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Definition

Let (an)n≥k be a sequence of real numbers which is bounded. Also let
S = {y : ∃(anp ) ⊆ (an) 3 anp → y}. Since S is non empty by the
Bolzano Weierstrass Theorem for Sequences, inf S and sup S both
exist and are finite. We define

lim inf(an) = = lim(an) = limit inferior (an) = inf S

lim sup(an) = = lim(an) = limit superior (an) = supS

S is called the set of subsequential limits of (an).

Example

For ((−1)n), S = {−1, 1} and lim((−1)n) = −1 and lim((−1)n) = 1.
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Example

For (cos(nπ/3)), S = {−1,−1/2, 1/2, 1} and lim(an) = −1 and
lim(an) = 1.

Example

For (cos(nπ/4)), S = {−1,−1/
√

2, 0, 1/
√

2, 1} and lim(an) = −1 and
lim(an) = 1.

Example

For (5 + cos(nπ/4)), S = {5− 1, 5− 1/
√

2, 5 + 0, 5 + 1/
√

2, 5 + 1} and
lim(an) = 4 and lim(an) = 6.
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Theorem

Let (an)n≥k be a bounded sequence and let a be a real number. Then
an → a⇐⇒ lim(an) = lim(an) = a.

Proof

(⇒):
Assume an → a. Then all subsequences (ank ) also converge to a and
so S = {a}. Thus, inf S = supS = a. Thus, by definition,
lim(an) = lim(an).
(⇐):
We assume lim(an) = lim(an) and so we have S = {a}. Suppose
an 6→ a. Then there is an ε0 so that for all k, there is an nk with
|ank − a| ≥ ε0. Since (an) is bounded, (ank ) is also bounded. By the
Bolzano Weierstrass Theorem, there is a subsequence (ankp ) which we

will denote by (a1nk ). We will let nkp be denoted by n1k for convenience.
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Proof

The superscript 1 plays the role of adding another level of subscripting
which is pretty ugly! This subsequence of the subsequence converges to a
number y . So by definition, y ∈ S. But S is just one point, a, so we
have y = a and we have shown a1nk → a too. Now pick the tolerance ε0
for this sub subsequence. Then there is an Q so that |a1nk − a| < ε0 when
n1k > Q. But for an index n1k > Q, we have both |a1nk − a| < ε0 and
|a1nk − a| ≥ ε0. This is not possible. Hence, our assumption that an 6→ a
is wrong and we have an → a.

Example

(an) = (sin(nπ/6))n≥1 has S = {−1,−
√

3/2,−1/2, 0, 1/2,
√

3/2, 1}. So
lim(an) = −1 and lim(an) = 1 which are not equal. This tells us
immendiately, lim(an) does not exist.
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We can approach the inferior and superior limit another way.

Definition

Let (an) be a bounded sequence. Define sequences (yk) and (zk) by

yk = inf{ak , ak+1, ak+2, . . .} = infn≥k(an) and

zk = sup{ak , ak+1, ak+2, . . .} = supn≥k(an).

Then we have
y1 ≤ y2 ≤ . . . ≤ yk ≤ . . . ≤ B and z1 ≥ z2 ≥ . . . ≥ zk ≥ . . . ≥ −B
where B is the bound for the sequence.
We see y = sup(yk) = limk→∞ yk and z = inf(zk) = limk→∞ zk .

We denote z by lim
∗
(an) and y by lim∗(an).

Since yk ≤ zk for all k , we also know limk yk = y ≤ limk zk = z .

We will show lim∗(an) = lim(an) and lim
∗
(an) = lim(an). Thus, we have

two ways to characterize the limit inferior and limit superior of a

sequence. Sometimes one is easier to use than the other!
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Let’s look more closely at the connections between subsequential limits

and the lim∗(an) and lim
∗
(an).

Theorem

There are subsequential limits that equal lim
∗
(an) and lim∗(an).

