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Theorem )

If f is a bounded function on the finite interval [a, b], then
Q sup,<,<p f(x) = —infacx<p(—f(x)) and
—sup < <p(—f(x)) = infack<n(f(x))
Q

sup (f(x)—f(y)) = sup sup (f(x)—f(y))
x,y€[a,b] y€la,b] x€la,b]

= sup sup (F(x)—fFf(y)=M-—m
x€la,b] y€la,b]

where M = sup,<, <, f(x) and m = inf,<x<p F(x).

o Supx,ye[a,b] | f(X) - f(y) |: M—m

First let @ = sup,<,<p(—f) and q = inf,<x<p(—F).
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Proof
(1):

Let (f(x,) be a sequence which converges to M. Then since —f(x,) > ¢
for all n, letting n — oo, we find —M > q.

Now let (—f(z,)) be a sequence which converges to q. Then, we have
f(z,) < M for all n and letting n —]infty, we have —q < M or g > —M.

Combining, we see —q = M which is the first part of the statement; i.e.
SUP,<y<p [ (X) = —infacx<p(—F(X)). Now just replace all the f's by
—f's in this to get sup,,p(—F(x)) = —infacx<p(— — F(x)) or
—sup,<<p(—F(x)) = infocx<p(f(x)) which is the other identity.

(2):
We know

F0)— () < (sup f(x))—f(y):M—f<y)

a<x<b

But f(y) > infy (a5 f(y) =m, so

fx)—f(y) < M—f(y)<M-m
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Proof
Thus,

sup (F(X)—F(y) <M—m

x,y€la,b]

So one side of the inequality is clear. Now let f(x,) be a sequence
converging to M and f(y,) be a sequence converging to m. Then, we
have

f(Xn) - f(}/n) < sup (f(X) - f(y))

x,y€la,b]
Letting n — oo, we see

M—m < sup (f(x)—f(y))
x,y€[a,b]

This is the other side of the inequality. We have thus shown that the
equality is valid.
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Note

(x) = (). () £()
-1 = { G718 K2
)

In either case, we have | f(x) — f(y) |[< M
implying that sup, , | f(x) — f(y) |[< M —
To see the reverse inequality holds, we first note that if M = m, we see
the reverse inequality holds trivially as

SUp,., | f(x)—f(y)|>0=M-—m.

Hence, we may assume without loss of generality that the gap M — m is
positive.

Then, using the STL and ITL, given 0 < 1/j < 1/2(M — m), there exist,
sj, tj € [a, b] such that M — 1/(2j) < f(s;) and m+1/(2j) > f(¢;), s

that f(s;) — f(tj)) > M —m—1/j. By our choice of j, these terms are
positive and so we also have | f(s;) — f(t;) |> M —m—1/j.

— m for all x,y using Part (2)
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Proof
It follows that

su[pb]lf(X)—f(y)I > [f(g) = f() [>M—-—m—1/j].
x,y€la,

Since we can make 1/j arbitrarily small, this implies that

sup [F(x)—Ff(y)[ = M—m.

X,y €[xj—1,%]

This establishes the reverse inequality and proves the claim. [

We are now ready to look at some of the properties of the Riemann
Integral.
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Theorem

Let f,g € Rl[a, b]. Then

(1) | f |€ Ri[a, b];

@) | [, FOax| < [} | F | dx;

(3) f+ = max{f,0} € RI[a, b];

(4) f— = max{—f,0} € Rl[a, b];

(5) [P F(x)dx = [IFH(x) — F(x)]dx = [ FH(x)dx — [L F~(x)dx
RO | dx= [JIFH () + £ (ldx = [ FH(x)dx+ [ £ (x)ax;
(6) f2 € Ri[a, b];

(7) fg € Ri[a, b];

(8) If there exists m, M such that 0 < m <| f |< M, then

1/f € Rl[a, b].
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(1) | f |€ RI[a, b):

Note given a partition ™ = {xo = a,x1,...,X, = b}, for each
j=1,...,p, using the result above, we know
sup (F(x)—f(y)) = Mj—m

X,y E[xj—1,%]

Now, let mJ’- and /\/IJ’ be defined by

mJ’- = inf | f(x)], /\/If: sup | f(x) |-

[x—1,%1 [xi—1,xi]

Then, applying the first Theorem to |f|, we have

M-m = s (17601 10)1).

X,y €[xj—1,%]
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Foreach j=1,...,p, we have
Mj—mj= " sup  [f(x)—F(y)].

X,y E[xj—1,x]

So, since | f(x) | — | f(y) |<| f(x) — f(y) | for all x,y, it follows that
M; — m: < M; — m;.

