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The Completeness of <

Let’s look more carefully at what is called the completeness of <. We
prove this carefully by showing we can extend the field Q to another field
Q̃ which is totally ordered, satisfires the Completeness axiom (i..e the
least upper bound and greatest lower bound property) and in which

Cauchy Sequences of objects converge to an object in Q̃. This new field
is then identified with <.

There is a general process by which a metric space can be
completed which we can illustrate by using the rational numbers as
a guide. We actually don’t use this process to construct the real
numbers, but it will show you the steps we typically take.

Let (Q, | · |) = X . This is a nice metric space where |x − y |
measures the distance between the two rational numbers x and y .
We already know Cauchy Sequences of rational numbers need not
converge to a rational number. A nice example is the sequence
xn = (1 + 1/n)n which we know converges to a number we call e.
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The Completeness of <

Let’s define a new metric space which we will call Y . Y is the
set of all Cauchy Sequences of rational numbers; i.e. the
objects in our space are Cauchy Sequences! Note each
rational number p/q forms a nice constant sequence
x1 = p/q, x2 = p/q, . . . , xn = p/q, . . .. We can denote this
constant sequence by (p/q). So for example (2/3) is the
constant Cauchy Sequence whose entries are all 2/3.

We need a metric for Y . Define the distance between two
Cauchy Sequences in Y like this:
D( (xn), (yn) ) = limn→∞ |xn − yn|.
The objects in Y divide naturally into classes called
equivalence classes. Given any object from Y , (xn), we let
[(xn)] denote the collection of all other objects from Y , i.e.
other Cauchy Sequences of rational numbers, whose distance
to (xn) is zero.
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The Completeness of <

We call this set of equivalence classes Ỹ and we define the
distance, D̃, between two equivalence classes as follows:
D̃( [(xn)], [(yn)] ) = limn→∞ |xn − yn|. We can show this limit
exists when we construct the field Q̃. Of course, we would
have to show the value of D̃ does not depend on the choice of
representatives from the equivalence classes!

For example, the constant sequence (3/5) is in Y and there
are an infinite number of other sequences (an) so that
D((3/5), (an)) = 0. Just let (bn) be any sequence of rational
numbers that converges to 0. Then
D((3/5), (3/5) + (bn)) = 0 and so (3/5) + (b/n) is a member
of [(3/5)]. This is the big point now! The sequence
((1 + 1/n)n) does not converge to a rational number and so it
can not be in the equivalence class associated to any rational
number [p/q]. Another way of saying this is that
D((1 + 1/n)n), (p/q)) 6= 0 for all p/q ∈ Q.
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The equivalence class [((1 + 1/n)n)] is thus different from the
equivalence classes formed from constant sequences of rationals. The
collection of all equivalence classes of objects from Y can thus be
identified in a natural way with the numbers we see in <.

Each constant rational sequence (p/q) is chosen as the
representative of [(p/q)].

Each equivalence class that is different from the equivalence classes
formed by constant rational sequences is identified with some
representative from it. We call that α. Note it can not come from a
constant rational sequence so it can not be a rational number. We
generally call this an irrational number. But remember, in this
context, it is really a Cauchy Sequence of rationals!

It is hard, but in a more advanced class, we can show Cauchy
Sequences in (Ỹ , D̃) converge to an object in (Ỹ , D̃). So we can
prove (Ỹ , D̃) is a complete metric space.

We can do this construction process for any metric space (X , d) and
build a new complete metric space (Ỹ , D̃). We do this in the first
course on linear analysis that follows this course.
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So < is the completion of the metric space (Q, | · |) as outlined
above.

We said (C [0, 1], || · ||1) is not complete. In the next graduate
course on analysis, we find the completion of (C [0, 1], || · ||1) can be
done following this construction process and generates the space
(L1, || · ||1) which is a space of equivalence classes of functions and
to do this right we also have to extend our notion of Riemann
Integration to something called Lebesgue Integration.

We said (C [0, 1], || · ||2) is not complete. We also find the
completion of (C [0, 1], || · ||2) can be done following this
construction process and generates the space (L2, || · ||2) which is a
space of equivalence classes of functions using Lebesgue Integration.
This is real special and it turns out to be an inner product space
which is complete. This is called a Hilbert Space.