Proof

Let’s look at the case for z = lim∗(an). Pick any ε = 1/k.
Let Sk = {ak , ak+1, . . .}. Since zk = supSk , applying the Supremum
Tolerance Lemma to the set Sk , there are sequence values ank with
nk ≥ k so that zk − 1/k < ank ≤ zk for all k.

Thus, −1/k < ank − zk ≤ 0 < 1/k or |ank − zk | < 1/k.

Pick an arbitrary ε > 0 and choose N1 so that 1/N1 < ε/2.
Then, k > N1 ⇒ |ank − zk | < ε/2.
We also know since zk → z that there is an N2 so that
k > N2 ⇒ |zk − z | < ε/2.
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Proof

Now pick k > max{N1,N2} and consider

|ank − z | = |ank − zk + zk − z | ≤ |ank − zk |+ |zk − z |
< ε/2 + ε/2 = ε

This shows ank → z.
A very similar argument shows that we can find a subsequence (a′nk )
which converges to y. These arguments shows us y and z are in S, the
set of all subsequential limits.
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Theorem

y = lim∗(an) ⇐⇒ (c < y ⇒ an < c for only finitely many indices )

and (y < c ⇒ an < c for infinitely many indices )

z = lim
∗
(an) ⇐⇒ (c < z ⇒ an > c for infinitely many indices )

and (z < c ⇒ an > c for only finitely many indices )
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Proof

Let’s look at the proposition for lim∗(an) = y. The proof of the other
one is similar and is worth your time to figure out!
(⇒):
We assume y = lim∗(an).
For c < y = sup{yk}, there has to be a yk0 > c.
Now yk0 = inf{ak0 , ak0+1, . . .} and so we have an ≥ yk0 > c for all n ≥ k0.

Hence, the set of indices where the reverse inequality holds must be
finite. That is, {n : an < c} is a finite set. This shows the first part.

Next, assume y < c. Thus, yk < c for all k. Hence,
yk = inf{ak , ak+1, . . .} < c. Let ε = c − inf{ak , ak+1, . . .} = c − yk > 0.
Note, yk + ε = c.

Now, by the Infimum Tolerance Lemma, there is ank so that
yk ≤ ank < yk + ε = c . But we can do this for each choice of k. This
shows the set {n : an < c} must be infinite.
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Proof

(⇐):
We will just show the first piece. We must show A = y. Since A satisfies
both conditions, we have

if c < A, an < c for only finitely many indices and if A < c, an < c for
infinitely many indices.

So given c < A, since an < c for only finitely many indices, we can find
an index k0 so that an ≥ c for all k ≥ k0.

This tells us yk0 = inf{ak0 , ak0+1, . . .} ≥ c also. But then we have
yk ≥ yk0 ≥ c for all k ≥ k0 too. But this tells us y = sup yk ≥ c.

Now y ≥ c < A for all such c implies y ≥ A as well.
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Proof

Now assume A < c.
So by assumption an < c for infinitely many indices. Then we have
yk = inf{ak , ak+1, . . .} < c also for all k.
Since yk → y, we see y ≤ c too.
Then since this is true for all A < c, we have y ≤ A also.

Combining, we have y = A as desired. The argument for the other case
is very similar. We will leave that to you and you should try to work it
out as it is part of your growth in this way of thinking!

Theorem

lim(an) = a ⇐⇒ lim∗(an) = lim
∗
(an) = a
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Proof

(⇒):

We assume lim(an) = a. We also have y = lim∗(an) and z = lim
∗
(an).

Let’s assume y < z.

Then pick arbitrary numbers c and d so that y < d < c < z. Now use
the previous Theorem. We have an < d for infinitely many indices and
an > c for infinitely many indices also.

The indices with an > c define a subsequence, (ank ) ⊆ (an). Since this
subsequence is bounded below by c and it is part of a bounded sequence,
the Bolzano Weierstrass Theorem tells us this subsequence has a
convergent subsequence.

Call this subsequence (a1nk ) and let a1nk → u. Then u ≥ c. Further, since
an → a, we must have u = a ≥ c.

