Properties of the Riemann Integral

James K. Peterson

Department of Biological Sciences and Department of Mathematical Sciences Clemson University

September 26, 2018

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

1 Some Infimum and Supremum Properties

3 What Functions Are Riemann Integrable?

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

4 Homework

Some Infimum and Supremum Properties

Theorem

2

If f is a bounded function on the finite interval [a, b], then

sup_{$$a \le x \le b$$} $f(x) = -\inf_{a \le x \le b}(-f(x))$ and
 $-\sup_{a \le x \le b}(-f(x)) = \inf_{a \le x \le b}(f(x))$

$$\sup_{x,y\in[a,b]} (f(x) - f(y)) = \sup_{y\in[a,b]} \sup_{x\in[a,b]} \sup_{x\in[a,b]} (f(x) - f(y))$$

=
$$\sup_{x\in[a,b]} \sup_{y\in[a,b]} (f(x) - f(y)) = M - m$$

where
$$M = \sup_{a \le x \le b} f(x)$$
 and $m = \inf_{a \le x \le b} f(x)$.
 $\sup_{x,y \in [a,b]} | f(x) - f(y) | = M - m$

Proof

3

First let
$$Q = \sup_{a \le x \le b}(-f)$$
 and $q = \inf_{a \le x \le b}(-f)$.

(1):

Let $(f(x_n)$ be a sequence which converges to M. Then since $-f(x_n) \ge q$ for all n, letting $n \to \infty$, we find $-M \ge q$. Now let $(-f(z_n))$ be a sequence which converges to q. Then, we have $f(z_n) \le M$ for all n and letting $n \to]$ infty, we have $-q \le M$ or $q \ge -M$.

Combining, we see -q = M which is the first part of the statement; i.e. $\sup_{a \le x \le b} f(x) = -\inf_{a \le x \le b} (-f(x))$. Now just replace all the f's by -f's in this to get $\sup_{a \le x \le b} (-f(x)) = -\inf_{a \le x \le b} (-f(x))$ or $-\sup_{a \le x \le b} (-f(x)) = \inf_{a \le x \le b} (f(x))$ which is the other identity. (2): We know

$$f(x) - f(y) \leq \left(\sup_{a \leq x \leq b} f(x)\right) - f(y) = M - f(y)$$

But $f(y) \ge \inf_{y \in [a,b]} f(y) = m$, so

$$f(x) - f(y) \leq M - f(y) \leq M - m$$

Thus,

$$\sup_{x,y\in[a,b]}(f(x)-f(y)) \leq M-m$$

So one side of the inequality is clear. Now let $f(x_n)$ be a sequence converging to M and $f(y_n)$ be a sequence converging to m. Then, we have

$$f(x_n) - f(y_n) \leq \sup_{x,y \in [a,b]} (f(x) - f(y))$$

Letting $n \to \infty$, we see

$$M-m \leq \sup_{x,y\in[a,b]}(f(x)-f(y))$$

イロト イポト イヨト イヨト

э

This is the other side of the inequality. We have thus shown that the equality is valid.

(3): Note

$$|f(x) - f(y)| = \begin{cases} f(x) - f(y), & f(x) \ge f(y) \\ f(y) - f(x), & f(x) < f(y) \end{cases}$$

In either case, we have $| f(x) - f(y) | \le M - m$ for all x, y using Part (2) implying that $\sup_{x,y} | f(x) - f(y) | \le M - m$.

To see the reverse inequality holds, we first note that if M = m, we see the reverse inequality holds trivially as $\sup_{x,y} |f(x) - f(y)| \ge 0 = M - m$.

Hence, we may assume without loss of generality that the gap M - m is positive.

Then, using the STL and ITL, given 0 < 1/j < 1/2(M - m), there exist, $s_j, t_j \in [a, b]$ such that $M - 1/(2j) < f(s_j)$ and $m + 1/(2j) > f(t_j)$, so that $f(s_j) - f(t_j) > M - m - 1/j$. By our choice of j, these terms are positive and so we also have $|f(s_j) - f(t_j)| > M - m - 1/j$.

It follows that

$$\sup_{x,y\in[a,b]} |f(x) - f(y)| \geq |f(s_j) - f(t_j)| > M - m - 1/j|.$$

Since we can make 1/j arbitrarily small, this implies that

$$\sup_{x,y\in[x_{j-1},x_j]}|f(x)-f(y)| \geq M-m.$$

This establishes the reverse inequality and proves the claim. \Box

We are now ready to look at some of the properties of the Riemann Integral.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem

Let
$$f, g \in RI[a, b]$$
. Then
(1) $|f| \in RI[a, b]$;
(2) $|\int_{a}^{b} f(x)dx| \leq \int_{a}^{b} |f| dx$;
(3) $f^{+} = \max\{f, 0\} \in RI[a, b]$;
(4) $f^{-} = \max\{-f, 0\} \in RI[a, b]$;
(5) $\int_{a}^{b} f(x)dx = \int_{a}^{b} [f^{+}(x) - f^{-}(x)]dx = \int_{a}^{b} f^{+}(x)dx - \int_{a}^{b} f^{-}(x)dx$
 $\int_{a}^{b} |f(x)| dx = \int_{a}^{b} [f^{+}(x) + f^{-}(x)]dx = \int_{a}^{b} f^{+}(x)dx + \int_{a}^{b} f^{-}(x)dx$;
(6) $f^{2} \in RI[a, b]$;
(7) $fg \in RI[a, b]$;
(8) If there exists m, M such that $0 < m \le |f| \le M$, then
 $1/f \in RI[a, b]$.

<□ > < @ > < E > < E > E のQ @

(1) $| f | \in RI[a, b]$: Note given a partition $\pi = \{x_0 = a, x_1, \dots, x_p = b\}$, for each $j = 1, \dots, p$, using the result above, we know

$$\sup_{x,y\in[x_{j-1},x_j]}(f(x)-f(y)) = M_j - m_j$$

Now, let m'_i and M'_i be defined by

$$m'_j = \inf_{[x_{j-1},x_j]} | f(x) |, \quad M'_j = \sup_{[x_{j-1},x_j]} | f(x) |.$$

Then, applying the first Theorem to |f|, we have

$$M'_j - m'_j = \sup_{x,y \in [x_{j-1},x_j]} \left(|f(x)| - |f(y)| \right).$$

・ロト ・ 雪 ト ・ ヨ ト

3

For each $j = 1, \ldots, p$, we have

$$M_j - m_j = \sup_{x,y \in [x_{j-1},x_j]} | f(x) - f(y) |.$$

So, since $| f(x) | - | f(y) | \le | f(x) - f(y) |$ for all x, y, it follows that $M'_j - m'_j \le M_j - m_j$.

This implies $\sum_{\pi} (M'_j - m'_j) \Delta x_j \leq \sum_{\pi} (M_j - m_j) \Delta x_j$.

This means $U(|f|, \pi) - L(|f|, \pi) \le U(f, \pi) - L(f, \pi)$ for the chosen π .

Since f is integrable by hypothesis, we know the Riemann criterion must also hold for f.

Thus, given $\epsilon > 0$, there is a partition π_0 so that $U(f, \pi) - L(f, \pi) < \epsilon$ for any refinement π of π_0 . Therefore |f| also satisfies the Riemann Criterion and so |f| is Riemann integrable.

$$\begin{array}{l} (2) \mid \int_{a}^{b} f(x) dx \mid \leq \int_{a}^{b} \mid f \mid dx: \\ We \ have \ f \leq \mid f \mid \ and \ f \geq - \mid f \mid, \ so \ that \end{array}$$

$$\int_{a}^{b} f(x) dx \leq \int_{a}^{b} |f(x)| dx$$
$$\int_{a}^{b} f(x) dx \geq -\int_{a}^{b} |f(x)| dx$$

from which it follows that

$$-\int_a^b |f(x)| dx \leq \int_a^b f(x) dx \leq \int_a^b |f(x)| dx$$

and so

$$\left| \int_{a}^{b} f \right| \leq \int_{a}^{b} |f|$$

(3) $f^+ = \max\{f, 0\} \in RI[a, b]$ and (4) $f^- = \max\{-f, 0\} \in RI[a, b]$: This follows from the facts that $f^+ = \frac{1}{2}(|f| + f)$ and $f^- = \frac{1}{2}(|f| - f)$ and the Riemann integral is a linear mapping.

 $(5) \int_{a}^{b} f(x)dx = \int_{a}^{b} [f^{+}(x) - f^{-}(x)]dx = \int_{a}^{b} f^{+}(x)dx - \int_{a}^{b} f^{-}(x)dx \\ \int_{a}^{b} |f(x)| dx = \int_{a}^{b} [f^{+}(x) + f^{-}(x)]dx = \int_{a}^{b} f^{+}(x)dx + \int_{a}^{b} f^{-}(x)dx: \\ This follows from the facts that <math>f = f^{+} - f^{-}$ and $|f| = f^{+} + f^{-}$ and the linearity of the integral.

(6): $f^2 \in RI[a, b]$ Note that, since f is bounded, there exists K > 0 such that $|f(x)| \le K$ for all $x \in [a, b]$.

Applying our infimum/ supremum properties theorem to f^2 , we have

$$\sup_{x,y\in[x_{j-1},x_j]}(f^2(x)-f^2(y)) = M_j(f^2)-m_j(f^2)$$

where $[x_{j-1}, x_j]$ is a subinterval of a given partition π and $M_j(f^2) = \sup_{x \in [x_{j-1}, x_j]} f^2(x)$ and $m_j(f^2) = \inf_{x \in [x_{j-1}, x_j]} f^2(x)$.

