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Let’s look more carefully at what is called the completeness of . We
prove this carefully by showing we can extend the field Q to another field
Q which is totally ordered, satisfires the Completeness axiom (i..e the
least upper bound and greatest lower bound property) and in which
Cauchy Sequences of objects converge to an object in @ This new field
is then identified with .

@ There is a general process by which a metric space can be
completed which we can illustrate by using the rational numbers as
a guide. We actually don't use this process to construct the real
numbers, but it will show you the steps we typically take.
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Let’s look more carefully at what is called the completeness of . We
prove this carefully by showing we can extend the field Q to another field
Q which is totally ordered, satisfires the Completeness axiom (i..e the
least upper bound and greatest lower bound property) and in which
Cauchy Sequences of objects converge to an object in @ This new field
is then identified with .

@ There is a general process by which a metric space can be
completed which we can illustrate by using the rational numbers as
a guide. We actually don't use this process to construct the real
numbers, but it will show you the steps we typically take.

o Let (Q,]-]) = X. This is a nice metric space where |x — y|
measures the distance between the two rational numbers x and y.
We already know Cauchy Sequences of rational numbers need not
converge to a rational number. A nice example is the sequence
xp = (14 1/n)" which we know converges to a number we call e.
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@ Let's define a new metric space which we will call Y. Y is the
set of all Cauchy Sequences of rational numbers; i.e. the
objects in our space are Cauchy Sequences! Note each
rational number p/q forms a nice constant sequence
x1=p/q,x2=p/q,...,xn =p/q,.... We can denote this
constant sequence by (p/q). So for example (2/3) is the
constant Cauchy Sequence whose entries are all 2/3.
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@ Let's define a new metric space which we will call Y. Y is the
set of all Cauchy Sequences of rational numbers; i.e. the
objects in our space are Cauchy Sequences! Note each
rational number p/q forms a nice constant sequence
x1=p/q,x2=p/q,...,xn =p/q,.... We can denote this
constant sequence by (p/q). So for example (2/3) is the
constant Cauchy Sequence whose entries are all 2/3.

@ We need a metric for Y. Define the distance between two
Cauchy Sequences in Y like this:

D((xn), (¥n) ) = limp—so0 [Xn — yal.

The objects in Y divide naturally into classes called
equivalence classes. Given any object from Y, (x,), we let
[(xn)] denote the collection of all other objects from Y/, i.e.
other Cauchy Sequences of rational numbers, whose distance
to (xp) is zero.



MATH 4540: Analysis Two
The Completeness of

o We call this set of equivalence classes Y and we define the
distance, D, between two equivalence classes as follows:
D)), [(ra)]) = limpoo X0 — Yn|- We can show this limit
exists when we construct the field Q. Of course, we would
have to show the value of D does not depend on the choice of
representatives from the equivalence classes!
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o We call this set of equivalence classes Y and we define the
distance, D, between two equivalence classes as follows:
D)), [(ra)]) = limpoo X0 — Yn|- We can show this limit
exists when we construct the field Q. Of course, we would
have to show the value of D does not depend on the choice of
representatives from the equivalence classes!

e For example, the constant sequence (3/5) is in Y and there
are an infinite number of other sequences (a,) so that
D((3/5),(an)) = 0. Just let (b,) be any sequence of rational
numbers that converges to 0. Then
D((3/5),(3/5) + (bn)) = 0 and so (3/5) + (b/n) is a member
of [(3/5)]. This is the big point now! The sequence
((14+1/n)") does not converge to a rational number and so it
can not be in the equivalence class associated to any rational
number [p/q]. Another way of saying this is that

D((1+1/n)"),(p/q)) # 0 for all p/q € Q.
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The equivalence class [((1 + 1/n)")] is thus different from the
equivalence classes formed from constant sequences of rationals. The
collection of all equivalence classes of objects from Y can thus be
identified in a natural way with the numbers we see in R.