We can do the same sort of argument with the indices where an < d to
find a subsequence (a1mk

) of (an) which converges to a point v ≤ d. But
since an → a, we must have v = a ≤ d.
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Proof

This shows a ≤ d < c ≤ a which is impossible as d < c. Thus, our
assumption that y < z is wrong and we must have y = z.
(⇐):
Now we assume y = z.
Using what we know about y, given ε > 0, y − ε/2 < y and so
an < y − ε/2 for only a finite number of indices.

So there is an N1 so that an ≥ y − ε/2 when n > N1.
This used the y part of the IFF characterization of y and z.

But y = z, so we can also use the characterization of z.

Since z = y < y + ε/2, an > y + ε/2 for only a finite number of indices.
Thus, there is an N2 so that an ≤ y + ε/2 for all n > N2.

We conclude if n > max{N1,N2}, then y − ε/2 ≤ an ≤ y + ε/2 which
implies |an − y | < ε. We conclude an → y and so

lim(an) = lim∗(an) = lim
∗
(an).
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Theorem

For the bounded sequence (an), lim∗(an) = lim(an) and

lim
∗
(an) = lim(an).

Proof

Since we can find subsequences (ank ) and (a′nk ) so that lim∗(an) = lim ank
and lim

∗
(an) = lim a′nk , we know lim∗(an) and lim

∗
(an) are subsequential

limits. Thus, by definition, lim(an) ≤ lim∗(an) ≤ lim
∗
(an) ≤ lim(an).

Now let c be any subsequential limit. Then there is a subsequence (ank )

so that limk ank = c. Hence, we know lim∗(ank ) = lim
∗
(ank ) = c also.

We also know, from their definitions, lim∗(ank ) ≥ lim∗(an) and

lim
∗
(ank ) ≤ lim

∗
(an). Thus,

lim∗(an) ≤ lim∗(ank ) = lim
∗
(ank ) = c ≤ lim

∗
(an).
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Proof

Now, since the subsequential limit value c is arbitrary, we have lim∗(an)
is a lower bound of the set of subsequential limits, S, and so by definition
lim∗(an) ≤ lim(an) as lim(an) = inf S.

We also know lim
∗
(an) is an upper bound for S and so

lim(an) ≤ lim
∗
(an).

Combining inequalities we have
lim(an) ≤ lim

∗
(an) ≤ lim(an) and lim(an) ≤ lim∗(an) ≤ lim(an).

This shows us lim∗(an) = lim(an) and lim(an) = lim(an).
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Example

Show if c is a positive number, the limn→∞(c)1/n = 1.

Solution

First, look at c ≥ 1. Then, we can say c = 1 + r for some r ≥ 0. Then
c1/n = (1 + r)1/n ≥ 1 for all n.

Let yn = (1 + r)1/n. Then

c1/n = yn with yn ≥ 1 =⇒ c1/n − 1 = yn − 1 ≥ 0.

Let xn = yn − 1 ≥ 0. Then we have c1/n = 1 + xn with xn ≥ 0.
Using a POMI argument, we can show c = (1 + xn)n ≥ 1 + nxn.
Thus, 0 ≤ (c)1/n − 1 = xn ≤ (c − 1)/n. This show (c)1/n → 1.

If 0 < c < 1, 1/c ≥ 1 and so if we rewrite this just right we can use our
first argument. We have limn→∞(c)1/n = limn→∞

1
(1/c)1/n

= 1/1 = 1.
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Homework 11

11.1 If (an)→ a and (bn)→ b and we know an ≤ bn for all n, prove
a ≤ b. This might seem hard, but pick ε > 0 and write down the
ε− N inequalities without using the absolute values. You should be
able to see what to do from there.

11.2 Prove there is a subsequence (a′nk ) which converges to lim∗(an).
This is like the one we did, but uses the Infimum Tolerance Lemma.

11.3 If y ≥ c for all c < A, then y ≥ A as well. The way to attack this is
to look at the sequence cn = A− 1/n. You should see what to do
from there.
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