Thus, for this partition, we have

$$U(f^2, \pi) - L(f^2, \pi) = \sum_{\pi} (M_j(f^2) - m_j(f^2)) \Delta x_j$$

But we also know

$$\sup_{x,y\in[x_{j-1},x_j]} (f^2(x) - f^2(y)) = \sup_{x,y\in[x_{j-1},x_j]} (f(x) + f(y))(f(x) - f(y))$$

$$\leq 2K \sup_{x,y\in[x_{j-1},x_j]} ((f(x) - f(y)))$$

$$= 2K (M_j - m_j).$$

Thus,

$$U(f^2, \pi) - L(f^2, \pi) = \sum_{\pi} (M_j(f^2) - m_j(f^2)) \Delta x_j$$

$$\leq 2K \sum_{\pi} (M_j - m_j) \Delta x_j$$

$$= 2K (U(f, \pi) - L(f\pi)).$$

Now since f is Riemann Integrable, it satisfies the Riemann Criterion and so given $\epsilon > 0$, there is a partition π_0 so that $U(f, \pi) - L(f\pi) < \epsilon/(2K)$ for any refinement π of π_0 . Thus, f^2 satisfies the Riemann Criterion too and so it is integrable.

(7): fg $\in RI[a, b]$ To prove that fg is integrable when f and g are, simply note that

$$fg = (1/2) \left((f+g)^2 - f^2 - g^2 \right).$$

Property (6) and the linearity of the integral then imply fg is integrable. (8) If there exists m, M such that $0 < m \le |f| \le M$, then $1/f \in RI[a, b]$: Suppose $f \in RI[a, b]$ and there exist M, m > 0 such that $m \le |f(x)| \le M$ for all $x \in [a, b]$. Note that

$$\frac{1}{f(x)} - \frac{1}{f(y)} = \frac{f(y) - f(x)}{f(x)f(y)}$$

Let $\pi = \{x_0 = a, x_1, \dots, x_p = b\}$ be a partition of [a, b], and define

$$M'_j = \sup_{[x_{j-1},x_j]} \frac{1}{f(x)}, \quad m'_j = \inf_{[x_{j-1},x_j]} \frac{1}{f(x)}.$$

Then we have

$$\begin{array}{rcl} M_j' - m_j' & = & \sup_{x,y \in [x_{j-1},x_j]} \frac{f(y) - f(x)}{f(x)f(y)} \\ & \leq & \sup_{x,y \in [x_{j-1},x_j]} \frac{\mid f(y) - f(x) \mid}{\mid f(x) \mid \mid f(y) \mid} \\ & \leq & \frac{1}{m^2} \sup_{x,y \in [x_{j-1},x_j]} \mid f(y) - f(x) \mid \\ & \leq & \frac{M_j - m_j}{m^2}. \end{array}$$

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト ○ 色 ○ の Q (3)

Since $f \in RI[a, b]$, given $\epsilon > 0$ there is a partition π_0 such that $U(f, \pi) - L(f, \pi) < m^2 \epsilon$ for any refinement, π , of π_0 . Hence, the previous inequality implies that, for any such refinement, we have

$$egin{aligned} &Uig(rac{1}{f},\piig)-Lig(rac{1}{f},\piig) &=& \sum_{\pi}(M_j'-m_j')\Delta x_j\ &\leq& rac{1}{m^2}\sum_{\pi}(M_j-m_j)\Delta x_j\ &\leq& rac{1}{m^2}ig(U(f,\pi)-L(f,\pi)ig)\ &<& rac{m^2\epsilon}{m^2}=\epsilon. \end{aligned}$$

- 日本 - 1 日本 - 日本 - 日本

Thus 1/f satisfies the Riemann Criterion and hence it is integrable.

Now we need to show that the set RI[a, b] is nonempty. We begin by showing that all continuous functions on [a, b] will be Riemann Integrable.

Theorem	
If $f \in C[a, b]$, then $f \in RI[a, b]$.	

Proof

Since f is continuous on a compact set, it is uniformly continuous. Hence, given $\epsilon > 0$, there is a $\delta > 0$ such that $x, y \in [a, b]$, $|x - y| < \delta \Rightarrow |f(x) - f(y)| < \epsilon/(b - a)$. Let π_0 be a partition such that $||\pi_0|| < \delta$, and let $\pi = \{x_0 = a, x_1, \dots, x_p = b\}$ be any refinement of π_0 . Then π also satisfies $||\pi|| < \delta$. Since f is continuous on each subinterval $[x_{j-1}, x_j]$, f attains its supremum, M_j , and infimum, m_j , at points s_j and t_j , respectively. That is, $f(s_j) = M_j$ and $f(t_j) = m_j$ for each $j = 1, \dots, p$. \Box

Thus, the uniform continuity of f on each subinterval implies that, for each j,

$$M_j - m_j = \mid f(s_j) - f(t_j) \mid < \frac{\epsilon}{b-a}.$$

Thus, we have

$$U(f, \pi) - L(f, \pi) = \sum_{\pi} (M_j - m_j) \Delta x_j < \frac{\epsilon}{b-a} \sum_{\pi} \Delta x_j = \epsilon.$$

Since π was an arbitrary refinement of π_0 , it follows that f satisfies Riemann's criterion. Hence, $f \in RI[a, b]$.