@ Each constant rational sequence (p/q) is chosen as the
representative of [(p/q)].
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The equivalence class [((1 + 1/n)")] is thus different from the
equivalence classes formed from constant sequences of rationals. The
collection of all equivalence classes of objects from Y can thus be
identified in a natural way with the numbers we see in R.

@ Each constant rational sequence (p/q) is chosen as the
representative of [(p/q)].

@ Each equivalence class that is different from the equivalence classes
formed by constant rational sequences is identified with some
representative from it. We call that . Note it can not come from a
constant rational sequence so it can not be a rational number. We
generally call this an irrational number. But remember, in this
context, it is really a Cauchy Sequence of rationals!
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formed by constant rational sequences is identified with some
representative from it. We call that . Note it can not come from a
constant rational sequence so it can not be a rational number. We
generally call this an irrational number. But remember, in this
context, it is really a Cauchy Sequence of rationals!

@ It is hard, but ig a_more advanced class, we can~sh9w Cauchy
Sequences in (Y, D) converge to an object in (Y, D). So we can
prove (Y, D) is a complete metric space.
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The equivalence class [((1 + 1/n)")] is thus different from the
equivalence classes formed from constant sequences of rationals. The
collection of all equivalence classes of objects from Y can thus be
identified in a natural way with the numbers we see in R.

@ Each constant rational sequence (p/q) is chosen as the
representative of [(p/q)].

@ Each equivalence class that is different from the equivalence classes
formed by constant rational sequences is identified with some
representative from it. We call that . Note it can not come from a
constant rational sequence so it can not be a rational number. We
generally call this an irrational number. But remember, in this
context, it is really a Cauchy Sequence of rationals!

@ It is hard, but ig a_more advanced class, we can~sh9w Cauchy
Sequences in (Y, D) converge to an object in (Y, D). So we can
prove (Y, D) is a complete metric space.

@ We can do this construction process for any metric space (X, d) and

build a new complete metric space (Y, D). We do this in the first
course on linear analysis that follows this course.
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@ So % is the completion of the metric space (Q, | -|) as outlined
above.
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@ So % is the completion of the metric space (Q, | -|) as outlined
above.

@ We said (C[0, 1], ]| - ||1) is not complete. In the next graduate
course on analysis, we find the completion of (C[0,1],]|| - ||1) can be
done following this construction process and generates the space
(L1, - |]1) which is a space of equivalence classes of functions and
to do this right we also have to extend our notion of Riemann
Integration to something called Lebesgue Integration.
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@ So % is the completion of the metric space (Q, | -|) as outlined
above.

@ We said (C[0, 1], ]| - ||1) is not complete. In the next graduate
course on analysis, we find the completion of (C[0,1],]|| - ||1) can be
done following this construction process and generates the space
(L1, - |]1) which is a space of equivalence classes of functions and
to do this right we also have to extend our notion of Riemann
Integration to something called Lebesgue Integration.

@ We said (C[0,1],]| - ||2) is not complete. We also find the
completion of (C[0,1], || - ||2) can be done following this
construction process and generates the space (Lo, || - ||2) which is a
space of equivalence classes of functions using Lebesgue Integration.
This is real special and it turns out to be an inner product space
which is complete. This is called a Hilbert Space.
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@ So % is the completion of the metric space (Q, | -|) as outlined
above.

@ We said (C[0, 1], ]| - ||1) is not complete. In the next graduate
course on analysis, we find the completion of (C[0,1],]|| - ||1) can be
done following this construction process and generates the space
(L1, ]| - [|1) which is a space of equivalence classes of functions and
to do this right we also have to extend our notion of Riemann
Integration to something called Lebesgue Integration.

@ We said (C[0,1],]| - ||2) is not complete. We also find the
completion of (C[0,1],]| - ||2) can be done following this
construction process and generates the space (Lo, || - ||2) which is a
space of equivalence classes of functions using Lebesgue Integration.
This is real special and it turns out to be an inner product space
which is complete. This is called a Hilbert Space.