This implies 3, (M; — m)Ax; < 37 (M; — m;)Ax;.
This means U(|f|,w) — L(|f|, ) < U(f,w) — L(f, =) for the chosen .

Since f is integrable by hypothesis, we know the Riemann criterion must
also hold for f.

Thus, given € > 0, there is a partition 7o so that U(f,m) — L(f,m) < e
for any refinement w of wy. Therefore |f| also satisfies the Riemann
Criterion and so | f | is Riemann integrable.
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Proof

b b
)| [, f(x)ax| < [ | f | dx:
We have f <|f | and f > — | f |, so that

/a () / ") | de
b

/a f(x)dx —/ab| f(x) | dx,

from which it follows that

/ab|f(x)|dx§/abf(X)dX§/ab|f(X)dX

b b
/fg/lfl
a a

IN

Y

and so
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Proof

(3) f* = max{f,0} € Rl[a, b] and (4) f~ = max{—f,0} € RI[a, b]:
This follows from the facts that f+ = 3(| f | +f) and f~ = 3(| f | —f)
and the Riemann integral is a linear mapping.

(5) J? f(x)dx = f"[f+ x) — F(x)]dx = f" FH(x)dx — [P F~(x)dx
JETEG) | dx = [IFH () + £ ()]dx = [2FH(x)dx + [) F~(x)dx
This follows from the facts that f = f* — f~ and | f|=f*+f~ and the
linearity of the integral.

(6): 2 € Rl|a, b]
Note that, since f is bounded, there exists K > 0 such that | f(x) |< K
for all x € [a, b].

Applying our infimum/ supremum properties theorem to f2, we have

sup (F2(x) = F2(y)) = M;(Ff?) — my(F?)

X,Y€[xj—1,%]




MATH 4540: Analysis Two
Riemann Integral Properties

Proof

where [xj_1, x;] is a subinterval of a given partition 7 and
I\/lj(fz) = SUPxe_1,x] f2(x) and mj(f2) = infrepg 1] f2(x).

Thus, for this partition, we have

U2, m) = L(F2m) = Y (Mi(F?) — my(f?)) Ax;

But we also know
sup  (F(x) —F(y)) = sup  (f(x) + f(y))(f(x) —f(y))
X,y E[xj-1,x] X,y €[xji—1,x]

< 2K sup ((F(x) = f(y))

X,y €[x—1,x]

= 2K (MJ — mj).
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Proof
Thus,

u(f?,m) - L(f*,m) = Z( i(£2) = mi(£2)) Ax;

2K Z — mj) Ax;

K (U (f,ﬂ-) — L(f)).

IN

Now since f is Riemann Integrable, it satisfies the Riemann Criterion and
so given € > 0, there is a partition g so that U(f,m) — L(fm) < ¢/(2K)
for any refinement w of wy. Thus, f? satisfies the Riemann Criterion too
and so it is integrable.
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Proof

(7): fg € Rila, b]
To prove that fg is integrable when f and g are, simply note that

fg = (1/2) ((f+g)2 — —g2>~

Property (6) and the linearity of the integral then imply fg is integrable.

(8) If there exists m, M such that 0 < m <| f |< M, then 1/f € Rl][a, b]:

Suppose f € Rl[a, b] and there exist M, m > 0 such that
m <| f(x) |< M for all x € [a, b]. Note that

1 1 f(y) — f(x)

fx)  fly)  fOOf(y)




MATH 4540: Analysis Two
Riemann Integral Properties

Let m = {xo = a,x1,...,X, = b} be a partition of [a, b], and define
1 1
M, = sup —, mi= inf ——.
/ [X—1,%] f(x) T o] £(X)
Then we have
f(y)—f
MJ/ _ mj{ _ sup () (x)
X,y €E€[Xj—1,%]] f(X)f(Y)
fly)—f
c oy L=
X,y €[xi—1,x]] | f(X) || f()/) ‘
< — sup | f(y)—f(x) |
m2 x7yE[Xj,1,Xj]
< M-m

m?2
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Proof

Since f € Rl[a, b], given € > 0 there is a partition 7o such that
U(f,m) — L(f, ) < m?¢ for any refinement, 7, of my. Hence, the
previous inequality implies that, for any such refinement, we have

u(pm) = t{pm) = - may

™
1
e Z(Mj — mj)Ax;

<

< i(Uf L(f )

= m (,71')— (’77)
m2€

< F = €.

