-based weight function.
We compare the proposed weight function in Eq. (9) with
the constant weight and the polynomial weight [32], both
of which measure the staleness with round variance. The
concentration parameter for non-IID setting is set to r = 0.3
for EMNIST and CINIC-10 whereas r = 0.9 for CIFAR-100.
Note that the directional similarity-based aggregation scheme
is not applied here for the ablation study. Table. II shows
that the proposed weight function with proper scaling factor
considerably improves the accuracy compared with others.
Moreover, it dominates the reduction of the wall-clock time
under various settings. Especially for the EMNIST dataset with
a large number of clients, SAA reduces about 33% wall-clock
time under IID data distribution. These observations indicate
that the similarity-based weight function remarkably improves
the global model update quality.

Note that either the scaling factor β is too large like 0.1
or too small like 1e − 5 cannot bring a significant benefit.

This owes to the fact that a large β will enforce the weight to
approach 1 whereas a small β is not sufficient to augment the
local model influence in our weight function. As indicated
in Table. II, β = 1e − 4 demonstrates to be a generally
good setting for SAA strategy among most of the datasets and
models and thus it is suggested to be used in further research.

Impact of the aggregation threshold. We investigate the
impact of threshold ρ on wall-clock time and wall-clock
rounds for low and high accuracy requirements, the results of
which are shown in Fig. 5. First of all, compared to the results
shown in Table. II, introducing the directional similarity-based
aggregation scheme dramatically improves the performance
on both metrics. In details, the wall-clock time generally
decreases as ρ becomes smaller, particularly in the case of non-
IID distributions. It is worthwhile to note that the high accu-
racy of in EMNIST (85%) cannot be satisfied when ρ = −0.6
and in CIFAR-100 (42%) when ρ ≤ −0.4 . This is because
a small ρ will induce the server to aggregate more local
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(a) EMNIST (LeNet5) (b) CINIC-10 (MobileNetV2) (c) CIFAR-100 (ResNet18)

(d) EMNIST, Target Accuracy (84%) (e) CINIC-10, Target Accuracy (66%) (f) CIFAR-100, Target Accuracy (42%)

Fig. 6: Comparison of accuracy, wall-clock time and wall-clock rounds with different dataset and models

models each round to meet the threshold requirement, resulting
in insufficient rounds of aggregation. In contrast, when the
threshold is too large, i.e., ρ ≥ 0.2, SAA will merely benefit
from the aggregation scheme with trivial improvement. This
is because a large ρ encourages more frequent aggregation
pattern but lower update quality of global model. Empirically,
a suggested value for the aggregation threshold ρ is around
−0.2 and this is applied in the following experiments.

FL scheme FedAsync FedBuff SAA FedMax
average round variance 40.0 8.6 4.7 3.2

standard deviation 21.3 3.5 1.8 1.2
maximum round variance 122 22 18 14

TABLE IV: Version variance of different schemes

Performance of the SAA strategy. Fig. 6 compares the
SAA strategy with benchmarks under the same suggested
values of scaling factors and aggregation threshold. Within
a limited total number of local model updates, FedAsync
cannot reach a target accuracy in any dataset. The reason
is demonstrated in Table. IV using the example of EMNIST
dataset. The fully-Async scheme suffers from an ultra-high
round variance with a mean value of 40. Compared with the
conventional Semi-Async FL scheme with a fixed aggregation
buffer, our SAA strategy reduces 45% average round variance
with its stability-guided dynamic aggregation scheme.

For EMNIST and CINIC-10 datasets, although FedMAX
can reduce more wall-clock rounds than the SAA strategy, too
many local models being aggregated each round deteriorates
the global model update quality. Consequently, FedMAX,
compared to SAA, causes 38% more wall-clock time in
EMNIST and even worse, the accuracy requirement in CIFAR-

100 cannot be satisfied. In contrast, the SAA reduces 53.7%,
39.3%, and 12.0% wall-clock time, as well as 59.4%, 23.9%,
and 30.5% wall-clock round on three datasets compared with
the conventional Semi-Async FL scheme. Hence the dynamic
buffer applied in SAA demonstrates a dominant performance
in reducing the wall-clock time and wall-clock round in the
case of limited local updates.

VII. CONCLUSION

In this paper, we accelerate the Semi-Async FL deployment
to adapt to rapidly changing AI service demands in edge
computing. Aiming at minimizing wall-clock time, we design
an aggregation strategy SAA based on two observations on
similarity. Specifically, the influence of a local model can be
better measured by the cosine similarity between the stale
and fresh global model than the round variance. Additionally,
the global model update stability, described by the standard
deviation of directional similarity, exerts a positive impact on
model accuracy. Therefore, we first design a global similarity-
based weight function to engage local models with higher
influence in the aggregation. We then develop a directional
similarity-based aggregation scheme to determine the aggre-
gation timing with great control on the global model update
stability. In theory, we provide the convergence guarantee to
SAA. Our experimental results empirically demonstrated that
SAA outperforms benchmarks in terms of training efficiency
and final accuracy with different data datasets and models.
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APPENDIX
Proof of Theorem 1: For simplicity, we use

∑
Mk−1 to rep-

resent the sum of m clients
∑

m∈Mk−1(ρ). With the convexity
assumption of F , we have

F (wk
g )− F (w∗)

= F (wk−1
g + ηg

∑
Mk−1

pm(wk
m − wk−1

g ))− F (w∗)

≤ (1− ηg
∑

Mk−1

pm)F (wk−1
g ) + ηg

∑
Mk−1

pmF (wk
m)− F (w∗)

= (1− ηg
∑

Mk−1

pm)Tk−1 + ηg
∑

Mk−1

pmTm
τm , (17)

where Tk−1 = F (wk−1)g − F (w∗) and Tm
τm = F (wk

m) −
F (w∗). The Tm

τm is represented as

Tm
τm = F (wk

m)− F (w∗)

= (F (wτm
g )− F (w∗)) + (F (wk

m)− F (wτm
g )). (18)

Assumption 1 can be easily extended to the global loss
function, which is commonly applied in FL [26] [27]. Then,
we have the second item in Tm

τm as

F (wk
m)− F (wτm

g )

≤ L

2
∥ wk

m − wτm
g ∥2 +⟨∇F (wτm

g ), wk
m − wτm

g ⟩

≤ η2iL ∥ ∇Fm(wτm
g )−∇Fm(w∗) ∥2 +η2iL ∥ ∇Fm(w∗) ∥2

−ηi⟨∇F (wτm
g ),∇Fm(wτm

g )⟩. (19)

From Assumption 4, we obtain that∑
Mk−1

pm(F (wk
m)− F (wτm

g ))

≤ η2uL
∑

Mk−1

pm ∥ ∇Fm(wτm
g )−∇Fm(w∗) ∥2 (20)

+η2uL
∑

Mk−1

pm ∥ ∇Fm(w∗) ∥2 (21)

−ηl
∑

Mk−1

pm⟨∇F (wτm
g ),∇Fm(wτm

g )⟩. (22)

Given the definition of the global loss function, it
is easy to [XZ: approve] that

∑
Mk−1 pm∇Fm(w∗) =

∇F (w∗) = 0. We also have
∑

Mk−1 pm∇Fm(wτm
g ) =∑

Mk−1 pm∇F (wτm
g ). Combining L-smoothness of function

and convexity given in Theorem 2.1.19 [33], Eq. (20) is
expressed as

η2uL
∑

Mk−1

pm ∥ ∇Fm(wτm
g )−∇Fm(w∗) ∥2

≤ (ηuL)
2

∑
Mk−1

pm⟨∇Fm(wτm
g )−∇Fm(w∗), wτm

g − w∗⟩

≤ (ηuL)
2

∑
Mk−1

pm⟨∇F (wτm
g ), wτm

g − w∗⟩

≤ (ηuL)
2

∑
Mk−1

pm(F (wτm
g )− F (w∗) +

∥ ∇F (wτm
g ) ∥2

2µ
)

≤ (ηuL)
2

2µ

∑
Mk−1

pm ∥ ∇F (wτm
g ) ∥2 . (23)

We first uniform the expression of Eq. (22) and Eq. (23)
by rewriting Eq. (22) as −ηl

∑
Mk−1 pm ∥ ∇F (wτm

g ) ∥2. We
then sum them to obtain

−(ηl −
(ηuL)

2

2µ
)
∑

Mk−1

pm ∥ ∇F (wτm
g ) ∥2

= −(ηl −
(ηuL)

2

2µ
)
∑

Mk−1

pm ∥ ∇F (wτm
g )−∇F (w∗) ∥2

≤ −(2ηlµ− η2uL
2)

∑
Mk−1

pm(F (wτm
g )− F (w∗)). (24)

By integrating Eq. (18), (21) and (24), we have∑
Mk−1

pmTm
τm = η2uL

∑
Mk−1

pm ∥ ∇Fm(w∗) ∥2

+(1− (2ηlµ− η2uL
2))

∑
Mk−1

pm(F (wτm
g )− F (w∗)). (25)

With ak = 1−ηg
∑

Mk−1 pm, bki = ηgpm[1−(2ηlµ−η2uL2)]
and ck = ηgη

2
uL

∑
Mk−1 pm ∥ ∇Fm(w∗) ∥2, the target

function is transformed to

F (wk
g )− F (w∗) = Tk = akTk−1 +

∑
Mk−1

bki Tτm + ck.(26)

LEMMA 1: Under the assumption that ak, bki and ck are
non-negative, we define θk = ak +

∑
Mk−1 bki < 1; ζ =

θ
1

1+τmax
max and ϵ = cmax

1−θmax
. If Eq. (26) holds, it is true that

Tk ≤ ζkT0 + ϵ. (27)

Lemma 1 is proved in [8]. In our scenario, θ should satisfy

θk = 1− ηg
∑

Mk−1

pm + ηg
∑

Mk−1

pm[1− (2ηlµ− η2uL
2)]

= 1− ηg(2ηlµ− η2uL
2)

∑
Mk−1

pm ∈ (0, 1). (28)

We then have the bound of local learning rate that satisfies

η2u
ηl

<
L2

2µ
. (29)

Define the range of the sum of weights as
∑

Mk−1 pm ∈
[pl, pu]. Following the aggregation with the magnified global
model similarity in Eq. (10), we have pm ∈ [ β

2+β , 1]. Based
on Assumption 6, we have the boundary pu = Mu(ρ) and
pl =

β
2+βMl(ρ). The global learning rate should satisfy

ηg <
2 + β

βMl(ρ)(2ηlµ− η2uL
2)
. (30)

We then have θmax = 1 − βηg

2+βMl(ρ)(2ηlµ − η2uL
2).

Following the bounded local optimal in Assumption 4, we
have cmax = Mu(ρ)ηgη

2
uLG. Hence, if Eq. (29) and Eq. (30)

are both satisfied, the following formulation holds

F (wk
g )− F (w∗) ≤ ζk(F (w0

g)− F (w∗)) + ϵ, (31)

where ζ = [1− ηgβMl(ρ)
2+β (2ηlµ−η2uL2)]

1
1+τmax and the residual

error ϵ = (2+β)Mu(ρ)η
2
uLG

βMl(ρ)(2ηlµ−η2
uL

2) .
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