@ The space (C[0,1],]| - ||co) is complete as we will show in a bit and
so if we do the construction process as outlined earlier, we just get
back the same space: (X, d) and (Y, D) will be the same here.
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Let’s look more carefully at continuous functions on compact domains.
We can prove a nice theorem:

If f is continuous on the compact interval | = [a, b], then f is
uniformly continuous on .

We are going to prove this by contradiction. If f is not uc on I, there is
an €p so that

V9 >0,3x,y €l 5 |x—y| <d and |f(x) —f(y)| > e
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Proof

In particular for the choice 6, = 1/n for all n > 1, we have

IXn,yn €1 3 ‘Xn _Yn| < l/n and |f(x,,) - f(yn)l > €0

Since (x,) and (y,) are contained in the compact set I, the Bolzano -
Wesierstrass Theorem tells us there are subsequences (x}) and (y}) and
points x and y in | so that x} — x and y} — y.

Claim1: x=y

To see this, note for a tolerance €', there are integers Ny and N, so that

n> N, = |x} — x| < /6 when n' > N,
n> Ny = |y} —y| < €/6 when n* > N,

where n' indicates the subsequence index.

Now pick any subsequence index greater than max(Ny, Ny). Call these
1

subsequence elements x} and y}. Also choose the subsequence index so

that 1/A' < ¢ /6. So both conditions hold for this choice.
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Ix—yl = Ix—xz+x3—yi+ys—Vl
+ Ixz — val + lys — vl

IA

x = x;
The first and last are less than €' /6, so we have

x—yl < |G-yl +€/3

Now remember, we know |x} — y| < 1/A'. So we have

Ix—y| < 1/A'+€/3<e/6+/3=2/3<¢
Since € is arbitrary, we see x = y. Of course, this also means
f(x) = f(y) which says |f(x) — f(y)| = 0.

Claim 2: |f(x) — f(y)| > 2€0/3. Since x} — x and y} — y = x and f is
continuous on |, we have
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IMy 3 |F(x}) — F(X)| < €/6 Yn' > M,
IMy > |f(yE) — F(y)| < €0/6 Vn' > M,

where agam the indices for these subsequences are denoted by n*. Pick a
fixed n* > max(Mi, My) and then both conditions hold. We can say

0 < |f(x) = fyn)l
= |f(xq) = £(x) + £(x) = F(y) + F(y) = £ (vn)l
< 1) = FO)+1F0x) = FOI +1F(y) = £ (va)l
< Jf() =) +e/3

This tells us |f(x) — f(y)| > 2e0/3.

But we also know |f(x) — f(y)| = 0. This contradiction tells us our
assumption that f is not uc on | is wrong. Thus f isucon . []
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@ This result is true for a continuous function on any compact
set D of " although we would have to use the Euclidean
norm || - || to do the proof.
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@ This result is true for a continuous function on any compact
set D of " although we would have to use the Euclidean
norm || - || to do the proof.

@ So continuity and compactness are linked again. Recall
continuous functions on compact sets must have an absolute
minimum and absolute maximum too.
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Homework 3

Provide a careful proof of this proposition.

3.1 Prove y/x is not Lipschitz on [0, 1].
Comment: the thing here is that you can’t find an L > 0 that
will work. You know if it works you have |\/x —/y| < L|x—y|
holds for any x, y in [0,1]. So let y = 0 and see what is
happening there. Note it is easy to see why it fails but your
job is to write your argument mathematically clear.

3.2 Prove /x is continuous on [0, 1] using an € — § argument.
Comments: there are two cases here: the case p = 0 and the
others, p € (0,1]. for the first case, given e, just pick § = €2
(details left to you); for the other case, this is the Mean Value
Theorem approach.

3.3 Prove y/x is uniformly continuous on [0, 1] the easy way.
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