The space (C [0, 1], || · ||∞) is complete as we will show in a bit and
so if we do the construction process as outlined earlier, we just get
back the same space: (X , d) and (Y ,D) will be the same here.
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Uniform Continuity and Compact Domains

Let’s look more carefully at continuous functions on compact domains.
We can prove a nice theorem:

Theorem

If f is continuous on the compact interval I = [a, b], then f is
uniformly continuous on I .

Proof

We are going to prove this by contradiction. If f is not uc on I , there is
an ε0 so that

∀δ > 0, ∃x , y ∈ I 3 |x − y | < δ and |f (x)− f (y)| > ε0



MATH 4540: Analysis Two

Uniform Continuity and Compact Domains

Proof

In particular for the choice δn = 1/n for all n ≥ 1, we have

∃ xn, yn ∈ I 3 |xn − yn| < 1/n and |f (xn)− f (yn)| ≥ ε0

Since (xn) and (yn) are contained in the compact set I , the Bolzano -
Weierstrass Theorem tells us there are subsequences (x1n ) and (y1

n ) and
points x and y in I so that x1n → x and y1

n → y .

Claim 1: x = y
To see this, note for a tolerance ε′, there are integers N1 and N2 so that

n > N1 =⇒ |x1n − x | < ε′/6 when n1 > N1

n > N2 =⇒ |y1
n − y | < ε′/6 when n1 > N2

where n1 indicates the subsequence index.

Now pick any subsequence index greater than max(N1,N2). Call these
subsequence elements x1n̂ and y1

n̂ . Also choose the subsequence index so
that 1/n̂1 < ε′/6. So both conditions hold for this choice.
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Proof

|x − y | = |x − x1n̂ + x1n̂ − y1
n̂ + y1

n̂ − y |
≤ |x − x1n̂ |+ |x1n̂ − y1

n̂ |+ |y1
n̂ − y |

The first and last are less than ε′/6, so we have

|x − y | ≤ |x1n̂ − y1
n̂ |+ ε′/3

Now remember, we know |x1n̂ − y1
n̂ | < 1/n̂1. So we have

|x − y | ≤ 1/n̂1 + ε′/3 < ε′/6 + ε′/3 = 2ε′/3 < ε′

Since ε′ is arbitrary, we see x = y . Of course, this also means
f (x) = f (y) which says |f (x)− f (y)| = 0.

Claim 2: |f (x)− f (y)| ≥ 2ε0/3. Since x1n → x and y1
n → y = x and f is

continuous on I , we have
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Proof

∃M1 3 |f (x1n )− f (x)| < ε0/6 ∀n1 > M1

∃M2 3 |f (y1
n )− f (y)| < ε0/6 ∀n1 > M2

where again the indices for these subsequences are denoted by n1. Pick a
fixed n1 > max(M1,M2) and then both conditions hold. We can say

ε0 ≤ |f (x1n )− f (y1
n )|

= |f (x1n )− f (x) + f (x)− f (y) + f (y)− f (y1
n )|

≤ |f (x1n )− f (x)|+ |f (x)− f (y)|+ |f (y)− f (y1
n )|

≤ |f (x)− f (y)|+ ε0/3

This tells us |f (x)− f (y)| ≥ 2ε0/3.

But we also know |f (x)− f (y)| = 0. This contradiction tells us our
assumption that f is not uc on I is wrong. Thus f is uc on I .
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This result is true for a continuous function on any compact
set D of <n although we would have to use the Euclidean
norm || · || to do the proof.

So continuity and compactness are linked again. Recall
continuous functions on compact sets must have an absolute
minimum and absolute maximum too.
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Homework 3

Provide a careful proof of this proposition.

3.1 Prove
√
x is not Lipschitz on [0, 1].

Comment: the thing here is that you can’t find an L > 0 that
will work. You know if it works you have |

√
x −√y | ≤ L|x − y |

holds for any x , y in [0, 1]. So let y = 0 and see what is
happening there. Note it is easy to see why it fails but your
job is to write your argument mathematically clear.

3.2 Prove
√
x is continuous on [0, 1] using an ε− δ argument.

Comments: there are two cases here: the case p = 0 and the
others, p ∈ (0, 1]. for the first case, given ε, just pick δ = ε2

(details left to you); for the other case, this is the Mean Value
Theorem approach.

3.3 Prove
√
x is uniformly continuous on [0, 1] the easy way.
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