Thus 1/f satisfies the Riemann Criterion and hence it is integrable. [
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Now we need to show that the set RI[a, b] is nonempty. We begin by
showing that all continuous functions on [a, b] will be Riemann Integrable.

If f € Cla, b], then f € Rl|a, b].

Proof

Since f is continuous on a compact set, it is uniformly continuous.
Hence, given e > 0, there is a 6 > 0 such that x,y € [a, b],

| x —y|<d=|f(x)—f(y)|<e/(b—a). Let wo be a partition such
that || wo ||< 6, and let @ = {xo = a,x1,...,X, = b} be any refinement
of wo. Then 7 also satisfies || 7 ||< §. Since f is continuous on each
subinterval [xj_1, xj], f attains its supremum, M;, and infimum, mj, at
points s; and tj, respectively. That is, f(s;) = M; and f(t;) = m; for each
j=1,....p. O




MATH 4540: Analysis Two
What Functions Are Riemann Integrable?

Thus, the uniform continuity of f on each subinterval implies that, for
each |,
€
M; — my =| () - F(5) |< —
Thus, we have
U(f,m) = L(f,m) =Y (M — mj)Ax; < ZAXJ =

Since 7 was an arbitrary refinement of g, it follows that f satisfies
Riemann'’s criterion. Hence, f € Rl|a, b].

If f : [a,b] — R is a constant function, f(t) = c for all t in [a, b], then
f is Riemann Integrable on [a, b] and fab f(t)dt = c(b— a).
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Proof

For any partition 7 of [a, b, since f is a constant, all the individual m;’s
and M;'s associated with T take on the value c. Hence,

U(f,m) — L(f,m) = 0 always. It follows immediately that f satisfies the
Riemann Criterion and hence is Riemann Integrable. Finally, since f is
integrable, by our fundamental integral estimates, we have

c(b—a) < RI(f;a,b) < c(b— a).

Thus, [P f(t)dt = c(b—a). [

If f is monotone on [a, b], then f € Rl[a, b].
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Proof

As usual, for concreteness, we assume that f is monotone increasing. We
also assume f(b) > f(a), for if not, then f is constant and must be
integrable by the previous theorem. Let € > 0 be given, and let 7 be a
partition of [a, b] such that || wo ||< €/(f(b) — f(a)). Let

m={xo = a,x1,...,X, = b} be any refinement of 7wy. Then w also
satisfies || w ||< €/(f(b) — f(a)). Thus, for each j=1,...,p, we have

€
Ax; <

T f(b)—f(a)

Since f is increasing, we also know that M; = f(x;) and m; = f(xj_1) for
each j. Hence,

U(F,m) = L(F,m) = Y (M — m)Ax; = Z[fXJ f(xj—1)]A;
< mZ[f@Q)_f(xj—l)L

0y




MATH 4540: Analysis Two
What Functions Are Riemann Integrable?

But this last sum is telescoping and sums to f(b) — f(a). So, we have

€

U(f,ﬂ') — L(f,ﬂ') < m(

F(b) — £(a)) = c.

Thus, f satisfies Riemann’s criterion.
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Let f,, for n > 2 be defined by

1, x=1
fax) = {1/(k—|—1), 1/(k+1)<x<1/k,1<k<n
0, 0<x<1/n

We know f, is RI[0, 1] because it is monotonic although we do not know
what the value of the integral is.

Define f by f(x) = lim,_ oo fo(x). Then given x, we can find an integer
N so that 1/(N +1) < x < 1/N telling us f(x) = 1/(N + 1).

Moreover f(x) = fy+1(x). So if x <y, y is either in the interval
[I/(N+1),1/N)ory e [1/N,1] implying f(x) < f(y). Hence f is
monotonic.

At each 1/N, the right and left hand limits do not match and so f is not
continuous at a countable number of points yet it is still Riemann
Integrable.
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12.1

12.2

12.3

12.4
125

12.6

If you didn’t know f(x) = x was continuous, why would you know f
is Rl[a, b] for any [a, b]?

Use induction to prove f(x) = x" is Rl[a, b] for any [a, b] without
assuming continuity.

Use induction to prove f(x) = 1/x" is Rl[a, b] on any [a, b] that
does not contain 0 without assuming continuity.

For f(x) = sin(2x) on [—27,27], draw f* and f~.

Prove f is RI[0,1] where f is defined by
_ [xsin(1/x), x€(0,1]

fl) = { 0, x=0

Let

1, x=1
fa(x) = {1/(l<—|—1)7 1/(k+1)<x<1/k,1<k<n

0, 0<x<1/n

Graph f5 and f3 and determine the cluster points S(p).
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