Theorem If $f : [a, b] \to \Re$ is a constant function, f(t) = c for all t in [a, b], then f is Riemann Integrable on [a, b] and $\int_a^b f(t)dt = c(b - a)$.

For any partition π of [a, b], since f is a constant, all the individual m_j 's and M_j 's associated with π take on the value c. Hence, $U(f, \pi) - L(f, \pi) = 0$ always. It follows immediately that f satisfies the Riemann Criterion and hence is Riemann Integrable. Finally, since f is integrable, by our fundamental integral estimates, we have

$$c(b-a) \leq RI(f; a, b) \leq c(b-a).$$

・ロト ・四ト ・ヨト ・ヨト ・ヨ

Thus,
$$\int_a^b f(t)dt = c(b-a)$$
.

Theorem

If f is monotone on
$$[a, b]$$
, then $f \in RI[a, b]$.

As usual, for concreteness, we assume that f is monotone increasing. We also assume f(b) > f(a), for if not, then f is constant and must be integrable by the previous theorem. Let $\epsilon > 0$ be given, and let π_0 be a partition of [a, b] such that $|| \pi_0 || < \epsilon/(f(b) - f(a))$. Let $\pi = \{x_0 = a, x_1, \dots, x_p = b\}$ be any refinement of π_0 . Then π also satisfies $|| \pi || < \epsilon/(f(b) - f(a))$. Thus, for each $j = 1, \dots, p$, we have

$$\Delta x_j < rac{\epsilon}{f(b) - f(a)}.$$

Since f is increasing, we also know that $M_j = f(x_j)$ and $m_j = f(x_{j-1})$ for each j. Hence,

$$U(f,\pi) - L(f,\pi) = \sum_{\pi} (M_j - m_j) \Delta x_j = \sum_{\pi} [f(x_j) - f(x_{j-1})] \Delta x_j$$

$$< \frac{\epsilon}{f(b) - f(a)} \sum_{\pi} [f(x_j) - f(x_{j-1})].$$

But this last sum is telescoping and sums to f(b) - f(a). So, we have

$$U(f,\pi) - L(f,\pi) < \frac{\epsilon}{f(b) - f(a)}(f(b) - f(a)) = \epsilon$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Thus, f satisfies Riemann's criterion.

Let f_n , for $n \ge 2$ be defined by

$$f_n(x) = \begin{cases} 1, & x = 1\\ 1/(k+1), & 1/(k+1) \le x < 1/k, \ 1 \le k < n\\ 0, & 0 \le x < 1/n \end{cases}$$

We know f_n is RI[0, 1] because it is monotonic although we do not know what the value of the integral is.

Define f by $f(x) = \lim_{n \to \infty} f_n(x)$. Then given x, we can find an integer N so that $1/(N+1) \le x < 1/N$ telling us f(x) = 1/(N+1).

Moreover $f(x) = f_{N+1}(x)$. So if x < y, y is either in the interval [1/(N+1), 1/N) or $y \in [1/N, 1]$ implying $f(x) \le f(y)$. Hence f is monotonic.

At each 1/N, the right and left hand limits do not match and so f is not continuous at a countable number of points yet it is still Riemann Integrable.

MATH 4540: Analysis Two Homework

- 12.1 If you didn't know f(x) = x was continuous, why would you know f is RI[a, b] for any [a, b]?
- 12.2 Use induction to prove $f(x) = x^n$ is RI[a, b] for any [a, b] without assuming continuity.
- 12.3 Use induction to prove $f(x) = 1/x^n$ is RI[a, b] on any [a, b] that does not contain 0 without assuming continuity.
- 12.4 For $f(x) = \sin(2x)$ on $[-2\pi, 2\pi]$, draw f^+ and f^- .

12.5 Prove f is RI[0, 1] where f is defined by

$$f(x) = \begin{cases} x \sin(1/x), & x \in (0,1] \\ 0, & x = 0 \end{cases}$$

12.6 Let

$$f_n(x) = \begin{cases} 1, & x = 1\\ 1/(k+1), & 1/(k+1) \le x < 1/k, \ 1 \le k < n\\ 0, & 0 \le x < 1/n \end{cases}$$

Graph f_5 and f_8 and determine the cluster points S(p).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで