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ABSTRACT

Piecewise Linear Homeomorphisms for Approximation of Invertible Maps

by

Richard E. Groff

Co-Chairs: Daniel E. Koditschek and Pramod P. Khargonekar

Changes of coordinates play an important role in design and analysis for a wide variety of

fields, including control systems, robotics, and color systems management. Though not nec-

essarily explicitly called a change of coordinates, many other applications require simultane-

ous approximation of forward and inverse models from data. This thesis proposes piecewise

linear homeomorphisms (PLH) as a computationally effective, finitely parameterized family

of nonlinear changes of coordinates. Other approximation techniques generally require that

separate approximations be computed for the forward and inverse maps, whereas piecewise

linear homeomorphisms are invertible in closed form, requiring only a single model. Mo-

tivated by the industrially significant problem of color systems management identified in

collaboration with Xerox Corp., this dissertation presents work on the design and analysis

of algorithms to compute piecewise linear homeomorphism approximations from data.

This thesis introduces two algorithms: the minvar algorithm for computing continuous

multidimensional piecewise linear approximations to data, and the Graph Intersection al-

gorithm, the scalar specialization of minvar. A geometrically influenced parameterization

of PL functions as well as a theoretical framework for proving their properties is developed.

The theoretical framework facilitates the main theoretical result, a proof of local conver-

gence for minvar under the condition that the data generating function is piecewise linear

with the same combinatorial structure as the approximation. Numerical studies of minvar

and the Graph Intersection algorithm show that PL approximation compares favorably

against other approximation techniques in terms of error and computational cost.



The color systems management problem in electrophotography is shown to reduce to a

search for the change of coordinates embodied by the print engine. PLH approximations are

proposed as a replacement for the current industry standard, lookup tables. A preliminary

numerical study on a set of simulated color data provided by Xerox Corp. indicates that

minvar-generated PLH approximations compare favorably to lookup tables, providing good

approximations with a more parsimonious parameterization. Further study is required, but

the author remains cautiously optimistic that these methods may have an eventual impact

on the printing industry.
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NOTATION

Geometry and Triangulations

d dimension of domain, dimension of embedding space, Rd

δ(x, A) distance between a point x and a set A

δs(x, Hi) signed distance between point x and a hyperplane Hi (page 18)

s a simplex of any dimension in Rd

s̄ a d-simplex in Rd

D(s̄, ε) ε dilation of s̄ (page 21)

K geomeotric simplicial complex

S an abstract simplicial complex

T a triangulation

T (P,S) a parameterized candidate triangulation (see page 28), where

P is a set of n vertices, p1, . . . ,pn ∈ Rd

S is an abstract simplicial complex with vertex set {1, . . . , n}
s̄i ith d-simplex of T (P,S) (d-simplices of T (P,S) are indexed 1, . . . , N)

di,j dimension of facet shared by s̄i and s̄j

Ni number of d-simplices in the star of pi

r1 maximum inter-vertex distance (page 29)

r2 minimum orthogonal distance (page 29)

r3 dilation radius (page 29)

PL Functions

fP a PL function (page 43) parameterized by P = (P,Q,S), where
P is a set of n vertices, p1, . . . ,pn ∈ Rd

Q is a set of n vertices in the codomain q1, . . . ,qn ∈ Rd

S is an abstract simplicial complex with vertex set {1, . . . , n}
s̄i ith d-simplex of T (P,S) (d-simplices of T (P,S) are indexed 1, . . . , N)

Ai,bi fP
∣

∣

s̄i
(x) = Aix+ bi

x



MINVAR

Z set of Ns data pairs

Zj Zj ⊂ Z, the data lying in s̄i

Lj least squares approximation to Zj
Lj(x) = Âjx+ b̂j

Li the set of Lj ’s corresponding d-simplices in Stpi

Hi,hi used to solve the “min var” equation (page 59)

Hc,i,hc,i used to solve the constrained “min var” equation (page 61)

Local Convergence Proof

f∗P ,p
∗
i , etc. a * indicates quantities related to the data generating function

Π(f) best L2 affine approximation of f

ϕi(x) construction for local convergence proof (page 72)

ψi(x) construction for local convergence proof (page 72)



CHAPTER 1

Introduction

Changes of coordinates play an important role in design and analysis for a wide va-

riety of fields, including control systems, mechanics, color systems management, pattern

recognition, and more. Finding an appropriate change of coordinates may make design

objectives easier to represent and achieve (e.g. canonical forms in control), elucidate under-

lying structure in the problem (e.g. action-angle coordinates in mechanics), or may itself be

the solution to the problem (e.g. color stabilization, pattern recognition).

This thesis concerns a flexible representation of nonlinear changes of coordinates and a

methodology for approximating them from data. In this thesis, a change of coordinates is

a homeomorphism, i.e. a continuous function with a continuous inverse. Specifically, piece-

wise linear homeomorphisms (PLH) are proposed as a computationally effective, finitely

parameterized family of nonlinear changes of coordinates.

Piecewise linear homeomorphisms are a subset of the space of continuous piecewise linear

(PL) functions. For the most part, the theoretical background and algorithms presented

in this thesis apply to the larger class of PL functions. PL functions possess the notable

property that their invertibility can be checked geometrically, and they can be inverted in

closed form. A piecewise linear homeomorphism is an invertible PL function.

1.1 Motivating Examples

To illustrate why changes of coordinates are important and why a closed form invertible

representation is useful, consider some motivating examples. First, an example taken from

linear control theory shows how a linear change of coordinates is employed in the pole place-

ment problem. Second, the industrially relevant color stabilization problem is formulated

as the search for the inverse of the coordinate transformation embodied by the print engine.

This application initiated our interest in representing nonlinear changes of coordinates. The

section concludes with a variety of other applications that could benefit from an effective

representation of nonlinear changes of coordinates.
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1.1.1 Control Systems

Canonical forms are a well established concept in control theory. A space of dynami-

cal systems, for example the space of controllable linear systems, can be partitioned into

equivalence classes by similarity, the equivalence relation defined by a linear change of co-

ordinates. Each class is represented by its canonical form, a unique system embodying a

certain structure, for example the controllable canonical form. Often, synthesis and analysis

tasks can be simplified by transforming a system into an appropriate canonical form. The

following example from linear state space control illustrates this.

Consider the dynamical system

Σ1 : ẋ = Ax+ bu (1.1)

where x ∈ Rn is the state, u ∈ R is the input, and A ∈ Rn×n, b ∈ Rn×1. Many of

the properties of Σ1, such as stability and transient response, are characterized by the

eigenvalues of A. Suppose Σ1 is known to be controllable, and one wishes to design a

feedback control u = kx to perform pole placement, i.e. to select the eigenvalues of the

closed loop system or equivalently, to select the characteristic polynomial ofA+bk, given by

det (sI−A− bk). Suppose the desired characteristic polynomial for the closed loop system

is sn + α̂n−1s
n−1 + · · ·+ α̂1s+ α̂0. The relationship between A, b, k and the characteristic

polynomial of the closed loop system is complicated, so it may appear difficult to find k to

achieve this desired characteristic polynomial with the system in its present form.

Fortunately, a well known theorem from linear control [Che84, Theorem 7-1] states that

a linear change of coordinates x̄ = Px exists (and may be computed algorithmically) that

transforms Σ1 into controllable canonical form:

Σ2 : ˙̄x = Āx̄+ b̄u (1.2)

where Ā = PAP−1 and b̄ = Pb take the form

Ā =























0 1 0 · · · 0 0

0 0 1 · · · 0 0

0 0 0 · · · 0 0
...

...
...

...
...

0 0 0 · · · 0 1

−α0 −α1 −α2 · · · −αn−2 −αn−1























, b̄ =























0

0

0
...

0

1























. (1.3)

Thanks to the structure of Ā, its characteristic polynomial, det(sI − Ā), is given by

sn + αn−1s
n−1 + · · · + α1s + α0. Moreover, since the eigenvalues of a linear system are

invariant under a linear change of coordinates, this is also the characteristic polynomial

of A. Designing a feedback to achieve a specified closed loop characteristic polynomial

for a system in controllable canonical form is very easy due to the special structure of b̄.
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Specifically, if the feedback u = k̄x̄, with

k̄ =
[

α0 − α̂0 α1 − α̂1 · · · αn−1 − α̂n−1
]

,

is applied to Σ2, then the closed loop system will have the desired characteristic polynomial,

sn+α̂n−1s
n−1+· · ·+α̂1s+α̂0. Since eigenvalues are invariant under a change of coordinates,

applying the feedback u = kx, where k = k̄P−1, to Σ1 will give the desired closed loop

characteristic polynomial for the original system!

Designing the feedback gain k for Σ1 directly would have been difficult. Since the design

objective is invariant under coordinate transformations, a change of coordinates is applied

to transform the system to control canonical form for which the design problem is trivial,

and the resulting design is translated back to a design for the original system through the

inverse change of coordinates. Solving the design problem for the canonical form solves the

problem for all systems related to the canonical form through a (in this case linear) change

of coordinates.

Several canonical forms have been studied for classes of nonlinear systems, for example

Brunowsky’s canonical form [Isi95]. It is generally much more difficult to transform a non-

linear system to a canonical form without significant insight into the algebraic structure of

the system. Moreover, it can be very difficult to show that a given nonlinear transformation

actually is a valid change of coordinates.

Linear systems theory is very powerful, aided in part by the tractability of computing

linear changes of coordinates. Some problems, however, are simply not linear, such as our

next example.

1.1.2 Color Systems Management

Working in collaboration with Xerox Corp. under an NSF GOALI grant, the color

systems management problem initiated our interest in representing changes of coordinates.

A more detailed background to this problem is provided in Chapter 7.

If one repeatedly prints a color image on a laser printer over a period of weeks and

examines the resulting prints, one will notice that though each may look fine individually,

there is a variation in color tone from print to print. This variation is undesirable and, for

some applications, may be unacceptable, such as printing trademarked colors or high quality

photography. Offset lithography, the traditional method of color printing, reproduces color

more consistently but has higher fixed costs per document run [Bla83]. To gain further

competitive advantage against offset lithography so that electrophotography is the clear

choice for small color print jobs (less than 500 copies), the consistency of electrophotographic

color reproduction must be improved. To this end, Xerox has implemented low signal level

controls inside laser printers and copiers for twenty years, but significant color variation

remains. The next step is to wrap a higher level feedback around the color commands to

the print engine.
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Figure 1.1: Decomposition of a printer into the print engine and preprocessor. The engine

embodies the transformation T , while the preprocessor performs an approximation of the

inverse T̃−1, such that T ◦ T̃−1 ≈ id.

A laser printer can be conceptually decomposed into two components (See Figure 1.1),

the print engine that physically marks the page, and the preprocessor that interprets the

document description sent from the computer and gives commands to the print engine. The

print engine of a color laser printer accepts commands as points in a device dependent color

space. This color coordinate space is based on how the device physically produces a desired

color. In a printer, the device dependent coordinate space is CMY, corresponding to cyan,

magenta, and yellow, specifying how much of each respective toner is used to produce the

commanded color. Sometimes CMYK is used, where K corresponds to black, in order to

extend the color gamut, the range of reproducible colors.

Specifying the colors in a document should not require the user to know what type of

toner is in the printer. Thus, when a computer sends a color document to a laser printer,

the color of each pixel is specified as a point in a device independent color space, such as

L*a*b*, a space based on the psychophysics of the eye. The L*a*b* coordinates of a printed

color patch can be measured using a colorimetric sensor.

The print engine of the printer accepts color commands in CMY coordinates and print

colors measured in L*a*b* coordinates. Thus, the print engine embodies a color space

transformation T : CMY → L*a*b*. The transformation T is called the forward device

characterization [Bal03], and, lacking a sufficient first principles model, is typically only

known through color patch experiments. In order for the printer to reproduce a color

specified in L*a*b* coordinates, the preprocessor should ideally have access to the inverse

of the forward device characterization T−1 : L*a*b* → CMY, called the inverse device

characterization. Using T−1 the preprocessor could transform a requested L*a*b* color

x into CMY command, T−1(x), for the print engine. Then the print engine would print

the color T ◦ T−1(x) = x, i.e. the printed color would be identical to the requested color.

Since T−1 is not known, the preprocessor uses an approximation T̃−1, and one hopes that

T ◦ T̃−1 ≈ id, where id is the identity map. The approximation T̃−1 is constructed from

a few thousand color patch experiments as part of the calibration process. For low end

printers, a single calibration may be performed for an entire product line at the factory,

while high end printers are individually calibrated at the factory and can be recalibrated

in the field by a technician. Further complicating matters, T gradually changes with time,
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affected by environmental factors such as temperature, humidity, toner concentration, and

photoreceptor voltages. If the approximation T̃−1 remains fixed as T drifts, this will be

observed as tone variation in the resulting prints.

Industry practice has settled on the least parsimonious of representations for T̃−1, the

look-up table (LUT) [Kan97]. The difficulty of building a lookup table for T̃−1 is addi-

tionally complicated, since the data is sampled from T , and thus achieving uniform spacing

requires either interpolation or iterative experiments. Instead, this thesis proposes to use a

single PLH to approximate both the forward and inverse device characteristics simultane-

ously. The approximation to the forward characteristic is useful for performing feedback on

the print engine, while the approximation to the inverse device characteristic is required by

the preprocessor to generate print commands. The PLH is much more parsimonious than

a look-up table, making it amenable to an eventual real-time calibration process, where a

color sensor in the machine would be used to periodically or continually recalibrate T̃ .

1.1.3 Other Examples

A flexible representation for changes of coordinates would be useful in many other ap-

plication areas. This section presents a brief overview of a number of these areas.

Robot Navigation

Artificial potential functions have long been applied for robot navigation, see for example

[Kha80, KM78, Kro84]. In these methods, the robot moves in the direction of the negative

gradient of the potential, leading it to a minimum of the potential function, the encoding

of the goal state. Most artificial potential methods suffer from undesired local minima

in addition to the goal state. In [KR90], Koditschek and Rimon introduce navigation

functions, a special class of potential functions for which the only local minimum is the global

minimum. They show how to construct a navigation function for any configuration space

that is a “sphere world,” a subset of Rd whose boundary is formed from a disjoint union of a

finite number of spheres. They also show that the navigation properties are invariant under

a diffeomorphism1 of the configuration space, so a navigation function can be constructed

for any manifold that can be deformed to a sphere world. To extend the applicability

of navigation functions, [RK91] provides a method for constructing diffeomorphisms from

“star-shaped worlds” to sphere worlds. Still, many environments are neither sphere worlds

nor star-shaped worlds.

Piecewise linear homeomorphisms provide a viable method for generalizing navigation

functions to complicated environments. One concern might be that PLHs lack smoothness

beyond continuity, but nevertheless they yield a well defined flow in the target environment,

even though the vector field is not well defined everywhere.

1A diffeomorphism is a homeomorphism that is smooth and has a smooth inverse.
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Pattern Recognition

There is a long tradition in the AI literature of what might be termed “invariant recall,”

attributed originally to Minsky and Papert [MP69]. In this paradigm, the problem of

pattern recognition is cast as the computational effort to identify an archetypal pattern

that presents itself as some “deformed” set of features. Namely, one assumes that the

sensed data arises from the action upon the archetype of some unknown member of a known

group of transformations. The pattern recognition task is to “factor out” the particularizing

transform so as to reveal that “true” exemplar of the “concept.”

There is an extensive literature following this approach to pattern recognition. One mod-

ern example is [TY00], which considers scalar diffeomorphisms of the interval for function

matching problems. For example, a pair of parameterized curves through space, fi : I → Rd,

i = 1, 2, could be matched by finding a diffeomorphism from I to I that causes ‖f1 − f2‖ to
be small. [TY00] provides sufficient conditions for the existence of an optimal match, but

does not provide a computational representation for matching problems, providing another

potential application of piecewise linear homeomorphisms.

More applications of invertible functions

The field of robotics is rife with examples where changes of coordinates play a key role: in

the representation of gaits [Rai86, SK00, WBGK03]; in sensor based manipulation [CWK02];

as well as in calibration [ZD89]. Though not necessarily explicitly called a change of coordi-

nates, many applications require simultaneous approximation of forward and inverse models

from data. Representations of scalar invertible functions are required for certain machine

tool calibration problems [HNY98], for certain automobile fuel control settings [FK98], as

well as for probability density estimation [Fio01]. Camera calibration with correction for

lens distortion requires scalar or possibly planar homeomorphisms [Tsa87, Wen92, Hei00].

In such settings, most approximation techniques require the construction of distinct for-

ward and inverse representations, because the approximations are not invertible in closed

form. In addition to doubling the effective training effort, accuracy suffers since the ap-

proximation of the inverse is not exactly the inverse of the forward approximation. In

contrast, invertibility of PL functions can be verified and even imposed geometrically, that

is, by well characterized and computationally effective techniques arising from geometric

insights. Moreover, if a PL function is invertible, it can be inverted in closed form. Thus,

PL approximation is well suited for these sorts of applications.
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1.2 Piecewise Linear Approximation and Invertible Approx-

imations in the Literature

A substantial mathematical literature on real function approximation (see, for ex-

ample, [Che66, Dav75, Lor66]), largely concerned with linear-in-parameters techniques,

deals extensively with algorithms, fundamental limits, convergence rates, and families of

bases in approximating functions. Recent activity has been spurred by evidence that

nonlinear-in-parameters function families, for example neural networks and radial basis

function networks, offer improved approximation rates in higher dimensions as compared to

linear-in-parameters representations [Bar93]. Continuous piecewise linear functions may be

nonlinear- or linear-in-parameters, depending on whether or not the domain triangulation,

the partition of the domain, is allowed to change as part of the parameterization.

Piecewise linear functions have been addressed in a number of different settings. Dating

back to the fifties, algebraic topologists have used piecewise linear homeomorphisms to clas-

sify topological spaces [Spa66, Pon52], allowing many topological properties of a space to be

captured by the purely combinatorial structure of an abstract simplicial complex. Piecewise

linear functions were intimately involved in their work, but computational considerations

were not addressed. Today, topologists are increasingly interested in computation, with a

new subdiscipline called computational topology emerging [DEG99], but the focus seems to

have not yet come to rest on piecewise linear homeomorphisms. Triangulations, vital for

the representation of piecewise linear homeomorphisms, have been studied in the related

field known as computational geometry [Ede01, Bro79, Law86, PS85, ES96], though results

for general dimension are still limited.

Interest and research in approximation using piecewise linear functions is derived primar-

ily from three areas: piecewise polynomial approximations, spline approximations (under

which finite element methods are included), and locally-parametric/nonparametric approx-

imations. This section makes these distinctions more precise, discusses influential work

from each of these areas, and concludes with an appraisal of progress in approximation of

invertible functions.

1.2.1 Piecewise Polynomials

The piecewise polynomial literature addresses the problem of finding a partition of the

domain and a polynomial for each cell of the partion in order to approximate an explic-

itly known function, almost all confined to the scalar case (with the notable exception of

[TB97]). The domain partition is considered as part of the approximant’s parameterization.

Piecewise polynomial approximants have no continuity requirements between partition cells

of the domain, i.e. generically, an approximation will be discontinuous. In applications, one

generally requires that an approximation be at least continuous, but various authors note

that the best piecewise polynomial approximation is often continuous or “nearly contin-
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uous” [BCSW78, Nad86, TB97]. That is, under certain conditions the best partition of

the domain will cause the best (possibly discontinuous) approximation, e.g. best L2, to be

continuous. Most of the results in this field are for approximation of scalar functions (from

R to R). A survey of these results follows.

Barrow et al. [BCSW78] present generalized convexity conditions which guarantee the

existence of a unique best L2 approximation from S2
N , the space of second order B-splines

(i.e. continuous piecewise linear) with N vertices (N − 1 domain cells). Chow [Cho82]

provides a generalization showing that equivalent conditions guarantee existence of a unique

best L2 approximation from P k
N , the space of piecewise polynomial approximations with

N vertices (N − 1 domain cells) and kth order (degree k − 1) polynomials in each cell.

S2
N is a submanifold of P 2

N . Note that this implies that under these generalized convexity

conditions, the best piecewise discontinuous approximation will be continuous. Neither of

these proofs is constructive.

In [Kio80, Kio81], Kioustelidis presents necessary conditions for an optimal piecewise

polynomial, possibly discontinuous, approximation. If an optimal piecewise polynomial

approximation to a continuous function exists, then the error modulus will be continuous.

Motivated by a clever observation about the error modulus in neighboring cells [Phi70],

Kioustelidis also presents an algorithm for computing a good, but not necessarily best,

piecewise polynomial Lp approximation to a continuous function. This algorithm uses two

complementary steps. The first step finds the locally optimal approximation in each cell,

given a partition. The second step adjusts the partition such that the error modulus is

decreased over the entire domain. The Kioustelidis algorithm is closely related in spirit to

the Graph Intersection and minvar algorithms presented in this dissertation.

Gayle and Wolfe [GW96] apply a modified version of the Kioustelidis algorithm and

re-establish the uniqueness results of Barrow et al. [BCSW78] and Chow [Cho82] under

the same generalized convexity conditions. This is achieved by showing that under the

generalized convexity conditions, the modified Kioustelidis algorithm becomes a contraction

on the space of piecewise polynomials, and uniqueness is established through application of

the contraction mapping theorem.

Baines [Bai94] presents another algorithm for computing possibly discontinuous piece-

wise linear and piecewise constant L2 approximations to continuous functions. This one

dimensional algorithm [Bai94] is similar to that proposed by Kioustelidis. Baines and

Tourigny [TB97] propose a generalization to higher dimensions and show numerical results

in two dimensions. They provide a convergence proof for the algorithm. Also, Tourigny et

al. [TH98] provide a related algorithm for a moving mesh finite element (i.e. vertex spline)

solution to variational problems using a similar technique. A specialization of this moving

mesh algorithm is finding the best Lp, p finite and even, continuous piecewise polynomial

approximation to a function.

The piecewise polynomial literature focuses on possibly discontinuous approximations
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to a function that is completely known. The multidimensional algorithms of [TB97, TH98],

as well as the scalar algorithms of [Bai94, Kio80, Kio81], entail steps such as root finding

that intrinsically incorporate the function to be approximated. In contrast, this dissertation

concerns continuous approximations to a function that is observed through a discrete set

of data. With this distinction in mind, the minvar and Graph Intersection algorithms,

presented in Chapters 4 and 6, produce continuous piecewise linear approximations and are

designed to be used with discrete data or with the actual function. The minvar algorithm,

moreover, is defined for general dimension.

1.2.2 Splines

Splines are piecewise polynomials that are guaranteed to be smooth up to some degree,

that is, splines are Cr for r ≥ 1 [dB01, SP95]. Continuous piecewise linear functions qualify

as splines, but because the spline literature is especially interested in approximations that

are differentiable or smoother, piecewise linear approximations seem to play a lesser role.

De Boor introduced basis splines, better known as B-splines, which provide a convenient

way to compute scalar spline approximations [dB01]. Given a partition of the interval over

which to form the approximation, the B-splines of order k (so the polynomials will be degree

k−1) form a family of smooth basis functions, such that the support for each basis function

is k consecutive partition cells. For a fixed partition, computing the least squares or best L2

spline is a linear-in-parameters problem, and thus can be solved easily. Section 3.3 shows

how to compute the least squares (multidimensional) piecewise linear approximation for a

fixed triangulation, following the methodology of B-spline approximations.

Box splines are a typical method of extending splines to multiple dimensions by means

of tensor products of univariate splines [dBHR93, dBD83, Chu88]. The domain partition is

then a tensor product of partitions of the individual dimensions and the approximant is the

sum of tensor products of scalar spline functions. A multidimensional linear box spline is

multilinear, that is linear in each variable while holding the other variables constant, rather

than truly linear. The box spline literature tends to deal with very uniform partitions of

domain.

Another extension of splines to multiple dimensions are vertex splines, which use a

simplicial partition or triangulation, as described in Section 2.2, to extend splines to multiple

dimensions [CL87, Chu88]. Vertex splines are often used in finite element modeling [Bat96].

The piecewise linear functions presented in Chapter 3 may be considered as vertex splines,

though this literature is often interested in higher order smoothness, and hence generally

pays less attention to the piecewise linear case.

The multidimensional spline literature generally considers the domain partition to be

fixed. In this case, best L2 spline approximation is a linear-in-parameters problem and

can be solved by standard linear least squares methods. The partitions of the domain are

generally very regular and highly structured. If the L2 approximation over a partition is
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not good enough, the spline literature will typically refine the partition (this technique is

covered further in the following subsection on nonparametric approximation). This stands

in contrast to the piecewise polynomial literature, which provides several algorithms for

moving a partition with a fixed number of cells. This dissertation covers a middle ground,

continuous piecewise linear approximations for which the domain partition is moved in order

to improve the approximation.

1.2.3 Locally Parametric and Nonparametric Approximations

Piecewise polynomial, spline, and hence piecewise linear, approximations fall into a

larger class of approximation schemes, sometimes referred to as locally parametric, in which

the approximant is a combination of basis functions with local support. Adjusting a param-

eter changes the approximant over some bounded region of the domain, i.e. locally rather

than globally. Approximation methods over a partition of the domain, as well as schemes

that use a cover rather than a partition [AMS97], fall naturally into this group. Locally

parametric approximation leads to nonparametric methods, where the quality of the ap-

proximation is improved by adjusting the number of localized basis functions, as well as

each basis function’s local parameters.

In nonparametric regression, the function to be approximated is assumed to be drawn

from a very large family of distributions that cannot be finitely parameterized in a natural

way [Háj69]. The general approach in nonparametric regression is to allow the approxima-

tion algorithm to add and remove parameters adaptively in order to improve the fit to the

observed data. With splines, parameters are added by refining the domain partition. An

excellent example is Friedman’s Multivariate Adaptive Regression Splines (MARS), which

use a box spline representation and an algorithm to add and remove spline basis functions

[Fri91, SHKT97].

Schaal et al. present a nonparametric technique called locally weighted progression re-

gression in [AMS97, SA98], that uses a collection of local linear models, each with an

associated Gaussian confidence region. The approximation is given as the average of the

linear models weighted by the confidences. The approximation algorithm adds and removes

local linear models in order to maintain a certain quality fit to the data.

The piecewise linear approximation algorithms presented in this dissertation are local

approximations in which the domain partition is also adjusted in order to improve the

approximation while maintaining a fixed number of parameters in the approximation. A

natural extension to these algorithms would be a nonparametric approach, where parameters

are added or removed by refining or coarsening the domain triangulation.

1.2.4 Approximating Invertible Functions

The topic of approximating invertible functions has risen several times in the literature,

most often involving continuous scalar functions on a connected set, for which invertibility
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is equivalent to strict monotonicity. In multiple dimensions there has been some interest in

simultaneously fitting separate forward and inverse models to a set of data, and updating

these approximations as additional data are received.

In [AM94], Abu-Mostafa proposed a method to add “hints” describing a priori known

features of the data generating function by penalizing the squared error criterion with a

term describing the “hint.” One of the proposed “hints” for a function from R to R is

monotonicity. The monotonicity hint involves evaluating the approximation at a number of

pairs of points in the domain. The hint for a pair is zero if the points respect the desired

monotonicity, and the squared difference if they violate monotonicity. The sum of the pair-

wise hints is added to the squared error over the data, and this quantity is then minimized

via gradient descent to obtain the approximation. This method does not guarantee that

the resulting scalar function will be monotone for two reasons. First, the descent algorithm

is free to trade off improvements in approximation error for loss of monotonicity. Second,

even if the summed hint error is zero for the approximation, the hint error is evaluated only

at certain points.

In [FB01, Fio01], Fiori et al. propose approximating cumulative distribution functions

with an “adaptive activation function neuron (FAN).” A FAN is the composition of a sig-

modial function and a polynomial with a special structure. The sigmoid is smooth and

monotonically increasing from 0 to 1. The polynomial has odd powers plus a constant

term, with all coefficients nonnegative. Clearly, the polynomial will be monotonically non-

decreasing, and thus a FAN is a monotonically nondecreasing function.

Both Abu-Mostafa and Fiori take advantage of the fact that strict monotonicity and

invertibility are equivalent for (continuous) scalar functions. Abu-Mostafa uses this fact

to modify the error function in order to bias a general scalar approximation toward an

invertible approximation. Fiori restricts the approximant to a set that is guaranteed to

be invertible. Unfortunately, invertibility is more difficult to characterize in dimensions

higher than one. Proving that a function is invertible on its range can take a great deal of

analysis [RK91], since one must check not only that the Jacobian (for a smooth function) is

nonsingular, but also that injectivity is not lost due to the global structure of the function.

In Chapter 3, it is shown that a continuous PL function can be checked for invertibility in

a straightforward manner via a geometric interpretation of the parameterization.

In [JW99], Jordan considers learning a forward and inverse model of a dynamical system

in the context of motor control tasks in robots and animals. The forward model is used

to compute the feedback component of the control signal, while the inverse model is used

to compute the feedforward component. Separate neural network approximations for the

forward and the inverse models are computed. Since the forward model should already

contain the information of the inverse model, it would be nice to have an approximant

that could be easily inverted in order to avoid construction of a separate inverse model. In

Chapter 3 it is shown that an invertible continuous piecewise linear function can be inverted
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in closed form, thus permitting a single approximation to be constructed for problems that

require a simultaneous forward and inverse model.

Given the range of systems problems that can be posed and solved as a search for an

appropriate change of coordinates, the paucity of results on the topic of invertible function

approximations seems surprising. In particular, the literature does not address the common

need of many of the applications presented in this chapter for a computationally effective,

invertible, multidimensional function approximation technique. This thesis addresses the

apparent gap in the literature.

1.3 Contributions

This thesis introduces minvar, a novel algorithm for computing multidimensional PL

approximations to data. minvar moves both the domain and codomain vertices of the

PL function, making the approximation problem nonlinear-in-parameters. The algorithm

consists of two stages. In the first stage, the data is sorted into subsets according to the

d-simplices of the domain triangulation, and then the least squares affine approximation

is computed for each data subset. In the second stage, the domain and codomain vertices

are moved to make the continuous PL approximation closer to the (generally discontinous)

least squares approximations. The movement of a domain vertex, directed by the “min

var” equation, depends only on the current vertex location and on the least squares ap-

proximations corresponding to d-simplices surrounding the vertex. In addition to the basic

algorithm, minvar is extended to allow affinely constrained vertex movement and heuris-

tically guided retriangulation. The Graph Intersection algorithm, the scalar precurser of

minvar is also presented.

This thesis develops a geometrically influenced representation of PL functions. The

parameterization is composed of three elements: a set of domain vertices, a set of corre-

sponding codomain vertices, and an abstract simplicial complex. If the PL function is in-

vertible, then the abstract simplicial complex can be coupled with the domain and codomain

vertices to give triangulations in the domain and codomain, respectively. Though similar

parameterizations have been used in algebraic topology since the fifties, and the geometric

influence is drawn heavily from computational geometry, e.g. [Ede01], to the author’s best

knowledge this parameterization has not been used in the approximation literature. This

representation is especially important in light of this thesis’s interest in piecewise linear

homeomorphisms, since it allows invertibility of a PL function to be checked geometrically

and permits a PL function to be inverted in closed form (that is, the parameters of the

inverse are given directly by the parameters of the forward function).

The minvar algorithm moves both the domain and codomain vertices, making the

approximation problem nonlinear-in-parameters. Thus, one should not expect global con-

vergence. This thesis presents a local convergence proof for the minvar algorithm, under
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the assumption that the data generating function is also piecewise linear. The structure

of the proof follows the stages of the minvar algorithm. Assuming that the vertices of

the approximation are ε close to the vertices of the data generating function, it is shown

that the least squares approximations from the first stage of the minvar algorithm will

be an ε2 perturbation away from the true affine map over the data generating function’s

corresponding d-simplex. Then it is shown that the ε2 perturbations in the least squares

affine approximations cause the “min var” equation to move each approximation domain

vertex to within an ε2 perturbation of the data generating function’s corresponding domain

vertex. These results are combined to prove local convergence of the minvar algorithm.

This proof subsumes an earlier proof of convergence for the Graph Intersection algorithm.

The minvar algorithm is implemented in C++. The greatest difficulties in implemen-

tation are the “bookkeeping” related to the combinatorial components of a PL function and

dealing with degeneracies in the triangulations. Topological flipping behaves differently

when too many points lie in the same affine subspace, but this degenerate condition can

be difficult to check numerically. The minvar algorithm is being rewritten as a general

purpose C++ library for evaluating and approximating PL functions.

The Graph Intersection (GI) algorithm is implemented in Matlab, and is available for

download at http://www.eecs.umich.edu/~regroff/research. A numerical study com-

paring its performance on a variety of function families against three other approximation

techniques, neural networks, least squares polynomial, and a gradient-descent based piece-

wise linear approximation, shows that GI is competetive in terms of approximation error

and more efficient computationally.

The color systems management problem in electrophotography is shown to reduce to a

search for the change of coordinates embodied by the print engine. PLH approximations

are proposed as a replacement for the current industrial standard, a lookup table. A prelim-

inary numerical study on a set of simulated color data provided by Xerox Corp. indicates

that minvar-generated PLH approximations compare favorably to lookup tables, providing

better approximations with a more parsimonious parameterization. Further study on ac-

tual hardware is required, but these methods may have an eventual impact on the printing

industry.

1.4 Organization of Dissertation

Chapter 2 provides background material on convex and affine geometry, the formal

definition of a triangulation, and related issues such as triangulating a set of points and

validating the embedding of an abstract simplicial complex. These topics are required

for the geometric interpretation of PL functions. Chapter 3 covers multidimensional PL

functions, including their parameterization and basic properties. Chapter 3 also shows how

to perform PL data interpolation, to construct the least squares PL approximation to a set
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of data for a fixed domain triangulation, and to invert a PL function in closed form. Chapter

4 presents the minvar algorithm, a novel algorithm for computing multidimensional (from

Rd to Rc) PL approximations to data. Chapter 4 also presents a numerical study of minvar

on a two dimensional test function. Chapter 5 presents a local convergence proof for the

minvar algorithm. Chapter 6 presents the scalar precursor of the minvar algorithm, called

the Graph Intersection algorithm, as well as a numerical study of this algorithm. Chapter

7 presents electrophotography and the color systems managment problem, and discusses a

study of minvar’s performance on a set of color data supplied by Xerox. Chapter 8 is the

conclusion. Appendix A presents proofs and discussion related to Chapter 2. Appendix B

presents algebraic details of a number of the calculations involved in the minvar algorithm,

presented in Chapter 4.
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CHAPTER 2

Geometry and Triangulations

This dissertation takes a strongly geometric view of continuous piecewise linear (PL)

functions, and piecewise linear homeomorphisms (PLH) in specific. A PL function, as shown

in Chapter 3, has both continuous and combinatorial parameters. The ability to check in-

vertibility of a PL function and to invert it in closed form is elucidated through a geometric

interpretation of those parameters. This chapter presents the requisite background in ge-

ometry and triangulations.

This chapter is divided into four sections. Section 2.1 provides background on affine and

convex geometry. The dilation of a simplex and the interpretation of barycentric coordinates

as distances both play important roles in proving properties of PL functions as well as the

minvar local convergence proof. Section 2.2 provides a formal definition of triangulation,

based upon the notion of a geometric simplicial complex. Perhaps the most important

concept in this chapter is the parameterization of triangulations from Section 2.2.2, which

is fundamental in the definition of multidimensional piecewise linear functions in Chapter

3. Section 2.3 presents the computational geometry problem of triangulating a set of points

in Rd. The Lawson algorithm for generating the 2-dimensional Delaunay triangulation

through edge flipping (Section 2.3.3) motivated Dyn et al.’s algorithm for generating 2-

dimensional data dependent triangulations for interpolation [DLR90b], described in Section

3.2.1. Coupling these ideas with local topological flipping in higher dimensions (Section

2.3.4) leads to the heuristically guided retriangulation in general dimension developed for

the minvar algorithm (Section 4.3). The chapter concludes with Section 2.4 on validating

an embedding of a triangulation, which can be used to check if a PL function is invertible

(Section 3.4).

The material in this chapter is a synthesis of results from the fields of convexity, computa-

tional geometry and algebraic topology. Many of the presented results are standard in their

fields. For further reading on convex and affine geometry (Section 2.1) see [Web94, Bar02]

and for triangulations (Section 2.2) see [Ede01]. Some of the results are original, including

the generalized interpretation of barycentric coordinates as distances, and the dilation and

its properties (Section 2.1.4), which are used to prove properties of PL functions as well as
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minvar local convergence.

To ease readability, proofs of the claims in this chapter are supplied in Appendix A

rather than in the chapter itself.

2.1 Geometry

2.1.1 Affine Subspaces

An affine subspace V ⊆ Rd is a linear subspace L ⊆ Rd translated by some xo ∈ Rd,

i.e. V = L+ xo.
1 The dimension of V is dim(V ) = dim(L). An affine subspace in Rd with

dimension d−1 is called a hyperplane. A finite set of points U ⊆ Rd is affinely independent if

for i = 1, . . . , d, no affine subspace of dimension i contains more that i+1 points from U . The
next two claims show the connection between affine independence and linear independence

as well as provide a computational method to check affine independence.

Claim 2.1. p1,p2, . . . ,pm ∈ Rd are affinely independent if and only if the vectors p1 −
pm,p2 − pm, . . . ,pm−1 − pm are linearly independent.

It follows from Claim 2.1 that at most d+ 1 points in Rd can be affinely independent. The

following claim offers another method of checking if a set of points is affinely independent.

Claim 2.2. Let p1,p2, . . . ,pm ∈ Rd. Then p1, . . . ,pm are affinely independent if and only

if
m
∑

i=1

αipi = 0 and
m
∑

i=1

αi = 0 where αi ∈ R (2.1)

holds only when αi = 0 for all i, or equivalently in matrix notation if

P =

[

p1 p2 · · · pm
1 1 · · · 1

]

(2.2)

has a trivial null space.

The matrix P contains the points in homogeneous form. This matrix appears quite often

in computations, for example of barycentric coordinates and piecewise linear functions.

The affine hull of a set U ⊆ Rd, denoted aff(U), is the intersection of all affine subspaces

containing U ,
aff(U) =

⋂

U⊆V
V aff. sbsp.

V.

Since the intersection of an arbitrary number of affine subspaces in Rd is also an affine

subspace ([Web94] Theorem 1.2.3), aff(U) is the smallest affine subspace containing U . A

1L+ xo denotes the vector sum L+ {xo}. For A ⊂ Rd and B ⊂ Rd, the vector sum of A and B, written
A+B, is a subset of Rd, defined as A+B = {x+ y |x ∈ A, y ∈ B}.
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further result of Claim 2.1 is that the affine hull of m+ 1 affinely independent points is an

m dimensional affine subspace.

Consider p1,p2, . . . ,pm ∈ Rd. Then p, given by

p =
m
∑

i=1

αipi where αi ∈ R,
m
∑

i=1

αi = 1,

is called an affine combination of p1, . . . ,pm. The set of all affine combinations of p1, . . . ,pm

is called the affine set generated by p1, . . . ,pm. The following claim shows that the affine

set generated is equivalent to the affine hull of the points.

Claim 2.3. The affine set generated by p1, . . . ,pm ∈ Rd is the affine hull of the points,

aff{p1, . . . ,pm}.

2.1.2 Barycentric Coordinates

Let p1, . . . ,pk+1 be affinely independent points in Rd. We say that p1, . . . ,pk+1 is an

affine basis for V = aff {p1, . . . ,pk+1}. As a result of Claim 2.1, V is a k-dimensional affine

subspace. By Claim 2.3, V is the affine set generated by p1, . . . ,pk+1, thus any point x ∈ V
can be written as an affine combination of the pi’s, i.e. x =

∑k+1
i=1 αipi, where

∑k+1
i=1 αi = 1.

The coefficients αi are called the barycentric coordinates of x with respect to the affine basis

p1, . . . ,pk+1.

Claim 2.4. Let p1, . . . ,pk+1 ∈ Rd be affinely independent. Let x ∈ aff {p1, . . . ,pk+1}. The
barycentric coordinates of x with respect to p1, . . . ,pk+1 are unique.

If we are given an affine basis for Rd it is straightforward to compute the barycentric

coordinates as follows.

Claim 2.5. Let p1, . . . ,pd+1 ∈ Rd be affinely independent. Let x ∈ Rd. The barycentric

coordinates of x with respect to p1, . . . ,pd+1 are given by

α = P−1

[

x

1

]

, (2.3)

where

α =







α1

· · ·
αd+1






, P =

[

p1 p2 . . . pd+1

1 1 1

]

. (2.4)

Claim 2.5 can also be used to compute barycentric coordinates with respect to an affine

basis of an affine subspace of Rd. Let p1, . . . ,pk ∈ Rd be affinely independent. To compute

the barycentric coordinates of x ∈ aff {p1, . . . ,pk}, choose points pk+1, . . . ,pd+1 ∈ Rd

such that p1, . . . ,pd+1 are affinely independent and apply Claim 2.5 to find the barycentric

coordinates of x with respect to p1, . . . ,pd+1. Since barycentric coordinates are unique
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by Claim 2.4, it follows that αk+1 = · · · = αd+1 = 0, so α1, . . . , αk are the barycentric

coordinates of x with respect to p1, . . . ,pk.

The rest of this section will consider barycentric coordinates with respect to an affine

basis for Rd. Let p1, . . . ,pd+1 be such an affine basis. Let Hi be the hyperplane that

contains p1, . . . ,pi−1,pi+1, . . . ,pd+1, i.e. Hi = aff ({p1, . . . ,pd+1} \ {pi}). We say that Hi

is the hyperplane opposing pi (Recall that a hyperplane is an affine subspace with dimension

d−1.). It follows from the discussion above that if x ∈ Hi, then its ith barycentric coordinate

will be zero, αi = 0.

The barycentric coordinates of x ∈ Rd are affine in x by Claim 2.5. Also, αi = 0 if

x ∈ Hi, and αi = 1 if x = pi. From these facts it is not too surprising that the αi may be

interpreted as a signed, scaled distance from Hi. The following definitions and claim make

this concept concrete.

The distance between a point x ∈ Rd and a nonempty set A ⊆ Rd is a well defined

quantity [Web94] given by

δ(x, A) := inf
z∈A
‖x− z‖ , (2.5)

where ‖·‖ is the standard Euclidean norm. In the case of a hyperplane H, the distance

δ(x, H) can be computed directly given an implicit representation of H. Let (a, c) be an

implicit representation for H, that is, H =
{

z ∈ Rd|aTz+ c = 0
}

. A simple calculation

shows that the distance of a point x ∈ Rd to H is given by

δ(x, H) =

∣

∣aTx+ c
∣

∣

‖a‖ .

Barycentric coordinates are related to a “signed distance.” Let Hi be the hyperplane

opposing pi. Let x ∈ Rd. We define δs(x, Hi) as the signed distance of x from Hi. That

is, |δs(x, Hi)| = δ(x, Hi), and δs(x, Hi) > 0 for x on the same side of Hi as pi, and

δs(x, Hi) < 0 for x on the opposite side of Hi. The following claim demonstrates the

relationship between barycentric coordinate αi, signed distance δs(x, Hi), and the (positive)

scaling factor δ(pi, Hi).

Claim 2.6. Let x ∈ Rd. Let α =
[

α1 · · · αd+1

]

T be the barycentric coordinates of x with

respect to the affinely independent points p1, . . . ,pd+1 ∈ Rd. Then δs(x, Hi) = αiδ(pi, Hi).

Figure 2.1 illustrates the relationship between barycentric coordinates and distances. Claim

2.6 interprets each of the barycentric coordinates of x as the distance from x to the affine

hull of d elements of the affine basis.

What about the (unsigned) distance of x to the affine hull of k < d elements of the affine

basis? In this case, a quadratic form of the barycentric coordinates provides the desired

distance, as demonstrated by the following claim.

Claim 2.7. Let x ∈ Rd. Let α =
[

α1 · · · αd+1

]

T be barycentric coordinates of x

with respect to the affinely independent points p1, . . . ,pd+1. The distance from x to the
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Figure 2.1: Illustration of barycentric coordinates as distances. Let α1, α2, α3 be the

barycentric coordinates of the point x with respect to p1,p2,p3. Claim 2.6 shows that

the signed distance between x and Hi is given by δs(x, Hi) = αiδ(pi, Hi). In this example,

α1 < 0 and α2, α3 > 0.

affine subspace A = aff({p1, . . .pk}), is given by δ(x, A) =
√

ᾱs
TGᾱs, where ᾱs =

[

αk+1 αk+2 · · · αd+1

]

T and G ∈ R(d−k+1)×(d−k+1), defined in Equation A.6, is a posi-

tive definite matrix whose entries depend only on p1, . . . ,pk.

The proof of Claim 2.7 is an application of Gram determinants. This result plays an

important role in the proof of Lemma 5.1.

2.1.3 Simplices

A set C ⊆ Rd is said to be convex if whenever p1,p2 ∈ C, then the line segment [p1,p2]

given by

[p1,p2] =
{

p ∈ Rd | p = (1− α)p1 + αp2, α ∈ [0, 1]
}

is in C. i.e. [p1,p2] ⊆ C. Figure 2.2 illustrates some convex and nonconvex sets.

The convex hull of a set S ⊆ Rd, denoted conv(S), is the intersection of all convex sets

containing S,

conv(S) =
⋂

S⊆C
C convex

C.

Since the intersection of an arbitrary number of convex sets is convex (Theorem 2.1.3 in

[Web94]), the convex hull of a set is convex. Thus, conv(S) is the smallest convex set

containing S.
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Figure 2.2: The sets on the left are convex. The sets on the right are not convex, with a

line indicating where they fail.

Let p1, . . . ,pm ∈ Rd. Let α1, . . . , αm ∈ R such that
∑m

i=1 αi = 1 and for all i, αi ≥ 0.

Then p =
∑m

i=1 αipi is a convex combination of the points p1, . . . ,pm.

Claim 2.8. Let S ⊂ Rd. Let A be the set of all convex combinations of points in S,

A =

{

x ∈ Rd

∣

∣

∣

∣

∣

x =
k
∑

i=1

αipi,
k
∑

i=1

αi = 1 , αi ≥ 0, pi ∈ S
}

. (2.6)

Then A = conv(S).

A face of a convex set A ⊂ Rd is a convex subset B ⊆ A such that whenever αx +

(1 − α)y ∈ B, where x,y ∈ A and 0 < α < 1, then x,y ∈ B [Web94]. Every convex set

A has faces ∅ and A, which are called improper faces. All other faces are called proper

faces. A face of dimension 0 is called an extreme point. An equivalent characterization for

an extreme point is that the point a in convex set A is an extreme point if and only if

whenever a = 1
2(x+ y) for x,y ∈ A, then x = y = a.

A simplex is the convex hull of a set of affinely independent points. Figure 2.3 illustrates

simplices of various dimension. Let the simplex s be the convex hull of k + 1 affinely

independent points. The dimension of s is dim(s) := dim(aff(s)) = k, and we call s a

k-simplex. As a result of Claim 2.1, a set of at most d + 1 points in Rd can be affinely

independent points in Rd, and thus there are simplices of dimension −1, 0, 1, . . . , d, where
by convention ∅ is considered a simplex with dim(∅) := −1.

The extreme points of a simplex are called vertices, and the set of vertices for a simplex

s is written as vert(s).

Claim 2.9. Let p1, . . . ,pk+1 ∈ Rd be affinely independent. The simplex s = conv({p1, . . . ,pk+1})
has the vertices vert(s) = {p1, . . . ,pk+1}.

This claim is a result of the Krein-Milman Theorem [Web94], which states that any com-

pact convex set in Rd is the convex hull of its extreme points. We can think of vert(·) as

a pseudo-inverse of conv(·), since for a set of affinely independent points, {p1, . . . ,pk+1} =
vert(conv({p1, . . . ,pk+1})). Note that dim(s) = card(vert(s)) − 1, where card(·) is cardi-

nality.
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Figure 2.3: Examples of 3-,2-,1-, and 0-simplices, from left to right.

The faces of a simplex are also simplices. If s is a k-simplex and V ⊆ vert(s) with

card(V) = l + 1, then conv(V) is an l-simplex face of s. A k-simplex has
(

k+1
l+1

)

faces of

dimension l. In Rd, a d − 1 dimensional face of a d-simplex is more specifically called a

facet. The structure of the faces admits a partial order of simplices. Given two simplices

s1, s2, we say that s1 ¹ s2 if and only if vert(s1) ⊆ vert(s2), that is, s1 is a face of s2.

Let ∆d be the standard d-simplex, defined as

∆d :=

{

α ∈ Rd+1|αi ≥ 0,

d+1
∑

i=1

αi = 1

}

. (2.7)

∆d is the convex hull of the d+ 1 standard basis vectors e1, . . . , ed+1 for Rd+1. Note that

if p1, . . . ,pk+1 ∈ Rd and α ∈∆k, then
∑k+1

i=1 αipi is a convex combination of the pi’s.

In this dissertation we will predominantly be interested in d-simplices, so we adopt the

convention to distinguish d-simplices from simplices of unspecified dimension. For simplices

in Rd, an s indicates a simplex of any dimension 0 to d, while the over-bar, such as s̄,

indicates a d-simplex.

The following claim shows how to calculate the signed volume of a d-simplex. Note that

the matrix P is also used to calculate the barycentric coordinates of a point (Equation 2.3).

The sign of the volume indicates whether the transformation of the simplex to the stan-

dard d-simplex is orientation preserving (positive volume) or orientation reversing (negative

volume).

Claim 2.10. Let p1, . . . ,pd+1 ∈ Rd be affinely independent. The signed volume of the

simplex s̄ = conv({p1, . . . ,pd+1}) is V (s̄) = 1
d! det P̃ = 1

d! detP, where

P̃ =
[

p1−pd+1 p2−pd+1 · · · pd−pd+1

]

P =

[

p1 p2 · · · pd+1

1 1 1

]

.

2.1.4 The Dilation and its Properties

The dilation is a geometric construction developed for the proof of Lemma 5.1 in order

to measure how the approximation’s mismatched triangulation affects the least squares fits.
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Figure 2.4: Dilations of 2-simplex. The 2-simplex s̄ with its ε and −ε dilations. The point

at the center is where the dilation degenerates to a single point.

The following discussion will define the dilation of a simplex and establish some geometric

facts about it.

Let s̄ be a d-simplex with vert(s̄) = {p1, . . . ,pd+1}. The ε dilation of s̄, written D(s̄, ε),
is defined as

D(s̄, ε) :=







x =
d+1
∑

j=1

αjpj

∣

∣

∣

∣

∣

d+1
∑

j=1

αj = 1 with αj ≥
−ε

δ(pj , Hj)







, (2.8)

where Hj is the hyperplane opposing pj , and δ(·, ·) is the distance between a point and a

set, defined in Equation 2.5. Figure 2.4 illustrates the dilation of a 2-simplex. D(s̄, ε) is

well defined for

ε ≥ −





d+1
∑

j=1

1/δ(pj , Hj)





−1

.

When equality holds, D(s̄, ε) is a single point, otherwise it is a d-simplex with facets parallel

to s̄, but distance |ε| away, with s̄ ⊆ D(s̄, ε) for ε > 0 and D(s̄, ε) ⊆ s̄ for ε < 0. These

properties are established by the following claim.

Claim 2.11. Let s̄ ⊆ Rd be a d-simplex with vertices p1, . . . ,pd+1. Let

εmin = −
(

d+1
∑

i=1

1/δ(pi, Hi)

)−1

, (2.9)

where Hi is the opposing hyperplane to pi. D(s̄, εmin) is a single point. For ε > εmin, D(s̄, ε)
is a d-simplex, with faces parallel to and translated distance |ε| away from the faces of s̄.

For εmin ≤ ε ≤ 0, D(s̄, ε) ⊆ s̄, while for ε ≥ 0, s̄ ⊆ D(s̄, ε).

The specific result needed for Lemma 5.1 requires a relationship between incident d-

simplices expressed using the dilation. The following claim establishes the necessary result.

Claim 2.12. Let s̄a, s̄b ⊆ Rd be incident d-simplices, that is s̄a ∩ s̄b = sab, where sab ¹
s̄a, s̄b is a (k − 1)-simplex, 1 ≤ k < d + 1. Let vert(s̄a) = {p1, . . . ,pd+1}, vert(s̄b) =
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Figure 2.5: Two examples of Claim 2.12 in R2. Any x ∈ D(s̄a, ε) ∩ s̄b (the shaded region)

will satisfy δ(x, A) < κa,bε, where κa,b is a constant determined by s̄a and s̄b and A = aff sab.

This result holds for arbitrary dimension and for shared faces of any dimension.

{p1, . . . ,pk,qk+1, . . . ,qd+1}, and vert(sab) = {p1, . . . ,pk}. Let A = aff sab. Then ∃κa,b > 0

such that ∀ε > 0, if x ∈ D(s̄a, ε) ∩ s̄b then δ(x, A) < κa,bε.

Figure 2.5 illustrates Claim 2.12 with a pair of examples in R2.

2.2 Triangulations

The intuitive concept of “triangulation” as a partition of some space into simplices is

found in many fields, such as algebraic topology, computational geometry, graphics, and

finite element analysis. Unfortunately there is no uniform definition of triangulation across

fields, and even within computational geometry there is no uniform formal definition of

triangulation [Ede01]. Formal definitions of triangulation are built on the definition of sim-

plicial complex from algebraic topology. A simplicial complex, defined below, is a collection

of simplices and their faces that have been “glued” together in an appropriate way. In alge-

braic topology, a triangulation of a topological space X is a simplicial complex K coupled

with a homeomorphism2 between the underlying space of the simplicial complex |K| and X
[Spa66, Hat01]. In this case, the triangulation captures the combinatorial features of the

space, but in X the simplices have been deformed through the homeomorphism so that they

are no longer necessarily geometric simplices. A more constrained notion of triangulation

is used in computational geometry. The definition of triangulation presented in Section

2.2.2 is akin to that used in computational geometry, but slightly more general than most

definitions in that the underlying space is allowed to be nonconvex. First it is necessary to

2Recall that a homeomorphism is a continuous map that has a continuous inverse.
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define simplicial complex.

2.2.1 Simplicial Complexes

The definition of simplicial complex presented here, adapted from [Ede01], emphasizes

the geometric structure of the complex and is hence less abstract than some of the traditional

literature in algebraic topology circa the 1950s, such as example [Spa66]. This definition

also shares much in common with the generalization of simplicial complexes, called ∆-

complexes, found in modern algebraic topology literature such as [Hat01]. The discussion of

the differences between simplicial- and∆-complexes may be found in A.3.1 in the appendix.

A geometric simplicial complex is a collection K of simplices in Rd satisfying

1. if s1 ∈ K and s2 ¹ s1, then s2 ∈ K

2. if s1, s2 ∈ K, then s1 ∩ s2 ¹ s1, s2.

We generally refer to a geometric simplicial complex simply as “simplicial complex,” only

including “geometric” when necessary to distinguish it from an abstract simplicial complex,

defined below. Condition 1 for a simplicial complex says that if a simplex is in the complex,

then all its faces must also be in the complex. This gives simplicial complexes a recursive

structure. Condition 2 says that simplices in the complex may intersect only at shared faces

and in no other way. A collection of simplices that violates condition 2 is said to have an

“improper intersection.” Figure 2.6 illustrates a geometric simplicial complex as well as

several of the operations described below.

The dimension of a simplicial complex K is

dimK := sup
s∈K

dim s. (2.10)

The vertex set of a simplicial complex is

vert(K) :=
{

x ∈ Rd |x ∈ vert(s), s ∈ K
}

. (2.11)

The underlying space of a simplicial complex is

|K| :=
{

x ∈ Rd |x ∈ s, s ∈ K
}

. (2.12)

A subcomplex is a subset of a simplicial complex that is itself a simplicial complex. The

closure of a subset L ⊆ K is the smallest subcomplex that contains L,

ClL :=
{

s ∈ K
∣

∣s ≤ s′, s′ ∈ L
}

(2.13)

The star of a simplex s is the set of all simplices that contain s,

St s :=
{

s′ ∈ K
∣

∣s ≤ s′
}

. (2.14)
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Figure 2.6: An example of a simplicial complex K in R2.

K = {{p1}, {p2}, {p3}, {p4}, s1, s2, s3, s4, s5}, where

s1 = conv({p1,p2}), s2 = conv({p1,p3}), s3 = conv({p2,p3}),
s4 = conv({p3,p4}), s5 = conv({p1,p2,p3}).

Examples of operations on simplicial complex K,
dimK = 2

vert(K) = {p1,p2,p3,p4}
Cl ({s5}) = {{p1}, {p2}, {p3}, s1, s2, s3, s5}
Cl ({{p4}, s4}) = {{p3}, {p4}, s4}
St({p1}) = {{p1}, s1, s2, s3}
St(s1) = {s5}
Lk ({p1}) = {s2, s3}
Lk (d5) = {{p4}}
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The star is not in general a subcomplex. The link of a simplex s,

Lk s :=
{

s′ ∈ Cl St s
∣

∣s ∩ s′ = ∅
}

. (2.15)

is the set of all simplices in the closure of the star that do not intersect s.

An abstract simplicial complex is a collection S of finite sets satisfying if α ∈ S and

β ⊆ α then β ∈ S. Moreover if β ⊆ α, then we say that β is a face of α and write β ¹ α.

The sets in S are also called simplices (we use the term “abstract simplices” in cases where

the context is not clear), and the dimension of α ∈ S is dimα := card(α)−1. The vertex set

of an abstract simplicial complex is the set
{

x
∣

∣x ∈ α, α ∈ S
}

. The concepts of subcomplex,

closure, star and link may be similarly extended to abstract simplicial complexes.

Notice that given a geometric simplicial complex K, the collection of finite sets

{{vert(s)}|s ∈ K} (2.16)

is an abstract simplicial complex. The abstract simplicial complex represents the combina-

torial information about the underlying space of the geometric simplicial complex.3

A geometric simplicial complex K in Rd can be parameterized 4 by the pair (P,S), where
P is an indexed set of n unique points in Rd,

P =
{

p1, p2, . . . , pn

}

,

and S is an abstract simplicial complex with vertex set {1, 2, . . . , n}. Let

K(P,S) =
{

conv(P (α))
∣

∣α ∈ S
}

,

where5 P (α) = {pi ∈ P |i ∈ α}. The following claim gives the conditions on P and S such

that K(P,S) is a simplicial complex.

Claim 2.13. K(P,S) is a geometric simplicial complex if and only if

1. ∀α ∈ S, P (α) are affinely independent

2. if s1, s2 ∈ K(P,S), then s1 ∩ s2 ¹ s1, s2.

Moreover, if these properties hold, then vert(K(P,S)) = P .

If K(P,S) is a geometric simplicial complex, that is, if it is a collection of well-shaped

simplices and there are no improper intersections of the simplices, then we say that K(P,S)
is an embedding of S.

3In [Spa66], a simplicial complex is defined as what we call an abstract simplicial complex here. A
discussion of the differences between the traditional definition and the more geometric definition may be
found in A.3.1 in the appendix.

4This is not formally a parameterization, because there are some pairs (P,S) for which K(P,S) is not a
geometric simplicial complex. However, for any geometric simplicial complex K, we can write down a pair
(P,S) such that K = K(P,S).

5Formally, an indexed set P of n points in Rd is a map P : {1, 2, . . . , n} → Rd. The ith member of P is
P (i), which we generally write as pi for notational convenience. Here we extend the notion of P to sets. Let
α ⊆ {1, 2, . . . , n}, then P (α) :=

{

P (i)
∣

∣i ∈ α
}
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Figure 2.7: Examples of geometric simplicial complexes. These five different geometric

simplicial complexes in R2 all have the same set of vertices, namely P = {p1,p2,p3,p4,p5},
but different combinatorial structures. The combinatorial structures are:

Sa = { {1, 2, 3}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {1}, {2}, {3}, {4}, {5} }
Sb = { {1, 2, 3}, {1, 4, 5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {4, 5}, {1}, {2}, {3}, {4}, {5} }
Sc = { {1, 2, 3}, {1, 2, 5}, {1, 4, 5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 5},

{4, 5}, {1}, {2}, {3}, {4}, {5} }
Sd = { {1, 2, 3}, {1, 2, 5}, {1, 3, 4}, {1, 4, 5}, {1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3},

{2, 5}, {3, 4}, {4, 5}, {1}, {2}, {3}, {4}, {5} }
Se = { {1, 2, 3}, {1, 2, 5}, {1, 3, 5}, {3, 4, 5}, {1, 2}, {1, 3}, {1, 5}, {2, 3},

{2, 5}, {3, 4}, {3, 5}, {4, 5}, {1}, {2}, {3}, {4}, {5} }
The complexes in (c), (d), and (e) are also triangulations. The complexes in (a) and (b)

are not triangulations because their underlying spaces fail to be manifolds with boundary,

as indicated by the arrows. The triangulations in (d) and (e) have the same underlying

space, but different combinatorial structure. Note that for a triangulation, the rest of the

combinatorial structure can be deduced from the d-simplices of S.
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2.2.2 Definition of Triangulation

There is no uniform formal definition of triangulation in computational geometry [Ede01],

though it is generally a geometric simplicial complex with a few extra conditions. For exam-

ple, in [ES96] a triangulation is a simplicial complex whose underlying space is the convex

hull of the vertex set. This definition is well suited to the computational geometry problem

of computing a triangulation of a set of vertices, discussed in Section 2.3, but the require-

ment for a convex underlying space is stricter than desired for the present purpose. The

key concept in the definition of triangulation used here is that a triangulation has good

local volume properties everywhere. The underlying space has no “thin” spots. Figure 2.7

provides five geometric simplicial complexes, three of which are triangulations and two of

which are not.

A triangulation T is a k-dimensional geometric simplicial complex in Rd for which the

underlying space is a connected k-manifold with boundary. In this dissertation, we will pri-

marily be interested in triangulations for which the underlying space is a simply-connected

d-manifold with boundary embedded in Rd.

Since a triangulation is a geometric simplicial complex, it can be parameterized in the

same manner. We write T (P,S) rather than K(P,S) to indicate that the potential geometric

simplicial complex generated by the pair (P,S) would be a triangulation. As with geometric

simplicial complexes, if T (P,S) is a triangulation, then we say that T (P,S) is an embedding

of S.
Given that K(P,S) is a geometric simplicial complex, whether it is also a triangulation

is determined entirely by S. Unfortunately the author is unaware of any proven sufficient

conditions on S to yield a triangulation, although there are a number of straightforward

necessary conditions.

Claim 2.14. Let K(P,S) be a geometric simplicial complex that is also a triangulation,

that is |K(P,S)| is a connected k-manifold with boundary. Then

• ∀α ∈ S, ∃ a k-simplex α′ ∈ S such that α is a face of α′

• For any α, β ∈ S, ∃ k-simplices γ1, . . . , γn ∈ S such that α ∩ γ1 6= ∅, β ∩ γn 6= ∅, and
γi ∩ γi+1 is (k − 1)-simplex for each i = 1, . . . , n− 1.

2.2.3 Notation and Geometric Constants Related to Triangulations

In this dissertation we are primarily concerned with d-dimensional triangulations in Rd.

From Claim 2.14, it is sufficient to list the d-simplices of a triangulation. All other simplices

in the complex are faces of the d-simplices. For this reason, when writing about a triangula-

tion T (P,S), we will treat S as if it is specified by an indexed list of NT abstract d-simplices,

ᾱi, i = 1, . . . , NT . The corresponding geometric d-simplices are s̄i, i = 1, . . . , NT , where

s̄i = conv(P (ᾱi)). The following notation is a convenient way to indicate the dimension of

28



the shared face between two d-simplices of T (P,S),

di,j := dim(s̄i ∩ s̄j) = card(vert(s̄i ∩ s̄j))− 1, (2.17)

Another bit of useful notation is the number of d-simplices in St{pi},

Ni =
∑

s̄j∈Stpi

1. (2.18)

Several characteristic measurements of a triangulation are used in establishing facts

about PL functions and proving convergence of the minvar algorithm. These constants

may be interpreted geometrically as minima or maxima of different measures of the “radii”

of d-simplices in the parameterized triangulation T (P,S).
The maximum inter-vertex distance is the maximum distance between vertices in a

d-simplex,

r1(P,S) := max
s̄i∈T (P,S)
pj ,pk∈s̄i

‖pj − pk‖ . (2.19)

The minimum orthogonal distance is the minimum distance from a vertex to the hyperplane

containing one of its opposing facets,

r2(P,S) := min
s̄i∈T (P,S)

pj∈vert(s̄i)

δ(pj , aff(vert(s̄i) \ {pj})) . (2.20)

The dilation radius is given by

r3(P,S) = min
s̄i∈T (P,S)

sup
{

ε
∣

∣

∣D(s̄i, ε) ⊆ |Cl Sts̄i|
}

, (2.21)

where D(·, ·) is the dilation, defined in Section 2.1.4. The dilation radius gives a bound on

how far a d-simplex can be dilated while guaranteeing that it does not expand out past its

neighbors. A single thin d-simplex in the triangulation can cause the dilation radius to be

small. The property of the dilation radius is expressed by the following claim.

Claim 2.15. Let 0 < ε < r3. Let s̄i, s̄j ∈ T (P,S). Then D(s̄i, ε) ∩ s̄j 6= ∅ if and only if

s̄i ∩ s̄j 6= ∅.

The proof follows trivially from the definition.

2.3 Triangulation of a Set of Points

Finding a triangulation of a set of points is a standard problem in computational ge-

ometry and is conveniently stated using the terminology of the previous section: Given

P = {p1, . . . ,pN}, pi ∈ Rd, find an abstract simplicial complex S such that T (P,S) is a

triangulation with |T (P,S)| = conv(P ). T (P,S) is called a triangulation of P . In another

similar problem, called constrained triangulation, a set of facets in addition to a set of
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Figure 2.8: Edge flipping in two dimensions. These four points in two dimensions have

two possible triangulations, shown above. In two dimensions it is possible to change be-

tween triangulations by “edge flipping,” exchanging two triangles which combine to form

a convex quadrilateral for the two triangles which have the opposite corners connected. A

generalization to higher dimensions exists, but the number of d-simplices after a flip does

not necessarily remain constant.

points is given, and one must find an abstract simplicial complex such that T (P,S) is a

triangulation of P and T (P,S) contains the desired facets.

Typically one assumes that the points of P are in general position in Rd, which in this

case means that no d+2 points lie on a common hypersphere or hyperplane. This assumption

can be relaxed, but in this section we assume at least that conv(P ) has non-empty interior.

That is, the points in P do not all lie in the same hyperplane.

By Claim 2.14, it is sufficient to list the d-simplices in S. Using this fact, we will

represent S as an indexed list of its d-simplices. In general a given set of points P has

many different triangulations. That is, many different abstract simplicial complexes S yield

a triangulation T (P,S) satisfying |T (P,S)| = conv(P ). In the two-dimensional case, one

can change from one combinatorial structure to another through “edge flipping,” illustrated

in Figure 2.8. A generalization of edge flipping exists for higher dimensions, discussed in

Section 2.3.4. Generally one wants to pick a specific triangulation from among the many

possible triangulations of a set of points. The Delaunay triangulation is one of the most

popular triangulations.

2.3.1 Delaunay Triangulation

The Delaunay triangulation is a canonical triangulation of a set of points in which the

triangles are as “fat” as possible. The Delaunay triangulation may be characterized in

several equivalent ways. The definition that most readily generalizes to higher dimensions

is the circumcircle (or circumsphere for higher dimensions) criterion. Let P be an indexed

set of points in Rd and let S be such that T (P,S) is a triangulation of P . For any d-

simplex, there is a unique hypersphere passing through the d + 1 points of vert(s̄), called

the circumsphere. Claim A.1 shows how to compute the circumsphere for a set of points.

A triangulation is Delaunay if the circumsphere of each d-simplex s̄ ∈ T (P,S) contains no
points from P other than vert(s̄).

For the two dimensional case, an equivalent characterization of Delaunay is that of all
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Figure 2.9: The Delaunay triangulation and its dual Voronoi tessellation. The Delaunay

triangulation is shown in thick, dark lines and the dual Voronoi tessellation is shown in

thin, light lines for this set of eight points in R2

possible triangulations, it is the triangulation for which the smallest angle of all the angles

in all the triangles is as large as possible. There are also other equivalent characterizations,

for example [Raj94] shows Delaunay as a solution to a combinatorial optimization problem.

The Delaunay triangulation is the dual of the Voronoi tessellation (also known as the

“Voronoi diagram,” and “Dirichlet” or “nearest neighbor” tessellation) [Bro79, Bow81,

Wat81]. The Voronoi tessellation divides Rd into polygonal cells. The Voronoi tessella-

tion has one cell for each vertex pi ∈ P and the cell is the set of all points that are closer

to pi than to any other vertex in P . The Voronoi tessellation can be constructed from the

Delaunay triangulation and vice versa. An example of a planar Delaunay triangulation and

its dual Voronoi tessellation is shown in Figure 2.9.

The Delaunay triangulation is unique if the vertices are in general position. In this

case, general position means that no d+ 2 points lie on a common sphere or on a common

hyperplane.

2.3.2 Delaunay Triangulation via Lifting to Paraboloid

In [Bro79], Brown shows that the Voronoi tessellation, and hence the Delaunay trian-

gulation, of a set of points in Rd may be computed by projecting the points in a particular

way to Rd+1, computing the convex hull of the projected points and then projecting the

facets of the convex hull back down to Rd. Since there are efficient algorithms and codes for
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computing the convex hull in general dimension, projection provides an effective method

for computing the Delaunay triangulation in higher dimensions. The projection employed

by Brown is an inversion, but the modern preference is to project to a paraboloid. The

algorithm for computing the Delaunay triangulation of a set of points by projecting to the

paraboloid is:

Let P = {p1, . . . ,pn}, pi ∈ Rd be in general position.

1. Project onto the paraboloid: pi −→ p̃i =
[

pi
T ‖pi‖2

]T

2. Compute the convex hull of the projected points (i.e. the facets of the convex hull

with outward pointing normal)

3. pi1 ,pi2 , . . . ,pid+1
is a d-simplex of the Delaunay triangulation of P if and only if

p̃i1 , p̃i2 , . . . , p̃id+1
are the vertices of a facet of the convex hull of the projected points

with outward normal vector pointed downward (negative in the n+ 1 coordinate).

A proof of correctness for this algorithm is supplied by Claim A.3 in the appendix.

Projecting to the paraboloid will appear again in the discussion of topological flipping, the

generalization of edge flipping.

2.3.3 Optimality of the Delaunay Triangulation

The Delaunay triangulation of a set of points can be interpreted as a combinatorial opti-

mization problem. One of the first observed properties of the planar Delaunay triangulation

is that of all triangulations of the convex hull of the point set, the Delaunay triangulation

maximizes the minimum angle of any triangle (2-simplex) in the triangulation [Law77]. In

this sense, the planar Delaunay triangulation can be considered the triangulation that max-

imizes the minimum angle. The following subsection shows how a lexicographic order can

be placed on planar triangulations, and local flipping can be applied to reach the Delaunay

triangulation [Law77]. The local flipping algorithm motivated the algorithm for computing

a two dimensional data dependent triangulation [DLR90b] (presented in Section 3.2) as well

as the heuristically guided retriangulation for minvar (Section 4.3).

The generalization of this optimality criterion to Rd is stated in terms of the maximum

min-containment radius rather than maximum minimum angle. The min-containment ra-

dius is the radius of the smallest sphere that contains a given d-simplex. The maximum

min-containment radius for a triangulation is the greatest min-containment radius for all

d-simplices in that triangulation. For a given set of points, the Delaunay triangulation

has the smallest maximum min-containment radius among all other triangulations [Raj91].

Unfortunately, this generalized property does not give rise to a lexicographic ordering of

d-dimensional triangulations.
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Figure 2.10: The locally Delaunay criterion. Left, two triangles p1p2p3 and p1p3p4 share

the edge p1p3. The circumcircle for p1p2p3 is shown. Since p4 lies within the circumcircle,

the edge p1p3 is not locally Delaunay, but the edge is flippable. Right, the edge p1p3 has

been flipped to the edge p2p4. The circumcircle of triangle p2p3p4 does not contain p1, so

the edge is locally Delaunay.

2D Delaunay Triangulation by Local Flipping

Delaunay triangulations have been studied in great detail in two dimensions for several

decades. See [dBvKOS97, PS85], for example. Lawson found that the planar Delaunay

triangulation could be constructed from an arbitrary triangulation through edge flipping

[Law77, dBvKOS97]. A triangulation of a set of n points in R2 has a fixed number of

triangles given by 2n − 2 − k, where k is the number of points on the convex hull. A

triangulation can be labeled with an angle vector with 3(2n − 2 − k) entries, listing the

angles of all the triangles in the triangulation, ordered from smallest angle to largest. A

lexicographic ordering of these angle vectors gives an ordering to the triangulations of the

point set, with the greatest triangulation corresponding to the Delaunay triangulation.

(Since, as described above, the Delaunay triangulation has the largest minimum angle.)

Consider an edge of a planar triangulation with endpoints pi,pj shared by two triangles,

one with vertices pi,pj ,pk and one with vertices pi,pj ,pl. The edge is said to be locally

Delaunay (called the circle criterion by Lawson) if the circumcircle of pi,pj ,pk does not

contain pl. The locally Delaunay criterion is illustrated in Figure 2.10. An edge which is

not locally Delaunay can always be flipped. Flipping from a non- locally Delaunay edge to

a locally Delaunay edge yields a triangulation that is greater in the lexicographical order.

Given an initial triangulation of the point set, the following procedure generates the

Delaunay triangulation:

1. While there remains an edge which is not locally Delaunay

Flip edge

A proof that this procedure terminates and gives the Delaunay triangulation is provided in

[Law77] and [dBvKOS97]. This procedure motivates the data dependent triangulations for

33



Figure 2.11: An example of topological flipping in R3. These five points in R3 have two

possible triangulations. The triangulation on the left consists of two tetrahedra, while the

triangulation on the right consists of three tetrahedra.

interpolation discussed in Chapter 3, and for the heuristically guided local retriangulation

performed in the minvar algorithm. Unfortunately, this procedure does not generalize to

higher dimensions in a straightforward fashion.

2.3.4 Local Topological Flipping in Higher Dimensions

In the two-dimensional case, one can move between triangulations of the set of points

by “edge flipping,” illustrated in Figure 2.8. In edge-flipping two triangles are removed and

replaced by two other triangles without affecting the triangulation outside of the convex

hull of the four points. Local changes to the triangulation can be used to find the Delaunay

triangulation of a set of points given an initial triangulation, as presented above. Local

changes in triangulation can also be used to improve interpolation of input-output data

[DLR90b, DLR90a], discussed in section 3.2.

Local changes analogous to edge flipping exist for higher dimensions, but the changes

are more complicated. In two dimensions, an edge flip replaces two triangles with two other

triangles, but in higher dimension the number of d-simplices before and after the “flip” may

change. Lawson first described local flipping for d-dimensional triangulations in [Law86].

Lawson shows that a set of d+2 points in Rd has at most two triangulations. Lawson uses

“signature sets” to examine these triangulations.

Theorem (Theorem 1 from [Law86]). Let P be a set of d+2 points p1, . . . ,pd+2 in Rd
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not lying entirely in any hyperplane. There is a partitioning of the index set 1, 1, . . . , d+ 2

into three sets σ0, σ1 and σ2 and a set of numbers ci satisfying

∑

i∈σ1

cipi =
∑

i∈σ2

cipi,

∑

i∈σ1

ci =
∑

i∈σ2

ci = 1,

ci = 0, i ∈ σ0,

ci > 0, i ∈ σ1 ∪ σ2
The numbers ci are uniquely determined by P . The sets σ0, σ1, σ2 are also unique with the

understanding that the labeling of σ1 and σ2 could be arbitrarily interchanged.

The sets σ0, σ1, and σ2 are the signature sets of the d + 2 points in P . Triangulations

of P are given by the signature sets as follows:

Theorem (Theorem 2 from [Law86]). Let P be as above. There are at most two distinct

triangulations of the convex hull of P , namely T (P,S1) and T (P,S2), where the abstract

d-simplices of Si are given by {1, . . . , d+ 2} \ {j} for j ∈ σi

When there are two triangulations of the d+2 points, one may switch between these two

triangulations without affecting the convex hull. If the triangulation of these vertices given

by σ1 is a subcomplex of a larger d-dimensional triangulation in Rd, then we can locally

substitute the triangulation given σ2 without affecting the rest of the triangulation. This

is called a “topological flip.” It is more complicated than standard edge-flipping, since a

topological flip can change the number of d-simplices in the triangulation. Figure 2.11 shows

two different triangulations for 5 generic points in R3, in which case one triangulation has

two 3-simplices and the other has three 3-simplices. In [ES96], Edelsbrunner notes results

of Lawson can be interpreted as a result of Radon’s theorem from classical convex geometry

[Web94, Theorem 2.2.5]. Conditions for finding flippable subcomplexes of a triangulation

will be presented later in this section.

Further from Lawson [Law86], one can enumerate all possible significantly different

configurations of d + 2 points by finding possible ways of assigning values to card(σ0),

card(σ1), and card(σ2) satisfying

card(σ2) ≥ card(σ1) ≥ 1,

card(σ2) ≥ 2,

card(σ0) ≥ 0,

card(σ0) + card(σ1) + card(σ2) = d+ 2.

Table 2.1 lists the possible assignments of signature set cardinalities for d = 2, 3, 4. Assign-

ments with card(σ1) = 1 are not admissible triangulations, since they represent a single
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d = 2 d = 3 d = 4

card(σ0) card(σ1) card(σ2) card(σ0) card(σ1) card(σ2) card(σ0) card(σ1) card(σ2)

1 1 2 2 1 2 3 1 2

0 2 2 1 2 2 2 2 2

0 1 3 1 1 3 2 1 3

0 2 3 1 2 3

0 1 4 1 1 4

0 3 3

0 2 4

0 1 5

Table 2.1: Enumeration of the cardinalities of the signature sets for significantly different

configurations of d+ 2 points in Rd (From [Law86])
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Figure 2.12: Inserting a point in a 2-dimensional triangulation via topological flipping. A

configuration of four points in R2 with signature sets σ0 = ∅, σ1 = {4} and σ2 = {1, 2, 3},
with triangulations corresponding to σ1 on the left and σ2 on the right. The triangulation

corresponding to σ1 is inadmissible since p4 ∈ s̄ = conv({p1,p2,p3}) but p4 is not a vertex

of s̄. Even though this triangulation is not admissible, flipping can be used to add a vertex

to (flip σ1 to σ2) or remove a vertex from (flip σ2 to σ1) a triangulation.

d-simplex in which the (d + 2)th point lies inside. Figure 2.12 gives an example of this

case. Flipping between the inadmissible and admissible triangulation can be used to add

or remove a vertex from a triangulation.

Configurations where card(σ0) > 0 are degenerate in the sense that r + 2 of the points

lie in an r-dimensional affine subspace for some r < d (i.e. the points are not in general

position). In this case, the facets of the convex hull of the points may change without

changing the convex hull itself, as illustrated in Figure 2.13. If such a configuration occurs as

a subcomplex of a larger triangulation, then the subcomplex cannot be flipped independently

of simplices outside the subcomplex that share the degenerate faces.
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Figure 2.13: A degenerate flip in R3. A configuration of five points in R3 with p1,p2,p3,p4

coplanar. The signature sets are σ0 = {5}, σ1 = {2, 4} and σ2 = {1, 3}, with triangulations

corresponding to σ1 on the left and σ2 on the right. Notice that the facets on the convex

hull are different in the two triangulations, though the convex hull itself does not change.

Local Triangulations Via Lifting to Paraboloid

In [ES96], Edelsbrunner shows that the two triangulations of a set of d + 2 points

in Rd that do not all lie in a hyperplane may be computed by lifting the points to the

paraboloid and computing the convex hull, as in computing the Delaunay triangulation

in Section 2.3.2. The points are lifted to the paraboloid by pi → p̃i = [pi
T ‖pi‖2]T for

i = 1, . . . , d+2. Since the pi’s do not all lie in a hyperplane Rd, the lifted points p̃i ∈ Rd+1

are affinely independent. Since the d + 2 points are affinely independent points in Rd+1,

it follows that s̄ = conv({p̃1, . . . , p̃d+2}) is a (d + 1)-simplex and the convex hull of any

subset of d+1 vertices, {p̃1, . . . , p̃d+2}\{p̃j}, is a facet of s̄. The facet’s (outward pointing)

normal vector points away from the halfspace containing p̃j . As in Section 2.3.2, facets

with downward pointing normal vectors (negative in the (d+1)th coordinate) correspond to

the d-simplices of the Delaunay triangulation of p1, . . . ,pd+2. Facets with upward pointing

normal vectors (positive in the (d + 1)th coordinate) correspond to the d-simplices of the

second triangulation. (Note that for more than d+2 points, the facets with upward pointing

normal vectors would not correspond to a valid triangulation.) Facets with normals that

point neither upward nor downward ((d + 1)th coordinate is zero) are degenerate and do

not belong to either triangulation, corresponding to the signature set σ0. This occurs when

r+2 of the points pi lie in an affine subspace of dimension r, for some r < d. This is a thin

set in the space of point configurations, but unfortunately designs often put large numbers

of points in the same hyperplane, for example on the domain boundary.

Flippability of a Subcomplex

The discussion above applies to configurations of d + 2 points in Rd, but the objective

is to use these results to change the combinatorial structure S1 for some d-dimensional

triangulation in Rd, T (P,S1) with card(P ) > d + 2 to get a new combinatorial structure
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S2 such that T (P,S2), where S2 is the same as S1 except for a local change of the form

above. This requires a method of finding a subcomplex of T (P,S1) that has the proper

configuration to be flipped. Edelsbrunner proposed the following definition for flippability

when the points of P are in general position, i.e. no r+2 points lie in an affine subspace of

dimension r for some r < d:

Let s be a (d− 1)-simplex (i.e. a facet) of a triangulation T (P,S), and let s̄1 and s̄2 be the

incident d-simplices, if they exist. Let P ′ = vert(s̄1) ∪ vert(s̄2) and let S ′ be the collection

S ′ = {α ∈ S|pi ∈ P ′ for all i ∈ α}. Then T (P ′,S ′) is the triangulation of P ′ induced by

S. The subcomplex T (P ′,S ′) is flippable if conv(P ′) = |T (P ′,S ′)|. If the subcomplex is

flippable, one also says that s is flippable. [ES96]

Given a triangulation T (P,S1), if the points of P are in general position and one finds

a flippable subcomplex T (P ′,S ′), then the alternate triangulation of P ′ can be computed

by lifting to the paraboloid as discussed above, giving the new subcomplex T (P ′,S ′′). The
new triangulation is then T (P,S2), where S2 = (S \ S ′) ∪ S ′′.

2.3.5 Regular Triangulation via Incremental Topological Flipping

Any 2-dimensional triangulation can be transformed into a Delaunay triangulation

through the edge-flipping algorithm as presented in Section 2.3.3. For a 3-dimensional

triangulation, Joe [Joe89] shows that an analogous algorithm can get stuck. That is, there

will be simplices that do not satisfy the local Delaunay property but are not part of a

flippable subcomplex. A straightforward flipping algorithm does not work. In [Raj91],

Rajan shows that if a point is inserted in a Delaunay triangulation of general dimension,

then there is always a sequence of flips that converts this new triangulation to a Delaunay

triangulation, and presents an algorithm to incrementally build a Delaunay triangulation

through point insertion and local flipping.

Regular triangulations [Lee91] are a generalization of Delaunay, in which each point has

a weight associated with it. The weights control the triangulation, and when all weights

are the same, the regular triangulation is the Delaunay triangulation. For a set of points in

general position in Rd, a set of weights gives rise to a unique regular triangulation.

In [ES96], Edelsbrunner presents an algorithm that computes the regular triangulation

of a set of points in general position in Rd using incremental topological flipping. When

inserting a new point pi into the triangulation, it is shown that only non-regular facets in

Lkpi, the link of the inserted point, must be flipped in order to transform the triangulation

back to a regular triangulation. Edelsbrunner’s algorithm couples this fact with a clever

method to determine the d-simplex in which the inserted vertex lies, providing overall an

O(n logn + ndd/2e) algorithm. The method to locate the inserted point uses a directed

acyclic graph for locating the d-simplex to represent the successive triangulations generated

as vertices are inserted. A variant of this algorithm is implemented as part of the min-
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var algorithm in order to generate initial triangulations and perform heuristically guided

retriangulation.

2.3.6 Practical Considerations

The algorithms in this section assume that the points to be triangulated are in general

position. That is, no d + 2 points lie on a common sphere or on a common hyperplane.

When the input points are not in general position, they are said to be degenerate. In the

input space of n points in Rd, i.e. Rnd, the set of degenerate configurations has measure

zero. If configurations were chosen randomly, then degenerate configurations would be

vanishingly rare, but often the set of points to be triangulated is not chosen randomly. For

example, in the following chapter on PL functions, a triangulation represents the domain

of a PL function. Often (e.g. due to design of experiments) the domain is a hypercube with

multiple vertices on each face, which is a degenerate configuration and requires special care

in constructing a triangulation. As with many geometric algorithms, much of the difficulty

in constructing triangulations is addressing the special cases caused by degenerate input.

There are many codes for generating triangulations in two and three dimensions that deal

with degeneracies, driven by interest in computer graphics and finite element modeling.

In contrast there is very little that reliably deals with degenerate point sets in general

dimension.

Consider a degenerate set of n points in which d+ 2 (or more) points lie on a common

hypersphere. In this case, the Delaunay triangulation, which would be unique if the points

were in general position, might not be unique. When computing the Delaunay triangulation

by lifting to the paraboloid (Section 2.3.2), this type of degeneracy appears as a face of the

convex hull that is a polytope rather than a simplex. This polytope can be partitioned into

simplices in several ways, resulting in several different triangulations that are equivalently

Delaunay. One of these triangulations must be chosen. This choice is arbitrary since each

of the resulting triangulations is equivalently Delaunay.

Consider a degenerate set of n points in which r+2 points (or more) lie on an r dimen-

sional affine subspace, r ≤ d. This type of degeneracy is more difficult to handle since it can

lead to a combinatorial structure that does not yield a valid triangulation with the input

points. Consider a flippable subcomplex of d+2 points, for which r+2, r < d, of the points

lie in an r-dimensional affine subspace. In this case, card(σ0) > 0, where σ0 is the signature

set described in Section 2.3.4. When computing the two possible triangulations of the d+2

points by lifting to the paraboloid, the degeneracy causes facet(s) whose normal vector is

orthogonal to the lifting axis. That is, the facet’s normal vector points neither upward nor

downward. When this type of degenerate subcomplex occurs, it cannot be flipped without

simultaneously flipping adjoining degenerate subcomplexes. This form of degeneracy is dif-

ficult to detect systematically due to finite precision arithmetic, especially in the case where
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multiple subcomplexes must be flipped simultaneously. A facet’s normal vector6 is a contin-

uous object. The normal vector is classified as pointing upward, downward, or orthogonal,

which is a combinatorial classification, and the classification of the facets determines two

possible triangulations. Due to finite precision arithmetic, a normal vector will generally

never be perfectly orthogonal, even if the points are degenerate. Misclassification leads to

very different combinatorial structures. If points which are degenerate appear numerically

to be nondegenerate, or alternatively if nondegenerate points appear degenerate, then an

improper combinatorial structure may be chosen that does not yield a valid triangulation.

In the qhull code [BDH96] (the algorithm is designed for data in general position), the

effects of misdiagnosed degeneracies are often observed as improper d-simplices with zero

volume. If the improper simplices are on the boundary, then they can be pruned with-

out damaging the triangulation, but if the improper simplices are in the interior (not on

the boundary) of the triangulation, then pruning breaks the combinatorial structure of the

triangulation.

There are several ways to address degeneracies. One method is to perturb the input

set to gain a set of points in general position. The qhull code optionally performs such

a perturbation, which they call “joggling,” by adding small random floating point values

to the input points. The size of the perturbation is determined heuristically. Simulation

of Simplicity (SoS) [EM90] is another perturbation based technique, developed by Edels-

brunner and Mücke, which provides a general method for addressing degenerate cases in

geometric algorithms. SoS represents perturbations symbolically, computing the solution

for a set of nondegenerate points infinitesimally close to the degenerate point set. This

requires exact arithmetic, which is considerably more computationally intensive than ma-

chine native finite precision arithmetic, but removes the need for heuristics to determine

the proper size for perturbation. Perturbation techniques in triangulation algorithms yield

a combinatorial structure that forms a valid triangulation with the perturbed points, but

that might not form a valid triangulation with the original set of points. For example, some

of the simplices may be improper, i.e. have zero volume. Postprocessing is needed in this

case, but is not currently well understood in general dimension.

The triangulation code developed for use in the minvar algorithm identifies degeneracies

numerically and treats these cases explicitly. The code works robustly in R3, and addresses

some, but not all, degeneracies in higher dimensions. Like many problems in geometry, the

most significant difficulties in triangulation arise in from the degenerate cases. Dealing with

degeneracies in triangulations is a topic of ongoing interest, both in the present work as

well as in the computation geometry more generally.

6Other quantities can be used to diagnose the degeneracy, but the normal vector is convenient for the
present discussion.
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2.4 Validating an Embedding of an Abstract Simplicial Com-

plex

In checking invertibility of PL functions, the situation arises where one wishes to test

whether a set of vertices forms a triangulation when coupled with a particular abstract

simplicial complex, which we call an embedding of the abstract simplicial complex. Let

P and S be given such that T (P,S) is a triangulation, i.e. T (P,S) is an embedding of

S. Given another set of points Q with the same number of points as P , can we validate

that T (Q,S) is an embedding of S? This is a complementary problem to triangulating

a set of points, discussed in the previous section. In generating a triangulation of a set

of points, a fixed set of vertices P is provided and one wishes to determine an abstract

simplicial complex S such that T (P,S) is a triangulation. To validate an embedding of

an abstract simplicial complex, an abstract simplicial complex (which is know to form a

triangulation with some unspecified set of vertices) and a set of vertices are given, and it

must be determined whether these together give a triangulation.

The naive approach to validating an embedding is to directly check the conditions of

Claim 2.13, that is, check that the appropriate sets of vertices are affinely independent and

that there are no improper intersections of the simplices in T (Q,S). It is given that T (P,S)
is a triangulation, for some set P , so it is unnecessary to check whether the underlying space

of T (Q,S) is a manifold with boundary. T (Q,S) will be a good triangulation so long as

it is a good geometric simplicial complex. That is, it is sufficient to check that T (Q,S) is
a collection of well formed simplices and that there are no improper intersections between

the simplices. Furthermore, since T (P,S) is a triangulation, it suffices to check only for

improper intersections among the d-simplices of T (Q,S). Exhaustively checking pairs of d-

simplices for improper intersections is quadratic in the number of d-simplices. Improvements

could be made, for example by arranging the d-simplices in a variant of a k−d tree in order

to avoid checking for intersections of d-simplices that are not nearby.
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CHAPTER 3

Piecewise Linear Functions: Representation and

Computation

In this dissertation, PL is used to indicate a continuous piecewise linear function1. This

chapter presents a parameterization of PL functions that has a nice geometric interpretation,

especially helpful for identifying properties such as invertibility. This representation of PL

functions has been used in algebraic topology for decades [Spa66], but has not been widely

used in approximation or other areas interested in computation. In dimensions greater

than one, PL functions have a nontrivial combinatorial component. The parameterization

explicitly separates the combinatorial and continuous parameters of the PL functions.

This chapter is divided into four sections. Section 3.1 presents the parameterization

of PL functions, and proves some basic properties about them. One important result is

Claim 3.1, which notes a relationship between the Jacobian of a PL function over domain

simplices that share a common face. This relationship is used in the generalization of the

“jump in normal derivative” criterion for heuristic retriangulation (Section 4.3) as well as in

the proof of local convergence of the minvar algorithm. Claim 3.3 shows that a PL function

is continuous in its continuous parameters, an important observation necessary for the proof

of Corollary 5.1. Also, the proof of Claim 3.3 uses the same construction applied in the

proof of Lemma 5.1, critical for proving the main result of Chapter 5. Section 3.2 covers

interpolation of scattered data with PL functions, and includes a discussion of previous work

on 2-dimensional data dependent triangulations for interpolation, which heavily influenced

the heuristically guided retriangulation for minvar (Section 4.3). Section 3.3 shows how to

compute the least squares PL approximation given a fixed domain triangulation, a standard

problem from the spline literature. This result is included in part for the sake of comparison

and in part to be used as a possible postprocessing step in the minvar algorithm. In

contrast, the minvar algorithm adapts both the domain triangulation in addition to the

1“Piecewise linear” is widely used to describe a function that is affine on each cell of a partition of
the domain partition. A piecewise linear function is locally linear over each cell, so while it may be more
descriptive to use the term “piecewise affine” to describe such a function, this dissertation follows convention
and uses the term piecewise linear.
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other parameters. The chapter concludes with Section 3.4 covering how to check if a PL

function is invertible and how to invert the function in closed form, which are major benefits

of PL functions.

The material in this chapter is largely a reinterpretation of standard results in terms

of the geometrically influenced parameterization of PL functions presented in Section 3.1.

The parameterization is particularly nice for understanding the closed form invertibility

properties of PL functions, presented in Section 3.4. Claims 3.1 and 3.3 in Section 3.1 are

straightforward properties about PL functions, though the author is uncertain whether they

previously appeared in the literature.

3.1 Parameterization of Piecewise Linear Functions

An affine function f : Rd → Rc is generally written as f(x) = Ax + b. It might seem

reasonable to represent a PL function as some partition of the domain with a matrix and

vector (Ai,bi) for each cell of the partition, however the requirement of continuity places

constraints on the (Ai,bi) pairs as well as on the partition of the domain. A much more

parsimonious parameterization is possible.

A PL function2 fP : D → C, D ⊂ Rd, C ⊂ Rc, is parameterized by a triplet P =

(P,Q,S). P is an indexed set of n points in the domain and Q is an indexed set of n points

in the codomain,

P =
{

p1, p2, . . . , pn

}

Q =
{

q1, q2, . . . , qn

}

,

and S is an abstract simplicial complex with vert(S) = {1, . . . , n}, such that T (P,S) is a

triangulation with |T (P,S)| = D. The triplet P = (P,Q,S) defines a continuous piecewise

linear function fP such that fP(pi) = qi, and for any d-simplex s̄i ∈ T (P,S), fP(x) is

affine on s̄. For an abstract d-simplex in S, {i1, . . . , id+1}, there is a corresponding d-

simplex s̄i ∈ T (P,S) with vert(s̄i) = {pi1 ,pi2 , . . . ,pid+1
}. For x ∈ s̄i, the PL function is

given by

fP
∣

∣

s̄i
(x) = CiDi

−1

[

x

1

]

, (3.1)

where

Di =

[

pi1 pi2 . . . pid+1

1 1 1

]

, (3.2)

Ci =
[

qi1 qi2 · · · qid+1

]

. (3.3)

By Claim 2.5 the rightmost two factors of Equation 3.1,Di
−1[xT 1]T, give the barycentric co-

ordinates of x with respect to the vertices of s̄i. fP
∣

∣

s̄i
(x) is the corresponding affine combina-

tion of qi1 , . . . ,qid+1
. It follows that the image of s̄i under fP is conv({qi1 ,qi2 , · · · ,qid+1

}),
2Though this dissertation predominantly concerns PL functions where c = d, this chapter will present a

more general definition of PL functions.
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Figure 3.1: Visualization of a 2-dimensional PL function, fP . The domain triangulation

T (P,S) is shown on the left. fP is affine over each 2-simplex (triangle) in the domain, for

example fP restricted to s̄1 is given by

fP
∣

∣

s̄1
(x) =

[

q1 q2 q7

]

[

p1 p2 p7

1 1 1

]−1 [

x

1

]

.

Since T (Q,S) shown on the right, is also a valid triangulation, the PL function is invertible.

The function may be inverted by simply switching the domain and range.

which gives a hint at the structure that allows PL functions to be inverted in closed

form, presented in Section 3.4. From this barycentric coordinate interpretation, clearly

fP
∣

∣

s̄i
(pij ) = qij . Another fact that falls out of the barycentric coordinate interpretation

of Equation 3.1 is that only the correspondences between the pik ’s and qik ’s matter. fP
∣

∣

s̄i

remains unaffected if the same column permutation is applied to Di and Ci.

Through algebraic manipulation of Equation 3.1 one can equivalently write

fP |s̄i(x) = Aix+ bi (3.4)

or

fP |s̄i(x) = Ai(x− pij ) + qij , (3.5)

where pij ∈ vert(s̄i), qij is the corresponding codomain vertex, and

Ai = CiDi
−1

[

Id×d

01×d

]

,

bi = CiDi
−1

[

0d×1

1

]

. (3.6)

In some cases it is more convenient to use one representation rather than another, but

Equation 3.1 makes the clearest connection to the underlying geometry.
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We now verify that the functions fP
∣

∣

s̄i
of this piecewise definition3 paste together to give

a well defined continuous piecewise linear function. For a given d-simplex s̄i, fP
∣

∣

s̄i
is clearly

affine, and hence continuous from the definition above. The d-simplices of T (P,S) form a

cover of the domain D, intersecting each other along faces. By the pasting lemma (Theorem

7.3 of [Mun75]), in order for these functions fP
∣

∣

s̄i
to paste together to form a continuous

function, one only needs to check that fP
∣

∣

s̄i
(x) = fP

∣

∣

s̄j
(x) for x ∈ s̄i∩ s̄j . This fact, as well

as a closely related fact applied later in this chapter as well as in the convergence proof of

Chapter 5, is established by the following claim. As a preliminary definition, the function

g is called the extension of fP
∣

∣

s̄
to Rd if g is affine and g(x) = fP

∣

∣

s̄
(x) for x ∈ s̄.

Claim 3.1. Let (P,Q,S) be the parameterization of piecewise linear function. Let s̄i, s̄j ∈
T (P,S) be such that s̄i ∩ s̄j 6= ∅. Let fP

∣

∣

s̄i
and fP

∣

∣

s̄j
be defined as in Equation 3.1, and let

fi and fj be their respective extensions to Rd.

i). Then fi(x) = fj(x), for x ∈ aff (s̄i ∩ s̄j)
ii). Let fi and fj be given by fi(x) = Aix+ bi and fj(x) = Ajx+ bj. Let L be the linear

subspace parallel to aff(s̄i ∩ s̄j). Then L ⊆ N (Ai −Aj).

Proof. The extensions fi and fj are also given by Equation 3.1, except that they hold over

all of Rd. Let k be the number of vertices that s̄i and s̄j share. One can find column

permutations of Di, Ci and Dj , Cj such that Di and Dj have the same first k columns and

Ci and Cj have the same first k columns. This permutation leaves fi and fj unchanged.

Consider x ∈ aff(s̄i ∩ s̄j). Since barycentric coordinates are unique by Claim 2.4, the

barycentric coordinates of x with respect to vert(s̄i) and with respect to vert(s̄j), given by

Di[x
T 1]T and Dj [x

T 1]T respectively, will be equal and only the first k coordinates will be

nonzero, which correspond to vertices of s̄i ∩ s̄j . It follows that fi(x) = fj(x).

Let Ai,bi and Aj ,bj be such that fi(x) = Aix + bi and fj(x) = Ajx + bj . Let

x ∈ aff(s̄i ∩ s̄j). Since (i) holds independently of the specific representation of fi and fj , it

follows that Aix+bi = Ajx+bj . Let x0 ∈ aff(s̄i∩ s̄j) and let y0 = Aix0+bi = Ajx0+bj .

Then Ai(x − x0) + y0 = Aj(x − x0) + y0, or equivalently (Ai −Aj)(x − x0) = 0. From

the definition of affine subspace, x − x0 ∈ L, where L is the linear subspace parallel to

aff(s̄i ∩ s̄j). Thus L ⊆ N (Ai −Aj).

The parameters of a PL function fall naturally into two groups, the continuous param-

eters, P and Q, and the combinatorial parameters, S. A PL function is continuous in its

continuous parameters, which is a simple corollary of Claim 3.3, to be presented shortly.

In order to set up this claim, consider two continuous piecewise linear functions, f 1P pa-

rameterized by P1 = (P1, Q1,S) and f2P parameterized by P2 = (P2, Q2,S), such that

|T (P1,S)| = |T (P2,S)|. A superscript denotes whether an entity corresponds to f 1P or f2P ,

3Using the restriction notation fP
∣

∣

s̄i
anticipates that the piecewise definition of Equation 3.1 does indeed

give a continuous piecewise linear function. This abuse permits a more straightforward introduction of
parameterized PL functions.
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for example P1 = {p11, . . . ,p1n}, Q1 = {q11, . . . ,q1n}, s̄1i is the ith d-simplex of T (P1,S),
f1P
∣

∣

s̄11
(x) = A1

i (x− p1ij ) + q1ij , etc.
Before stating the result on continuity of PL in the vertices, it is useful to recall that

in this chapter and throughout this dissertation, vector norms are the standard Euclidean

norm and matrix norms are the induced two norm, unless otherwise noted. The L∞ norm

appears in the statement of the continuity result, and the following fact is useful for relating

the vector 2-norm to the L∞ norm.

Claim 3.2. The L∞ norm for the continuous function f : U → V , U ⊂ Rd, V ⊂ Rc is

‖f‖∞ = ess sup
x∈U

‖f(x)‖∞ .

If

sup
x∈U
‖f(x)‖2 < ε

then ‖f‖∞ < ε

Proof. This fact follows from the fact that ‖x‖∞ ≤ ‖x‖2 for x ∈ Rd.

Claim 3.3 (Continuity in vertices). Let c > 0. Let 0 < ε < r3 be given, where r3 is the

dilation radius of T (P2,S) given by Equation 2.21.

If
∥

∥p1i − p2i
∥

∥ < ε and
∥

∥q1i − q2i
∥

∥ < cε for i = 1, . . . , n, then

∥

∥f1P − f2P
∥

∥

∞
< c′ε,

where c′ = c′(P2, c) is given by Equation 3.7.

Proof. The d-simplices of T (P1,S) are a cover for the domain, so
∥

∥f1P − f2P
∥

∥

∞
can be

rewritten as the maximum of the infinity norm over the N d-simplices of T (P1,S),
∥

∥f1P − f2P
∥

∥

∞
= max

i=1,...,N

∥

∥

∥
(f1P − f2P)

∣

∣

s̄1i

∥

∥

∥

∞
.

Let f2P
∣

∣

s̄2i
be given by f2P

∣

∣

s̄2i
(x) = A2

i (x−p2ij )+q2ij for p2ij ∈ vert(s̄2i ). Let ϕi be the extension

of f2P
∣

∣

s̄2i
to Rd, ϕi(x) = A

2
i (x− p2ij ) + q2ij . Let ψi(x) = f2P(x)− ϕi(x). Then ϕ is an affine

function and ψi is a piecewise linear function with ψi
∣

∣

s̄2i
≡ 0. Then,

∥

∥

∥
(f1P − f2P)

∣

∣

s̄1i

∥

∥

∥

∞
=

∥

∥

∥
(f1P − ϕi − ψi)|s̄1i

∥

∥

∥

∞

≤
∥

∥

∥(f1P − ϕi)|s̄1i
∥

∥

∥

∞
+
∥

∥

∥ψi|s̄1i
∥

∥

∥

∞

These terms will be individually bounded. The function f 1P − ϕi is affine on s̄1i , so then

the function
∥

∥f1P(x)− ϕi(x)
∥

∥ is convex on s̄1i . Moreover s̄1i is a compact convex set, so
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∥

∥f1P(x)− ϕi(x)
∥

∥ will take its maximum on s̄1i at a vertex of s̄1i . Thus,

∥

∥

∥(f1P − ϕi)|s̄1i
∥

∥

∥

∞
= max

p1j∈vert(s̄
1
i )

∥

∥f1P(x)− ϕi(x)
∥

∥

= max
p1j∈vert(s̄

1
i )

∥

∥A1
i (p

1
j − p1j ) + q1j − [A2

i (p
1
j − p2j ) + q2j ]

∥

∥

≤ max
p1j∈vert(s̄

1
i )

∥

∥q1j − q2j
∥

∥+
∥

∥A2
i

∥

∥

∥

∥p1j − p2j
∥

∥

<
(

c+
∥

∥A2
i

∥

∥

)

ε

It remains to bound
∥

∥

∥
ψi|s̄1i

∥

∥

∥

∞
. Recall that ψi is a continuous piecewise linear function and

ψi|s̄2i ≡ 0. Since
∥

∥

∥
p1j − p2j

∥

∥

∥
< ε, it follows that s̄1i ⊆ D(s̄2i , ε), where D(·, ·) is the dilation,

defined in Section 2.1.4. Moreover since ε < r3, by Claim 2.15, D(s̄2i , ε)∩ s̄2k 6= ∅ if and only

if s̄2k ∩ s̄2i 6= ∅, or equivalently s̄2k ∈ St s̄2i . These facts allow
∥

∥

∥
ψi|s̄1i

∥

∥

∥

∞
to be rewritten as

∥

∥

∥
ψi|s̄1i

∥

∥

∥

∞
= max

s̄2k∈St s̄
2
i

∥

∥

∥
ψi|s̄1i∩s̄2k

∥

∥

∥

∞
.

Let s̄2k ∈ St s̄2i and let p2j ∈ vert(s̄2k ∩ s̄2i ). Then we can write ψi|s̄2k(x) = (A2
k −A2

i )(x−p2j ),
and by Claim 3.1, ψi|s̄2k∩s̄2i (x) ≡ 0. Thus for x ∈ s̄

1
i ∩ s̄2k,

‖ψi(x)‖ =
∥

∥(A2
k −A2

i )(x− xk)
∥

∥

≤
∥

∥A2
k −A2

i

∥

∥ δ
(

x, aff(s̄2k ∩ s̄2i )
)

.

But s̄1i ∩ s̄2k ⊂ D(s̄2i , ε) ∩ s̄2k, so by Claim 2.12, δ
(

x, aff(s̄2k ∩ s̄2i )
)

< κi,kε, where κi,k is a

constant depending on P2 given by Equation A.15. Thus,

∥

∥

∥
ψi|s̄1i

∥

∥

∥

∞
≤

[

max
s̄2k∈St s̄

2
i

∥

∥A2
k −A2

i

∥

∥κi,k

]

ε

It follows that

∥

∥

∥
(f1P − f2P)|s̄1i

∥

∥

∥

∞
<

(

c+
∥

∥A2
i

∥

∥+ max
s̄2k∈Sts̄

2
i

∥

∥A2
k −A2

i

∥

∥κi,k

)

ε.

Thus
∥

∥f1P − f2P
∥

∥

∞
< c′ε, where

c′ = max
i

(

c+
∥

∥A2
i

∥

∥+ max
s̄2k∈Sts̄

2
i

∥

∥A2
k −A2

i

∥

∥κi,k

)

. (3.7)

3.2 Interpolation with PL Functions

Interpolating a data set is a convenient method to predict a functional relationship for

a data set. Consider a set of data pairs Z = {(xi,yi)}Nd
i=1 produced by a data generating
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function f∗ : Rd → Rc, yi = f∗(xi). A continuous function f interpolates Z if f(xi) = yi

for i = 1, . . . , Nd. By assuming that the data generating function comes from a certain

class of functions, bounds may be placed on the error between the data generating and

interpolating functions.

It is straightforward to construct a piecewise linear interpolating function for the data

set Z. Let P = {pi}Nd
i=1 where pi = xi and let Q = {qi}Nd

i=1 where qi = yi, and find S such

that T (P,S) is a triangulation. S could be computed, for example, using code for computing

either the Delaunay or regular triangulation of P , in which case |T (P,S)| = conv(P ).

Of course, in general there are many different possible combinatorial structures S that

could be used with a given data set. Early work, such as [BA76, Gre75], on linear interpo-

lation of functions from a Sobolev space4 over a subset of R2 found that linear interpolation

error bounds depended on the smallest angle in a triangle being bounded away from 0 or

more critically the largest angle in a triangle being bounded away from π. For this reason,

the Delaunay triangulation of P is often used because of the property from Section 2.3.3

that the Delaunay triangulation has the smallest maximum min-containment radius. In

other words, the d-simplices of a Delaunay triangulation tend to be “fat.”

In [Rip92], Rippa demonstrates that the bounds on linear interpolation error can be

tightened if information about the directionality of the second derivative of the function is

known. If the second derivative is high in one direction and low in others, then it is good

to have long skinny triangles that are thin in the direction of the second derivative instead

of fat triangles. This leads to the concept of “data dependent triangulations,” which take

into account Q as well as P in order to determine S.

3.2.1 Data Dependent Triangulation

“Data dependent triangulations” are introduced by Dyn et al. in [DLR90a, DLR90b]. A

data dependent triangulation chooses the combinatorial structure S of the PL interpolator

based on Q as well as P . Specifically, the combinatorial structure S is chosen to minimize

a “data dependent criterion.”5 Dyn et al. consider exclusively functions from R2 to R.

They propose several data dependent criteria for which the intuitive effect is to penalize

the change in slope of the PL interpolator when moving from one triangle to another. The

4A Sobolev space is a subspace of Lp, for which the mixed derivatives up to some order are also in Lp.
The Sobolev Hilbert space is often written as H l. Functions in H l as well as their mixed derivatives up to
order l are in L2. The norm for this space is the Sobolev norm, which is similar to the L2 norm but also
takes into derivatives account of the functions.

5A criterion that involves the codomain points Q does not necessarily depend on those points. The
roughness criterion R(P,Q,S) = |fP |H1 where |·|H1 is the Sobolev semi-norm, given by

|g|2H1 =
∑

s̄i/inT (P,S)

|g|2H1 , where |g|2H1 =

∫

s̄i

[

(

∂g

∂x

)2

+

(

∂g

∂y

)2
]

dx dy

for a domain that is a subset of R2, seems reasonable. The appearance of fP in the criterion indicates that
Q is used in computing the criterion, but in [Rip90] Rippa shows that the minimal roughness triangulation
is actually the Delaunay triangulation of P , so the minimal roughness triangulation does not depend on Q!
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optimization of S is similar to Lawson’s method for computing the 2-dimensional Delaunay

triangulation, described in Section 2.3.3. The Dyn et al. algorithm for data dependent

triangulations [DLR90a, DLR90b] is as follows:

1. Compute an initial triangulation of P , e.g. Delaunay

2. While there exists an edge for which flipping will reduce the data dependent criterion

Flip edge

The two most successful data dependent criteria that Dyn et al. discovered are called

“angle between normals” (ABN) and “jump in normal derivatives” (JND). Since their work

considers linear interpolation of data from R2 to R, the graph of the interpolated function

over a triangle is a plane in R3. To evaluate an edge for the ABN criterion, first compute

the unit normal vectors to the planes of the two triangles incident to the edge. The angle

between the normal vectors can be computed easily from their inner product. An edge

should be flipped if it reduces the angle between the normal vectors, or equivalently, if it

reduces the magnitude of the inner product. For the JND criterion, let the PL functions

over two triangles incident on an edge be given by f1(x) = c1
Tx+d1 and f2(x) = c2

Tx+d2,

where ci ∈ R2 and di ∈ R, and let n ∈ R2 be the unit vector perpendicular to the edge.

Dyn et al. define the JND criterion as
∣

∣nT(c1 − c2)
∣

∣. By Claim 3.1 (ii), the vector c1 − c2
will be parallel to n, so the JND criterion could be written more simply as ‖c1 − c2‖. An

edge is flipped if it reduces the JND criterion.

Several difficulties arise in generalizing data dependent triangulations to higher dimen-

sions. For d > 2, the number of d-simplices in a triangulation is not constant and flipping

a subcomplex (rather than an edge) is more complex. For example, a generic flip in R3

converts between two tetrahedra and three tetrahedra. The data dependent criterion must

take this into account. The present criteria take advantage of the structure of R2, e.g. only

a single edge is modified during a flip. Should the data dependent criterion for a subcom-

plex in Rd be the sum of a local criterion over each interior facet in the complex (of which

there are different numbers for the two configurations) or perhaps just the local criterion

evaluated at the worst facet? Generally this dissertation focuses on functions from Rd to

Rc (or to Rd more specifically) rather than to R. How should effects on various codomain

coordinates be traded off?

Data dependent triangulations, and specifically the JND criterion, serve as the inspira-

tion for the local retriangulation performed in the minvar algorithm, presented in Section

4.3.

3.3 Least Squares PL for a Fixed Domain Triangulation

Since an interpolating function is required to match the data at all the sample points,

interpolation does not provide noise rejection or “smoothing.” Moreover, interpolation
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requires that the entire data set be held, whereas it may be preferable to “summarize”

the data with a low number of parameters. This gives rise to the approximation problem.

Consider again a set of data pairs Z = {(xi,yi)}Nd
i=1 produced by a data generating function

f∗ : Rd → Rc, yi = f∗(xi). Typically one wants to find an approximation f to the data set

that minimizes the mean square error, given by

M.S.E. =
1

Nd

Nd
∑

i=1

‖yi − f(xi)‖2 . (3.8)

Suppose T (P,S) is a triangulation with n vertices and one wishes to find a piecewise linear

approximation fP , parameterized by P = (P,Q,S), to the data set that minimizes the

mean square error. That is, the only free parameters are the codomain vertices Q. In this

case, it is well known, e.g. [Jul99, dB01, Chu88], that the approximation problem is linear-

in-parameters and can be solved by standard linear least squares. The following discussion

describes the solution.

Let

P =
[

p1 p2 · · · pn
]

, (3.9)

Q =
[

q1 q2 · · · qn
]

. (3.10)

Let the operator π : |T (P,S)| → Rn be such that

(i) πi(x) ≥ 0 for i = 1, . . . , n,

(ii)
∑n

i=1 πi(x) = 1, and

(iii) {i|πi(x) 6= 0} ∈ S,
(iv) x = Pπ(x)

where πi(x) indicates the i
th component of π(x). That is, π(x) are the barycentric coordi-

nates of x with respect to the vertices of a simplex of T (P,S) to which x belongs. π(·) is well
defined due to the uniqueness of barycentric coordinates, Claim 2.4. Using this operator,

the global definition of the PL function parameterized by P = (P,Q,S) can be written as

fP(x) = Qπ(x), (3.11)

for all x ∈ |T (P,S)|. It is useful to compare this definition with the piecewise definition of

Equation 3.1. Notice that the codomain vertices qi appear linearly in the above equation,

and since in the present formulation the qi’s are the only free parameters, fP is called linear-

in-parameters. Each element πi(x) of π(x) may be interpreted as a scalar valued PL basis

function parameterized by (P, Q̂i,S), where q̂i = 1 and q̂j = 0 for j 6= i. πi has a nonlinear

dependence on the domain vertices, and thus fP has a nonlinear dependence on the domain

vertices, so if they were included as parameters, the linear-in-parameter structure would be

broken. Let

B =
[

π(x1) π(x2) · · · π(xNd
)
]

, (3.12)

Y =
[

y1 y2 · · · yNd

]

. (3.13)
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Then the least squares problem is given by

argmin
Q

Nd
∑

i=1

‖yi − fP(xi)‖2 = argmin
Q

‖Y −QB‖2F , (3.14)

where the ‖·‖F is the Frobenius norm. This is the classic least squares problem. If B has

rank n, a requirement on the richness of the data set, then Q is given by

Q = YBT(BBT)−1.

3.4 Inverting PL functions

One of the most compelling properties of piecewise linear functions is the ability to check

invertibility and invert in closed form. Let fP be a piecewise linear function parameterized

by P = (P,Q,S). If T (Q,S) is a triangulation, then the piecewise linear function is one-

to-one and thus invertible on its range. Moreover, the inverse, fP
−1, is a piecewise linear

function parameterized by P−1 = (Q,P,S). These facts are established in this section.

Consider a continuous function f : A → Rc, A ⊂ Rd with nonempty interior. f is

invertible if and only if it is one-to-one and onto. Since a function is always onto its range,

if f is just one-to-one, then f is invertible on its range. That is, there exists f−1 : C → A,

C = f(A), such that f−1(f(x)) = x for all x ∈ A and f(f−1(y)) = y for all y ∈ C. One may

check that a PL function fP is one-to-one by determining whether T (Q,S) is a triangulation.
This fact is established by Claim 3.5, but first one more fact about triangulations is needed.

Claim 3.4. Let T be a triangulation. Let x ∈ |T |. There exists a unique s ∈ T such that

x ∈ s and s ≤ s′ for all s′ ∈ T such that x ∈ s′

Proof. Let

s =
⋂

s′∈T ,x∈s′

s′.

It follows from the definition of triangulation that s ∈ T . By construction x ∈ s, moreover

s ≤ s′ for any other s′ ∈ T that contains x.

Claim 3.5. Let fP be a piecewise linear function parameterized by P = (P,Q,S). Then

T (Q,S) is a triangulation if and only if fP is one-to-one.

Proof. Let T (C,S) be a triangulation. Let fP(x) = fP(y) for x,y ∈ T (P,S). Since T (Q,S)
is a triangulation, by Claim 3.4 there exists a unique s ∈ T (Q,S) such that fP(x) ∈ s and

s ≤ s′ for all other s′ ∈ T (Q,S) such that fP(x) ∈ s′. Let vert(s) = {qj1 , . . . ,qjk}. Let

ŝ ∈ T (P,S) with vert(ŝ) = {pj1 , . . . ,pjk}. Since fP(x) ∈ s and fP(y) = fP(x), it follows

that x,y ∈ ŝ. Let s̄ be a d-simplex such that ŝ ≤ s̄. Since T (Q,S) is a triangulation, fP(s̄)

is also a d-simplex, and hence the linear part of fP |s̄ must be full rank. It follows that

x = y. Thus fP is one-to-one.
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Let fP be one-to-one. Let α ∈ S. Then the points Q(α) must be affinely independent,

otherwise fP would not be one-to-one. Thus each simplex ŝ ∈ T (P,S) is mapped by fP

into a corresponding simplex s ∈ T (Q,S). Since fP is continuous and one-to-one, it follows

that T (Q,S) is a triangulation.

Another way of stating Claim 3.5 is that fP is one-to-one if and only if T (Q,S) is a

valid embedding of S. Section 2.4 describes how to validate an embedding of an abstract

simplicial complex.

This dissertation is predominantly interested in the case where the domain and codomain

have the same dimension6, c = d. A PL function having the same dimension for the domain

and codomain is referred to as a d-dimensional PL function. The inverse of a PL function

in this case means the inverse over the range of a one-to-one PL function. If fP is one-to-

one, then the inverse (over the range) of fP is given by the piecewise linear function fP−1

parameterized by P = (Q,P,S). This fact is proven in the following claim.

Claim 3.6. Let fP be a one-to-one d-dimensional PL function parameterized by P =

(P,Q,S). Then fP−1 = fP−1 where fP−1 is a PL function parametrized by P−1 = (Q,P,S).

Proof. Since fP is one-to-one, T (Q,S) is a triangulation by Claim 3.5. Thus, P−1 =

(Q,P,S) is a valid parameterization of a PL function fP−1 . Let s̄i ∈ T (P,S) be a

d-simplex with vert(s̄p,i) = {pi1 ,pi2 , . . . ,pid+1
}. Let s̄q,i ∈ T (Q,S) with vert(s̄q,i) =

{qi1 ,qi2 , . . . ,qid+1
}. Then fP(pij ) = qij , but fP−1(qij ) = pij . Moreover fP affinely maps

s̄p,i into s̄q,i and fP−1 affinely maps s̄q,i into s̄p,i. It follows that fP−1 is the inverse of

fP .

Thus, given the parameterization of an invertible d-dimensional PL function, one can

immediately write down the parameterization of the inverse of that function. Closed form

invertibility is one of the primary motivating benefits in the present study of PL approxi-

mations.

6If a continuous one-to-one function f : A → Rc, A ⊂ Rd with nonempty interior, has a codomain of
higher dimension than the domain, i.e. c > d, then f(A) will be a thin set in the codomain. In this case a
pseudo-inverse of f could be constructed by extending f−1 to the whole codomain, and then f−1

B (f(x)) = x

but f(f−1
B (y)) 6= y unless x ∈ f(A).
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CHAPTER 4

The minvar Algorithm

Chapter 3 presented a useful parameterization of PL functions, a triplet (P,Q,S) con-
sisting of a set of domain vertices P , corresponding set of codomain vertices Q, and an

abstract simplicial complex S, such that T (P,S) is a triangulation with |T (P,S)| being the

domain of the PL function. In this chapter we consider the problem of constructing a PL

approximation to a set of data, and present minvar, a novel algorithm to accomplish this

task. The chapter concludes with a numerical example.

Consider Z = (xi,yi)
Nd
i=1, x ∈ Rd and y ∈ Rc, a data set of Nd input-output pairs.

In function approximation, a function from a parameterized family of functions is chosen

in order to minimize some error criterion. For the approximation problem, in contrast to

the interpolation problem, there must be much larger quantity of data than the number of

parameters in the approximation. As a rule of thumb, there should be an order of magnitude

more input-output pairs than vertices in the PL approximation. This dissertation concerns

approximations that minimize the mean squared error (MSE),

MSE =
1

N

N
∑

i=1

‖yi − fP(xi)‖2 , (4.1)

called least squares approximation. Under the assumption of independent identically dis-

tributed additive Gaussian noise on the output data, the parameters of the least squares ap-

proximation are the maximum likelihood estimate of the parameters given the data [Poo94].

This statistical property promotes interest in the least squares approximation1.

Section 3.3 showed that if the only free parameters of a PL function are the codomain

vertices Q (i.e. the domain vertices P and the abstract simplicial complex S are fixed),

then the least squares PL approximation to a data set is linear in the codomain vertices

and can thus be solved using standard linear least squares methods. This is the typical

approach taken by the spline literature, such as [Jul99, dB01, Chu88]. Fixing the domain

1MSE is not, however, the only reasonable error criterion. Two other popular choices are (i) to replace
the 2-norm in Equation 4.1 with the 1-norm or (ii) to replace the summation in Equation 4.1 with maximum.
The former handles outliers better, while the latter guarantees that the approximation is always close to the
data.
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triangulation T (P,S) is equivalent to selecting a family of PL basis functions over |T (P,S)|.
The codomain vertices are coefficients of the basis functions. This is a fine approach so long

as one is willing to commit to a fixed set of basis functions.

What if the data generating function (that is, the “true” source of the data set that is

being approximated) has high curvature in some regions but is nearly flat in other regions?

If the basis functions, or equivalently the domain d-simplices, are distributed uniformly,

then it may well require a huge number of vertices in order to approximate the data gen-

erating function sufficiently, since unnecessary vertices will be placed in the region of low

curvature in order to yield a good approximation in the areas of high curvature. In or-

der to approximate such a function with a PL function, the domain simplices should be

large in the flat regions and small in the regions of high curvature parsimoniously. Ide-

ally, the basis functions would adapt themselves to the data set, placing more vertices in

areas where the curvature of the function is higher. Gridding methods in finite element

analysis and nonparametric statistical methods build up the domain triangulation incre-

mentally, adapting the triangulation to the data. The approach here is different. Given

a fixed number of vertices, both the domain and codomain vertices are considered as free

parameters. One difficulty that arises is that there is no explicit representation for the space

of valid PL parameters, though given a specific parameterization one can algorithmically

check that it defines a good PL function ( if T (P,S) is a triangulation, plus T (Q,S) for a
PL homeomorphism). Moving the domain vertices makes the problem nonlinear- and more-

over nonconvex-in-parameters, so one is faced with local minima and iterative optimization

procedures.

One option would be to apply gradient descent directly to the MSE. This approach

proves to be computationally expensive and slow, as illustrated by the numerical studies

presented in Section 6.3. Gradient descent guarantees a reduction in the MSE from the

point in the initial point parameter space, but the descent can often get stuck in a local

minimum of the MSE, which could be much worse than the global minimum.

The remainder of this chapter presents the minvar algorithm, a novel non-gradient

method for computing a good d-dimensional piecewise linear approximation to a set of

data.

4.1 The minvar Algorithm

The minvar algorithm is an iterative scheme to generate a locally good PL approxi-

mation to data. Similar to algorithms proposed in the piecewise polynomial approximation

literature [Bai94, Kio80, Kio81, TB97], minvar takes advantage of the piecewise structure of

PL functions, using easy-to-compute local least squares affine approximations to determine

how to modify the PL approximation.

Let Z = {(xi,yi)}Ns
i=1, where xi ∈ D ⊆ Rd and yi ∈ Rc, be the set of input-output
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data to be approximated. The minvar algorithm iteratively improves a piecewise lin-

ear approximation to the data, f
(k)
P , parameterized by P (k) = (P (k), Q(k),S), such that

∣

∣T (P (k),S)
∣

∣ = D. A superscript in parentheses denotes iteration number. The algorithm

consists of two stages. The first stage partitions the data into subsets according to the d-

simplices of T (P (k),S) and computes the least squares affine approximation for each subset

of the data. The second stage chooses P (k+1) and Q(k+1) to make f
(k+1)
P , a continuous PL

function, be “close” to the discontinuous approximation from the first stage. The stages

are then iterated.

A vertex pi ∈ ∂ |T (P,S)| is called a domain boundary vertex. Recall from Chapter 3

that the domain of fP is |T (P,S)|, so moving a boundary vertex will in general change the

domain of the PL function. Since we desire a fixed domain, the present exposition of the

minvar algorithm holds fixed all domain boundary vertices. In Section 4.2 this is relaxed

to allow certain domain boundary vertices to move in appropriately chosen affine subspaces

such that the domain is unaffected.

From an initial parameterization P (0) = (P (0), Q(0),S), the minvar algorithm generates

a sequence of parameterizations, P (k) = (P (k), Q(k),S). Really only P (0) and S need to be

specified initially, since the algorithm does not use the Q(k) to determine the succeeding

approximation. The algorithm generates the sequence of approximations as follows:

minvar Algorithm

1. Partition the data set Z into subsets Zj corresponding to the d-simplices, s̄1, . . . , s̄N

of T (P (k),S)

2. Compute the least squares affine approximation, Lj(x) = Âjx + b̂j , for each data

subset Zj

3. Update the vertex locations,

p
(k+1)
i = argmin

x∈Rd

varLi(x) + λ
∥

∥

∥x− p(k)i

∥

∥

∥

2
∀pi 6∈ ∂ |T (P,S)| (4.2)

p
(k+1)
i = p

(k)
i otherwise (4.3)

where

varLi(x) =
∑

s̄j∈St{pi}

∥

∥

∥

∥

∥

∥

Lj(x)−
1

Ni

∑

s̄k∈St{pi}

Lk(x)

∥

∥

∥

∥

∥

∥

2

(4.4)

and

q
(k+1)
i =

1

Ni

∑

s̄j∈St{pi}

Lj

(

p
(k+1)
i

)

for i = 1, . . . , n (4.5)

4. If the vertices are not converged, then k ← k + 1, go to 1
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In Equations 4.4 and 4.5 the summations are over s̄j ∈ St{pi}, the set of d-simplices from

T (P,S) that have pi as a vertex2, and Lj(x) is then the least squares affine fit corresponding

to s̄j ∈ St{pi}. Li is the collection of least squares affine fits Lj(x) corresponding to

s̄j ∈ St{pi}. From Chapter 2, Ni is defined to be the number of d-simplices in St{pi},
which is given by

Ni =
∑

s̄k∈St{pi}

1.

The remainder of this section provides an intuitive description of the minvar algo-

rithm, while details on computing the least squares affine approximations of Step 2 and the

quadratic minimization of Equation 4.2 will be presented in the following subsection.

Consider the function that on each d-simplex of T (P (k),S) takes its corresponding least

squares affine approximation as computed in Step 2 of the algorithm. This function is the

optimal discontinuous piecewise linear approximation for the triangulation T (P (k),S). If

the triangulation were adjusted so that the optimal discontinuous piecewise linear approx-

imation was everywhere continuous, then we would have a locally good PL approximation

to the data (recall that PL is used to indicate continuous piecewise linear functions), since

any other PL approximation over the same triangulation would have higher mean squared

error and any nearby triangulation (with respect to the domain vertices) will generally have

an optimal discontinuous piecewise linear approximation that is not continuous. The com-

putation in Step 3 may be interpreted as adjusting the domain vertex in order to make the

optimal discontinuous piecewise linear approximation closer to continuous. The following

paragraphs will illustrate how the quadratic minimization of Equation 4.2 achieves this.

For d = 1, a vertex pi is shared by two 1-simplices (unless pi ∈ ∂ |T (P,S)|, in which

case it is in a single 1-simplex). If the least squares approximations are not parallel, then

varLi(x) = 0 at the domain location where the least squares approximations intersect,

illustrated in Figure 4.1. If λ = 0, minvar moves the domain and codomain vertices to

the intersection point of the least squares approximations, called the “graph intersection

point.” The precursor to the minvar algorithm, presented in Chapter 6, is called the “Graph

Intersection” for this reason. If λ > 0, minvar moves the domain vertex toward the graph

intersection point, but is penalized from moving too far away from the previous domain

vertex. If the algorithm reaches a fixed point, then over each domain interval the minvar

approximation is the same as the least squares affine approximation to the data in that

interval. The graph intersection point does not generalize to higher dimensions. Consider

the case where c = d, d > 1. Generically, each pair of least squares approximations will

have a unique intersection point, but each domain vertex will generically be a member of at

2The time index k on pi is suppressed in s̄j ∈ St{pi}. In the present exposition S does not changing,
so pi will be a vertex of the same set of d-simplices at each time step. Modification to minvar described in
later sections update S periodically, in which case the set of d-simplices containing pi will clearly depend
on the time index. In an abuse of notation, we drop the index in this case as well in order to avoid overly
cumbersome notation.
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Figure 4.1: Moving a vertex with the scalar minvar algorithm. When λ = 0, the new

location of the domain vertex p
(k+1)
i is the intersection point of the least squares affine

approximations Lj and Lj+1 corresponding to the 1-simplices (line segments) that neighbor

pi.

least three d-simplices. Thus, for higher dimensions the least squares approximations will

generally not all intersect at the same point.

Consider a vertex pi and L
i, the collection of least squares affine approximations Lj(x)

corresponding to the d-simplices incident to pi, s̄j ∈ St{pi}. Evaluating this set of Ni

approximations at a point x in the domain yields a cluster of Ni points in the codomain,

as illustrated in Figure 4.2. The nonnegative quantity varLi(x) measures how tightly these

points cluster about their mean. If varLi(x) = 0 for some x then all of the approximations

in Li intersect at x. If the domain vertices could be moved such that varLi(pi) = 0 for

each pi, then the optimal discontinuous piecewise linear function over the triangulation

T (P,S) would be continuous. In general, there will be no point in the domain the makes

varLi(x) = 0, so instead the algorithm moves the domain vertex to the location that

minimizes varLi(x) (or rather, the vertex is so moved if λ = 0). The λ regularization term

is described below.

The location that minimizes varLi(x) may be far away from the current location of

the vertex, for example when the least squares approximations are nearly parallel in the

scalar case. Moving the domain vertices like this may “tangle” the domain triangulation

of the approximation. That is, it could prevent T (P,S) from being a triangulation due to

overlapping simplices. The λ term in Equation 4.2 is a regularization that prevents a vertex

from moving long distances. Tuning of λ is used to avoid tangles. Currently, choosing an

good value for λ is an art. Nonzero λ also guarantees that Equation 4.2 will have a unique

minimum, even if all the least squared approximations are parallel. This generally occurs

when a domain vertex moves through one of its opposing faces.

The following subsection describes in further detail the calculations performed in min-

var, specifically the computation of the least squares affine approximations and the quadratic
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Figure 4.2: Moving a vertex in the d-dimensional minvar algorithm. In the illustration

above, Li, the collection of least squares affine approximations around p
(k)
i , includes L1,

L2, L3, and L4. Evaluating these approximations at a point in the domain gives a cluster

of points in the codomain. Three different domain points and their corresponding clusters

are illustrated above with circles, triangles, and squares. The minvar algorithm with λ = 0

moves p
(k+1)
i to the point in the domain that yields the tightest cluster of points in the

codomain. Above, the circles illustrate the tightest cluster.

minimization in the “min var” step.

4.1.1 Calculations for minvar

Least Squares Affine Approximations

After the data has been sorted into subsets Zj , the least squares affine approximation

for each data set must be computed. One method for computing these approximations

is presented here. For convenience the subscript from the data subset is suppressed. Let

Z = {(xi,yi)}Ni=1. Let

X =













x1
T 1

x2
T 1
...

xN
T 1













, Y =













y1
T

y2
T

...

yN
T













, Θ =

[

ÂT

b̂T

]

Minimizing
∑N

i=1 ‖Axi + b− yi‖2 is equivalent to minimizing ‖XΘ−Y‖2F , where F indi-

cates the Frobenius norm. This is a standard least squares problem [Str88]. Usually the

standard least squares problem has a vector of parameters rather than a matrix Θ, but we

may consider the problem to be c independent standard least squares problems correspond-

ing to the columns of Θ and Y. The least squares solution is given by solving the linear

system XTXΘ = XTY, called the normal equations. The matrix XTX will be invertible

so long as the dimension of the affine hull of the xi’s is d, a condition on the richness of the

data set. If this condition is satisfied, then the least squares affine approximation is given

by Θ = (XTX)−1XTY. Examining the structure of the matrices XTX and XTY, we see
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that

XTX =
N
∑

i=1

[

xi

1

]

[

xi
T 1

]

,

XTY =
N
∑

i=1

[

xi

1

]

yi
T,

which are scaled submatrices of the data set’s empirical covariance matrix. These covariance

submatrices can be constructed directly rather than forming X and Y and then computing

XTX and XTY.

Solving the least squares problem by solving the normal equations is often discouraged

for numerical reasons. The condition number of XTX is the square of the condition number

of X. If the data in the subset is poorly distributed, for example if the data generating

function has been regularly sampled in the domain and the subset corresponds to a skinny

simplex such that most but not all of the data lies in a hyperplane, then significant error

can arise in solving the normal equations. In this case, it is recommended to use a QR

or SVD decomposition of X to minimize ‖XΘ−Y‖2F . Details on this procedure may be

found, for example, in [GV96]. Increased accuracy does not come cost free. If the number

of data points N is much larger than d, then using the QR decomposition to solve the least

squares problem uses more memory and about twice as many calculations.

Performing the “min var” Calculation

The function minimized in the “min var” calculation of Step 3 (Equation 4.2),

varLi(x) + λ
∥

∥x− p(k)i

∥

∥

2

is a quadratic function of x and moreover is nonnegative, and under mild assumptions

positive, definite. Such a function can be minimized in closed form by “completing the

square,” an algebraic manipulation such that x appears only in a quadratic form of a

positive definite matrix and not in any linear terms. Claim B.1 proves that the solution to

Equation 4.2 is given by

p
(k+1)
i = −Hi

−1hi, (4.6)

where

Hi =





1

Ni

∑

s̄j∈St{pi}

Âj
TÂj



− Âi

T
Âi + λI, (4.7)

hi =





1

Ni

∑

s̄j∈St{pi}

Âj
Tb̂j



− Âi

T
b̂i − λp(k)i , (4.8)

Âi =
1

Ni

∑

s̄j∈St{pi}

Âj , b̂i =
1

Ni

∑

s̄j∈St{pi}

b̂j . (4.9)
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Thus the minimization of Equation 4.2 is computed by solving a d dimensional linear system

of equations, which is easy and fast. Naively choosing a criterion for moving the vertices

could have easily led to a nonlinear minimization that could not be solved quickly or reliably.

Keeping Step 3 efficient is important to the overall speed of the algorithm.

Computing the Codomain Vertices

Step 3 of the minvar algorithm computes an updated codomain vertex as the average

of the least squares affine approximations evaluated at the corresponding updated domain

vertex. This average can be replaced with a weighted average,

q
(k+1)
i =

1

ti

∑

s̄j∈St{pi}

wjLj

(

p
(k+1)
i

)

, ti =
∑

s̄j∈St{pi}

wj (4.10)

The weights can be chosen in a variety of ways to affect the resulting approximation. For

example, using wj = card(Zj) will bias the resulting codomain vertex biased toward the least

squares approximations corresponding to d-simplices that use more data. Other options

include weighting by d-simplex volume (given by Claim 2.10) or by the inverse of the MSE

of the least squares approximations. These weighting schemes have the greatest effect when

the data is far from piecewise linear and so the final approximation fits the data set poorly

in some locations.

4.2 Affinely Constrained Vertices

In the statement of minvar algorithm in Section 4.1, all vertices on the boundary of

the domain p
(k)
i ∈ ∂

∣

∣T (P (k),S)
∣

∣ are held fixed through the iterations so that the domain

of the PL function does not change from iteration to iteration. Requiring all boundary

vertices to remain fixed is a stricter requirement than necessary, since a boundary vertex

that lies on part of the boundary that is locally an affine subspace can move in that affine

subspace without changing the domain. Such a vertex is called a movable boundary vertex.

Only vertices that are “corners,” i.e. extreme points, of the domain must remain fixed. For

example, consider a PL function for which the domain is a cube, an apt example since

experimental data is often taken over a hypercubic region. A boundary vertex that lies in a

face of the cube can move around in that face, a boundary vertex that lies on an edge may

move along the edge, but the vertices at the corners of the cube must stay fixed.

Experimentation with an early version of minvar in which all boundary vertices re-

mained fixed led to several interesting observations. The first was that data points with the

greatest absolute error generally occurred on the boundary of the domain. The second was

that hand-tuning the location of the movable boundary vertices led to appreciable drops in

the mean squared error of the resulting approximation. These observations motivated an

extension of minvar to allow a vertex to move in an appropriately chosen affine subspace

using a constrained version of Equation 4.2.
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Let pi be a domain vertex to be constrained to an l-dimensional affine subspace, and

let p̄1, . . . , p̄l+1 ∈ Rd be affinely independent points whose affine hull is that desired affine

subspace. Any point x ∈ aff{p̄1, . . . , p̄l+1} may be represented by a point x̂ ∈ Rl by the

transformation

x = Cx̂+ d

where

C =
[

p̄1−p̄l+1 p̄2−p̄l+1 · · · p̄l−p̄l+1

]

d = p̄l+1

This is a coordinatization of the affine subspace. Applying this coordinatization, the “min

var” equation can be minimized over the affine subspace rather than all of Rd. Claim B.2

proves that the solution to this constrained minimization is given by

p
(k)
i = −CHc,i

−1hc,i + d (4.11)

where

Hc,i = C
THiC, hc,i = C

T (Hid+ hi) , (4.12)

and Hi and hi are given by Equations 4.7 and 4.8. Note that this constrained minimization

only guarantees that the vertex will remain on the chosen affine subspace, and does not

guarantee that the vertex will stay on the boundary of the domain. Once again, the λ

regularization term is used to prevent tangles.

4.3 Heuristically Guided Retriangulation

PL functions are parameterized by a triplet (P,Q,S). Thus far in the presentation of

the minvar algorithm, the combinatorial parameters S have remained fixed, while only

the continuous parameters, the domain vertices P and the codomain vertices Q, have been

used to approximate the function. The combinatorial parameters play an important role in

the approximation. Figure 4.3 illustrates how two PL functions with the same continuous

parameters but different combinatorial parameters can differ locally quite a bit. This sort

of observation motivated the work by Dyn et al. [DLR90b, DLR90a], discussed in Section

3.2.1, on data dependent triangulations for interpolation.

In [TB97], Tourigny et al. propose an algorithm for computing discontinuous piecewise

linear approximations to a data generating function (not just to data from that function).

As an addition to their algorithm, they intermittently adapt the combinatorial structure

of a triangulation using a data dependent criterion influenced by Dyn et al. The data

dependent criterion in this case is a the error between the approximation and the data

generating function, which in Tourigny’s case is available directly to the algorithm, rather

than through data. Like Dyn et al., Tourigny’s work is specialized for functions from R2 to

R.
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Figure 4.3: Effect of different triangulations on a PL function. Consider the two 2-

dimensional PL functions f1 and f2 shown above (domain on the left, codomain on the

right) parameterized by (P,Q,S1) and (P,Q,S2) respectively, where P = {p1,p2,p3,p4},
Q = {q1,q2,q3,q4}, and the d-simplices of S1 and S2 are given by {{1, 2, 4}, {2, 3, 4}} and
{{1, 2, 3}, {1, 3, 4}}, respectively. In the codomain, f1(x) is marked by the closed dot and

f2(x) is marked by the open dot, illustrating that PL functions with the same continuous

parameters can differ quite a bit due to their combinatorial structure.

Choosing an appropriate time to change the combinatorial structure for an algorithm

such as minvar that iteratively changes the continuous parameters is tricky, due to the

interaction between the combinatorial and continuous components. Consider two differ-

ent abstract simplicial complexes S1 and S2 that each forms a valid triangulation of the

domain with P0, T (P0,S1) and T (P0,S2). If minvar is run with the initial conditions

P1 = (P0, Q0,S1) and P2 = (P0, Q0,S2), then in general the converged continuous parame-

ters obtained by iterating minvar, (P1, Q1) and (P2, Q2) respectively, will be different from

each other, as verified in numerical experience. The combinatorial structure determines

where the continuous parameters converge. Additionally, even if T (P1,S1) and T (P2,S2)
are valid triangulations, it may be that T (P1,S2) and T (P2,S1) are not. Due to the inter-

actions between the combinatorial and continuous parameters, it seems unwise to change

the combinatorial component at each iteration, because these discrete (and hence discon-

tinuous) changes can lead to poor overall behavior. Instead the combinatorial structure is

modified periodically, with the period determined as an input parameter to the algorithm.

A significant difference between [DLR90b, DLR90a] and the present work is that minvar

is an approximation problem rather than an interpolation problem, and thus more data is

available to inform the choice of combinatorial parameters. This data could be used directly

to select how to make local changes to the triangulation. For example, consider a flippable

subcomplex. The least squares affine approximation for a fixed triangulation (as described

in Section 3.3) could be computed for the original subcomplex and the flipped subcomplex,

and the subcomplex with the lowest residual error would be chosen. This would be an

interesting approach, but remains as future work. Rather the present heuristic method for

retriangulating creates a data dependent triangulation based on the current domain and
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codomain vertices using a generalization of the “jump in normal derivative” criterion. This

criterion is computationally easy to compute, but a method that is better informed by the

data will probably prove superior in the long run.

Several difficulties arise in generalizing data dependent triangulations to higher dimen-

sions. For d > 2, the number of d-simplices in a triangulation is not constant. Flips,

as described in Section 2.3.4, are performed between one subcomplex and another, and a

subcomplex involves several d-simplices and facets as compared to two 2-simplices and one

facet in the planar case. For example, a generic flip in R3 converts between two tetrahedra

and three tetrahedra. The data dependent criterion must take this into account.

An analogue to the jump in normal derivative (JND) criterion proposed by Dyn et al.

can be derived for a single facet in higher dimensions. Consider a PL function parameterized

by (P,Q,S) with d-simplices s̄i and s̄j that share a facet, and let fP
∣

∣

s̄i
(x) = Aix+ bi and

fP
∣

∣

s̄j
(x) = Ajx + bj . From Claim 3.1, Ai − Aj is rank 1, and its rows will be scalar

multiples of each other and normal to the shared facet. Thus, ‖Ai −Aj‖F , where ‖·‖F
is the Frobenius norm, is an analogue to the JND criterion for a single facet in higher

dimensions. In higher dimensions, however, multiple facets are simultaneously modified

in a subcomplex flip, so an entire subcomplex, rather than just a single facet, must be

evaluated. The generalization for the jump in normal derivative criterion for a subcomplex

T is

JND = max
{

‖Ai −Aj‖F
∣

∣ s̄i, s̄j are d-simplices that share a facet in T
}

. (4.13)

Variations on this generalization include taking an average rather than a maximum of the

facet JNDs, and considering all facets of T , even those shared by d-simplices not in T . The

author suspects that the latter criterion will eventually lead to a data dependent flipping

algorithm that provably terminates, based on the proof techniques of Lawson [Law77].

The steps of minvar’s heuristic retriangulation are as follows. First the algorithm

proceeds facet by facet through the triangulation, looking for flippable subcomplexes as

defined in Section 2.3.4. A subcomplex is flipped if it leads to a lower generalized JND

as defined above. Checking all the facets in the triangulation completes one cycle of the

retriangulation. Retriangulation is limited to a maximum number of cycles, since there is

currently no proof that this process will terminate rather than continue indefinitely. In

practice, this process generally terminates within ten cycles. The sequence in which facets

are checked alters the resulting triangulation.

In [TB97], the authors suggest that “mesh tangles,” i.e. when their algorithm moves the

domain vertices such that the triangulation is no longer valid, be interpreted as a sign that

the combinatorial structure of the PL function is not appropriate for approximation of the

data generating function in this region. This is a nice intuitive argument, but unfortunately,

very little is known for certain in this area. Periodic local retriangulation and also global

retriangulation (when mesh tangles occur) are used in minvar to deal with these problems.
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Vertices uniform LS minvar minvar LS

22 1.79801e-01 1.79818e-01 1.79801e-01

32 9.85617e-02 4.56123e-02 4.48297e-02

42 4.45294e-02 1.92465e-02 1.89605e-02

52 2.47517e-02 1.38427e-02 1.36523e-02

62 1.55282e-02 7.35190e-03 7.25304e-03

72 1.05933e-02 5.40420e-03 5.34596e-03

82 7.63439e-03 4.63040e-03 4.56706e-03

92 5.84815e-03 3.38636e-03 3.34218e-03

102 4.53419e-03 2.96688e-03 2.92793e-03

112 3.71421e-03 2.50778e-03 2.47792e-03

122 2.99647e-03 2.34302e-03 2.32279e-03

132 2.49846e-03 1.86386e-03 1.84316e-03

Table 4.1: RMSE of approximations by uniform LS, minvar, and minvar LS.

There are many challenging open questions relating to the interaction of the continuous and

discrete parameters in PL approximations.

4.4 A Numerical Example

This section presents an example of the minvar algorithm’s performance on a “test

function,” f : [0, 1]2 → R2, given by

f(x) =





tanh 5
8

(

2x1 − 4x2
4 + 3x2

2 − 1
)

tanh 5
8

(

2x1
2 − x1

4 + 2x2 − 1
)



 , (4.14)

which is invertible over the domain D = [0, 1]2. The implementation of minvar constructs

an approximation to a discrete set of data, and includes constrained motion of boundary

vertices as well as data dependent retriangulation. Since the test function is neither piece-

wise linear nor directly available, Theorem 5.1 provides no performance guarantees, but

good performance under these circumstances suggests minvar’s broader applicability. Two

sets of numerical studies are presented. The first examines the effects of varying the num-

ber of vertices in the PL approximation, and the second examines how data set size affects

approximations with a fixed number of vertices.

The first set of experiments fits PL approximations of differing sizes to a single data

set. The data set was generated by sampling the test function on an 80× 80 uniform

grid over the domain. For each n = 2, . . . , 13, three different PL approximations with

n2 vertices were computed: i) the least squares continuous PL approximation on a fixed

uniform triangulation of the domain (referred to as “uniform LS”) ii) minvar, initialized
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Figure 4.4: Visualization on minvar approximations to a test function. Visualizations of

the test function (lower-right) and a series of PL approximations to the test function. In

each subfigure, the domain is displayed on the left and the range on the right. Note that

the approximations are invertible, since there are no tangles in the range triangulations.
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Figure 4.5: Comparison of minvar with least squares PL approximation on a uniform

triangulation. (a) vertices in approximation vs. RMSE for approximations to the 80×80
data set. (b) density of training data set vs. RMSE on validation data for approximations

with 62 vertices.

on a uniform triangulation of the domain (referred to as “minvar”), and iii) the least

squares continuous PL approximation on the final triangulation from minvar (referred

to as “minvar LS”). Recall that when the domain triangulation is fixed, the least squares

continuous PL approximation problem becomes linear-in-parameters and the solution can be

computed directly [Chu88, SP95]. Figure 4.4 shows the test function and several exemplars

of the minvar approximations. Table 4.1 and Figure 4.5(a) show the root mean square

error (RMSE) of the approximations as a function of the number of vertices. For 22 domain

vertices, all of them are on the corners of the domain and must remain fixed, so minvar

can only change the range vertices. Since minvar is not guaranteed to give the least

squares continuous PL approximation for a given triangulation, it is not surprising that

the uniform LS approximation’s RMSE is slightly lower than minvar’s in this case. The

RMSE difference between minvar and minvar LS approximations is less than 2%. Least

Squares could be applied as a post processing step to minvar, but since the differences are

relatively small, this might not be necessary in application settings. From the triangulations

of the minvar approximations in Figure 4.4, the domain triangulations move farther for

lower numbers of vertices. As the number of vertices increases, the triangulations visually

seem to deviate less from the initial uniform triangulation. The RMSE performance of

minvar reflects this, giving the biggest reductions in RMSE as compared to uniform LS

for triangulations with 32 to 62 vertices. Since this study uses initial conditions in which

the vertices are on a uniform grid, approximations with large numbers of vertices may be

getting caught in local minima near their initial conditions. In this case, performance could

be improved by refining converged less dense approximations to create initial conditions for

the dense approximations [TB97].

In the second set of experiments, PL approximations with 62 vertices were trained using
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data sets of varying size. The PL approximations were chosen to have 62 vertices because,

as mentioned above, this is in the region of sizes where the performance gains from minvar

are greatest. The data sets were generated by sampling the test function on a uniform

n×n grid, n = 25, 30, 35, . . . , 100. The approximations were compared using a validation

data set generated by evaluating the test function at 1000 points sampled from a uniform

probability distribution over the domain. Figure 4.5(b) shows the validation set RMSE for

minvar and uniform LS. With a 20×20 data set, minvar fails to run with a 62 vertex

approximation, because as the vertices move, several simplices shrink to the point that they

do not contain enough data to make the linear least squares approximation unique. Data

sparsity is a serious issue in this type of local approximation.

From this example, minvar shows marked benefit when the approximation has relatively

few vertices relative to the complexity of the test function. We expect that minvar’s

performance on higher order (more vertices) approximations could be improved by seeding

initial conditions based on lower order approximations. The algorithm produces a consistent

approximation to variously sized data sets, so long as there is enough data for it to run.
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CHAPTER 5

A Local Convergence Proof for the minvar Algorithm

We now proceed to the central analytical result: a local convergence proof for the min-

var algorithm1. The result is for the “approximation” version of the algorithm, as opposed

to the “estimation” version presented in Chapter 4. The distinction is that in the “approx-

imation” algorithm the data generating function is considered to be directly available in

closed form, rather than through a set of discrete data. In this case, the least squares affine

approximations from Step 2 of minvar become the best L2 affine approximations. The best

L2 affine approximation is the orthogonal projection of the data generating function onto

the subspace of affine functions. Since only Step 2 involves the data or data generating

function, the approximation version may be viewed as the limit behavior of the estimation

version when provided with an unbounded quantity of uniformly distributed data. Section

B.2 discusses the relationship between computing the least squares and the best L2 affine

approximations.

Theorem 5.1 shows that, if the data generating function is a nondegenerate (to be

defined below) PL function and the approximation is initialized “close enough” to the data

generating function, then the minvar algorithm with λ = 0 will cause the vertices of the

approximation to converge to the vertices of the data generating function. In this case, “close

enough” means that the initial approximation shares the same combinatorial structure as

the data generating function, and the domain vertices of the approximation start close to the

corresponding vertices of the data generating function. As a corollary, the approximation

will converge to the data generating function in the L∞ sense, due to the continuity of a PL

function in its continuous parameters, Claim 3.3. Examining minvar when λ = 0 admits a

simpler proof while capturing the essence of the algorithm. Similar results could be obtained

for λ > 0, though the convergence rate would be slower. An additional technical condition,

that the data generating function be nondegenerate, is required when λ = 0 in order to

guarantee existence of a unique solution to Equation 4.2, whereas for λ > 0 the regularized

variance minimization in Equation 4.2 is guaranteed to have a unique solution.

A piecewise linear function fP parameterized by P = (P,Q,S) is said to be nondegen-

1A version of this proof appears in [GKK03]
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erate if for all pi ∈ P such that pi 6∈ ∂ |T (P,S)|, the matrix Hi is full rank, where

Hi =





1

Ni

∑

s̄j∈St{pi}

Aj
TAj



−Ai
TAi, where Ai =

1

Ni

∑

s̄j∈St{pi}

Aj .

Intuitively, nondegeneracy of fP means that for any pi 6∈ ∂ |T (P,S)|, the affine functions

that fP takes in the d-simplices surrounding pi are sufficiently “different” from one another.

e.g. they are not all parallel.

In this chapter, as throughout this dissertation, vector norms are the standard Euclidean

norm and matrix norms are the induced two norm, unless otherwise noted. With these facts

and definitions in place, the result more formally may be stated more formally.

5.1 Statement of Local Convergence Theorem

Theorem 5.1. Let f∗P be a nondegenerate piecewise linear data generating function param-

eterized by (P ∗, Q∗,S∗). Let
ε0 = min

{

εd,
1

c4

}

, (5.1)

where εd and c4 are given in Proposition 5.1. If for some 0 < ε < ε0 the initial piecewise lin-

ear approximation f
(0)
P with parameterization (P (0), Q(0),S∗) satisfies

∥

∥

∥p
(0)
i − p∗i

∥

∥

∥ < ε for

all i, then iteration of the minvar algorithm with λ = 0 gives a sequence of approximations

f
(k)
P satisfying

lim
k→∞

∥

∥p
(k)
i − p∗i

∥

∥x = 0

lim
k→∞

∥

∥q
(k)
i − q∗i

∥

∥ = 0

for all i.

Theorem 5.1 provides an immediate corollary.

Corollary 5.1. Let f∗P be a nondegenerate piecewise linear data generating function pa-

rameterized by P∗ = (P ∗, Q∗,S∗). Let ε0 = ε0(P∗) be given by Equation 5.1. Let the

initial approximation f
(0)
P be parameterized by (P (0), Q(0),S∗), satisfying for some ε < ε0,

∥

∥p
(0)
i − p∗i

∥

∥ < ε for all i. Then application of the minvar algorithm with λ = 0 yields a

sequence of approximations satisfying

lim
j→∞

∥

∥f
(j)
P − f∗P

∥

∥

∞
= 0.

Proof. Theorem 5.1 shows that iteration of the minvar algorithm causes the vertices of the

approximation to converge to the vertices of the data generating function. By Claim 3.3, a

PL function is continuous in its vertices. The corollary follows directly.
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Theorem 5.1 follows readily Proposition 5.1. The statements and proofs of the propo-

sitions and lemmas follow in the next subsections, but first a short sketch of the structure

of the proof is provided. The essence of Proposition 5.1 is that when the distances between

the vertices of the approximation and the corresponding vertices of the data generating

function are bounded by ε, then after one iteration of the minvar algorithm the distances

will be bounded by a constant times ε2. This result is established by applying two lemmas

corresponding to the two stages of the algorithm. Lemma 5.1 proves that if the distances

between corresponding vertices are bounded by ε, then the perturbation of the least squares

affine map over a given simplex of the approximation from the affine map in the correspond-

ing simplex of the data generating function is bounded by a constant times ε2. Lemma 5.2

proves that if the perturbation of the least squares affine map over a simplex of the approx-

imation from the affine map in the corresponding simplex of the data generating function

is bounded by ∆, then the variance minimization will place the new vertices of the approx-

imation such that the distance between them and the corresponding vertices of the data

generating function are bounded by a constant times ∆. The combination of Lemma 5.1

and 5.2 provides Proposition 5.1.

The quadratic rate of convergence in Proposition 5.1 arises from the hypothesis that

the data generating function is piecewise linear and close to the initial approximation.

Without this assumption, Lemma 5.1 would fail to provide an ε2 perturbation in the least

squares affine approximations. In this case, the author suspects the convergence rate of the

algorithm to be linear. Also, in the case where λ > 0, the convergence rate is suspected to

slow to linear. Convergence may be slower on fine triangulations, but since this algorithm

is intended primarily for use with a discrete set of data, the fineness of the triangulation

is inherently limited by the amount of data provided. In applications, minvar can run

triangulations of practical size in a few minutes.

5.2 Lemmas and Propositions

This section states the lemmas and propositions, while the proofs are provided in the

following section.

Several recurring constants related to the geometry of the domain triangulation of the

data generating function appear in the proof. Let r1 = r1(P
∗,S∗) be the maximum inter-

vertex distance, defined in Equation 2.19. Let r2 = r2(P
∗,S∗) be the minimum orthogonal

distance, defined in Equation 2.20. Let r3 = r3(P
∗,S∗) be the dilation radius, defined in

Equation 2.21.

The first lemma shows that if the domain vertices of the approximation are ε close to

the domain vertices of the data generating function, then the least squares affine fit over a

simplex s̄i is a perturbation away from the affine function that the data generating function

takes in s̄∗i . Moreover, the perturbation is quadratic in ε. We write Π(f) to denote the L2
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orthogonal projection of the function f onto the space of affine functions, that is, the best

L2 affine approximation to f . The computation is shown in Section B.2.

Lemma 5.1. Let f∗P be a piecewise linear data generating function parameterized by P∗ =
(P ∗, Q∗,S∗). Consider a piecewise linear approximation fP parameterized by P = (P,Q,S∗).
Let ε < εc, where

εc := min
{

1
2(d+1)r2, r3, 1

}

. (5.2)

Consider the simplices s̄∗i and s̄i. Let xc ∈ s̄∗i . Let f∗P |s̄∗i (x) = A∗i (x − xc) + b∗i . If
∥

∥

∥pj − p∗j
∥

∥

∥ < ε for all p∗j ∈ s̄∗i , then the least squares approximation to f ∗P on s̄i, Π(f∗P |s̄i)(x) =

Âi(x− xc) + b̂i, satisfies the property
∥

∥

∥

∥

∥

[

Âi
T −A∗i T
b̂i

T − b∗i T

]∥

∥

∥

∥

∥

2

< c1,iε
2, (5.3)

where c1,i = c1,i(P∗) is given by Equation 5.15.

The second lemma considers one set of affine functions that all intersect at a common

point and another set of affine functions which are perturbations of the first set of functions.

It is shown that performing the variance minimization, equivalent to Equation 4.2 with

λ = 0, on the second set of functions generates a point whose distance from the intersection

point is linear in the norm of the perturbations.

Lemma 5.2. Let L∗ be a set of N affine maps, L∗1, . . . L
∗
N , such that all intersect at (p∗,q∗)

and are written as L∗i (x) = A∗i (x − p∗) + q∗, and such that H∗, given by Equation 5.17,

is full rank. Let L be a set of perturbed affine maps, L1, . . . LN , expressed as Li(x) =

Âi(x− p∗) + q̂i, which satisfy the property
∥

∥

∥

∥

∥

[

Âi
T −A∗i T
q̂i

T − q∗T

]∥

∥

∥

∥

∥

< ∆ (5.4)

for ∆ < ∆0, where ∆0 = ∆0(A
∗
i ,p

∗,q∗) is given by Equation 5.16. Let p′ and q′ be given

by

p′ = argmin
x

var L(x)

q′ =
1

N

N
∑

i=1

L(p′).

Then p′ and q′ satisfy

∥

∥p′ − p∗
∥

∥ < c2∆
∥

∥q′ − q∗
∥

∥ < c3∆

where c2 = c2(A
∗
i ,p

∗,q∗) and c3 = c3(A
∗
i ,p

∗,q∗) are given by Equation 5.20 and Equation

5.21.
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The proposition brings the two lemmas together to show that a single step of the minvar

algorithm induces a quadratic change in the distance of the approximation vertices to the

data generating function vertices.

Proposition 5.1. Let f∗P be a nondegenerate piecewise linear data generating function

parameterized by P∗ = (P ∗, Q∗,S∗). Let ε < εd,

εd := min

{

εc,

√

∆m
0

c1

}

,

where εc = εc(P∗) is given by Equation 5.2, ∆m
0 = ∆m

0 (P∗) by Equation 5.22, and c1 =

c1(P∗) by Equation 5.24.

If the piecewise linear approximation fP parameterized by (P,Q,S∗) satisfies ‖pi − p∗i ‖ <
ε for all i, then one iteration of the minvar algorithm with λ = 0 gives the new approxima-

tion f ′P parameterized by (P ′, Q′,S∗), which satisfies

∥

∥p′i − p∗i
∥

∥ < c4ε
2

∥

∥q′i − q∗i
∥

∥ < c5ε
2

for all i, where c4 = c4(P∗) and c5 = c5(P∗) are given by Equation 5.28 and Equation 5.29.

The proof of Theorem 5.1 applies Proposition 5.1 to show that if the initial condition is

close enough then iteration of the minvar algorithm causes convergence of the vertices of

the approximation to the vertices of the data generating function.

5.3 Proofs of Lemmas, Proposition, and Theorem

This section presents proofs for the lemmas, proposition, and theorem introduced in the

previous section.

Proof of Lemma 5.1.

Let ϕi(x) := A
∗
i (x− xc) + b∗i , the extension of f∗P |s̄∗i to Rd. Let ψi(x) := f∗P(x)− ϕi(x).

The orthogonal projection Π is a linear operator, and moreover for g affine, Π(g) = g.

It follows that

Π(f∗P |s̄i) = Π(ϕi|s̄i) + Π(ψi|s̄i)

= ϕi +Π(ψi|s̄i). (5.5)

Let Âi and b̂i be such that Π(f∗P |s̄i)(x) = Âi(x−xc)+b̂i. Then from Equation 5.5 it follows

that Π(ψi|s̄i)(x) = (Âi−A∗i )(x−xc)+(b̂i−b∗i ). Moreover, since Π(ψi|s̄i) = Π(f∗P |s̄i−ϕi|s̄i),

thus (Âi−A∗i ) and (b̂i−b∗i ) can be computed using the formula for L2 orthogonal projection

of f∗P |s̄i − ϕi|s̄i , (See Appendix B.2)
[

(Âi −A∗i )T
(b̂i − b∗i )T

]

= Sxx,i
−1Sxy,i,
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Sxx,i =

∫

s̄i

[

x− xc
1

]

[

xT−xcT 1
]

dx, Sxy,i =

∫

s̄i

[

x− xc
1

]

(f∗P(x)− ϕi(x)) Tdx.

The submultiplicative property holds for the induced two norm,
∥

∥

∥

∥

∥

[

(Âi −A∗i )T
(b̂i − b∗i )T

]∥

∥

∥

∥

∥

≤
∥

∥Sxx,i
−1
∥

∥ ‖Sxy,i‖ ,

so on
∥

∥Sxx,i
−1
∥

∥ and ‖Sxy,i‖ may be independently established. We will proceed to bound
∥

∥Sxx,i
−1
∥

∥. Since s̄i is a d-simplex, it follows from calculus and the definition of Sxx,i that

Sxx,i is a positive definite matrix. Let M∗
i be given by

M∗
i :=

∫

D(s̄∗i ,−εc)

[

x− xc
1

]

[

xT−xcT 1
]

dx

Since 0 < ε < εc by hypothesis and εc ≤ 1
2(d+1)r2 by definition, it follows from Claim 2.11

that D(s̄∗i ,−εc) is a d-simplex and thus has non-empty interior. It follows thatM∗
i is positive

definite, and hence invertible. Since ε < εc, and each vertex of s̄i is less than ε away from

the corresponding vertex of s̄∗i , it follows that D(s̄∗i ,−εc) ⊆ s̄i. Thus, xTM∗
ix < x

TSxx,ix

for all x ∈ Rd, which implies that λmin(M
∗
i ) < λmin(Sxx,i). This provides the bound on

∥

∥Sxx,i
−1
∥

∥,
∥

∥Sxx,i
−1
∥

∥ <
∥

∥M∗
i
−1
∥

∥ .

Now we proceed to ‖Sxy,i‖. By the properties of norms,

‖Sxy,i‖ ≤
∫

s̄i

∥

∥

∥

∥

∥

[

x− xc
1

]∥

∥

∥

∥

∥

‖ψi(x)‖ dx (5.6)

Let C(s̄i, ε) =
{

x ∈ Rd
∣

∣

∣
δ(x, s̄i) ≤ ε

}

. (Recall that δ(·, ·) is the distance between a point and

a set defined in Chapter 2.) By hypothesis, the vertices of s̄i are less than ε away from

the vertices of s̄∗i , so vert(s̄i) ⊆ C(s̄∗i , ε). Moreover, since C(s̄∗i , ε) is convex and contains the

extreme points of s̄i, s̄i ⊆ C(s̄∗i , ε). The integrand in Equation 5.6 is nonnegative definite,

so Equation 5.6 is bounded by

≤
∫

C(s̄∗i ,ε)

∥

∥

∥

∥

∥

[

x− xc
1

]∥

∥

∥

∥

∥

‖(ψi(x))‖ dx

By hypothesis xc ∈ s̄∗i . By the definition of r1 and since ε < εc, it follows that ∀x ∈ C(s̄∗i , ε),
‖x− xc‖ ≤ r̄ := r1 + 2εc. Thus, the integral above is further bounded by

≤
√

1 + r̄2
∫

C(s̄∗i ,ε)
‖(ψi(x))‖ dx (5.7)

Once again the integrand is nonnegative definite, so Equation 5.7 can be bounded by inte-

grating over D(s̄∗i , ε), since C(s̄∗i , ε) ⊆ D(s̄∗i , ε),

≤
√
1 + r̄2

∫

D(s̄∗i ,ε)
‖(ψi(x))‖ dx (5.8)

=
√
1 + r̄2

∑N
j=1

∫

Uj
‖(ψi(x))‖ dx (5.9)
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Figure 5.1: In these two figures illustrating Lemma 5.1, the domain triangulation of the

data generating function is indicated with thick, dark lines. (Top) The d-simplex of the

approximation, s̄i, (light colored line) does not match up exactly with the corresponding

d-simplex of the data generating function, s̄∗i , but all the vertices of the approximation are

within ε of the vertices of the data generating function. Any intersection of s̄i with a simplex

of the data generating function other than s̄∗i perturbs the least squares affine approximation

over s̄i away from the data generating function’s affine map over s̄∗i . The shaded patch

shows one such perturbation causing region. (Bottom) To bound the perturbation, the

mismatch is overestimated using the dilation, D(s̄∗i , ε), (light colored line). The dilation is

represented in terms of barycentric coordinates, whose interpretation as distances allows

the appropriate bounds to be constructed. A difficult part of the bounding argument deals

with the differences caused by the dimension of dim(s̄∗i ∩ s̄∗j ), where s̄∗j ∩ s̄∗i 6= ∅.
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where Uj = D(s̄∗i , ε) ∩ s̄∗j and N is the total number of d-simplices in the domain triangu-

lation. Since ψi(x) = 0 on s̄∗i , the term corresponding to j = i in Equation 5.9 is zero. By

hypothesis ε < εc ≤ r3, so by Claim 2.15, s̄∗j ∩ D(s̄∗i , ε) 6= ∅ if and only if s̄∗j ∈ St s̄∗i . Thus

the terms in Equation 5.9 are only nonzero for j such that s̄∗j is incident to s̄∗i . Consider

such a term,
∫

Uj

‖ψi(x)‖ dx =

∫

Uj

∥

∥

(

A∗j −A∗i
)

(x− xc) + b∗j − b∗i
∥

∥ dx,

where f∗P |s̄∗j (x) = A∗j (x− xc) + b∗j . By Claim 3.1, there exists xO ∈ s̄∗j ∩ s̄∗i ⊆ Uj such that
(

A∗j −A∗i
)

(xO − xc) + b∗j − b∗i = 0. Applying the change of coordinates y = x− xO gives

∫

Uj

‖ψi(x)‖ dx =

∫

Uj−xO

∥

∥

(

A∗j −A∗i
)

y
∥

∥ dy (5.10)

Let L be the linear subspace parallel to aff(s̄∗i ∩ s̄∗j ). Recall that dimL = dim s̄∗i ∩ s̄∗j :=

di,j (see Section 2.2.3). By Claim 3.1, L ⊆ N (
(

A∗j −A∗i
)

). Let v1, . . . ,vdi,j be an or-

thonormal basis for L. Let vdi,j+1, . . . ,vd be an orthonormal basis for L⊥. Then P =
[

v1 v2 · · · vd
]

is an orthogonal matrix. Rewrite Equation 5.10 under the change of

coordinates z = PTy,

=

∫

PT(Uj−xO)

∥

∥

(

A∗j −A∗i
)

Pz
∥

∥ dz (5.11)

Since the integrand is a nonnegative definite function, we may bound Equation 5.11 by

increasing the volume over which the integrand is integrated. By Claim 2.12, there exists

κi,j such that for all x ∈ Uj , δ
(

x, aff(s̄∗i ∩ s̄∗j )
)

< κi,jε. Equivalently δ(y, L) < κi,jε for any

y ∈ Uj−xO, from which it follows that the projection of y onto L⊥ must have magnitude less

than κi,jε. Moreover, by the definition of r̄, the projection of y onto L must have magnitude

less than r̄. It follows that PT(Uj − xO) ⊆ [−r̄, r̄]di,j ×Bd̄i,j
(κi,jε), where d̄i,j = d− di,j , di,j

is defined in Equation 2.17, and Bd̄i,j
(κi,jε) is the d̄i,j-dimensional ball of radius κi,jε. Then

Equation 5.11 is bounded by

≤
∫

[−r̄,r̄]di,j×Bd̄i,j
(κi,jε)

∥

∥

(

A∗j −A∗i
)

Pz
∥

∥ dz (5.12)

The first di,j columns of
(

A∗j −A∗i
)

P are zero, since the first di,j columns of P are in

the nullspace of
(

A∗j −A∗i
)

. Thus, the integrand in Equation 5.12 has no dependence on

z1, z2, . . . , zdi,j , so we can integrate through for z1, . . . , zdi,j , giving

= (2r̄)di,j

∫

Bd̄i,j
(κi,jε)

∥

∥

∥

∥

∥

(

A∗j −A∗i
)

P

[

I

0

]

z̄1

∥

∥

∥

∥

∥

dzdi,i+1 . . . dzd (5.13)

where z̄1
T =

[

zdi,j+1 · · · zd

]

T. Since the first di,j columns of
(

A∗j −A∗i
)

P are zero and

P is orthogonal, it follows that

∥

∥

∥

∥

(

A∗j −A∗i
)

P
[

I 0
]T
∥

∥

∥

∥

≤
∥

∥

∥A∗j −A∗i
∥

∥

∥. Thus, Equation
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5.13 can be further bound by

≤ (2r̄)di,j
∥

∥A∗j −A∗i
∥

∥

∫

Bd̄i,j
(κi,jε)

‖z̄1‖ dz̄1 (5.14)

From calculus (see for example [Spi65]) it can be shown that2

∫

Bk(ε)
‖w‖ dw =

k

k + 1

πk/2

Γ(k/2)
εk+1

Applying this with Equation 5.14 to Equation 5.9, and then simplifying using the fact that

εm ≤ ε2 for m ≥ 2 since ε < εc ≤ 1, gives

‖Sxy,i‖ ≤
√

1 + r̄2 li max
j s.t. j 6=i,

s̄∗j∈Sts̄
∗
i

(

(2r̄)di,j
∥

∥A∗j −A∗i
∥

∥κi,j
1+d̄i,j

d̄i,j

d̄i,j + 1

π(d̄i,j)/2

Γ((d̄i,j)/2)

)

ε2

where li =
∑

s̄∗j∈Sts̄
∗
i
1. Then

∥

∥

∥

∥

∥

[

Âi
T −A∗i T
b̂i

T − b∗i T

]∥

∥

∥

∥

∥

≤
∥

∥Sxx,i
−1
∥

∥ ‖Sxy,i‖

< c1,iε
2

where

c1,i :=
∥

∥M∗
i
−1
∥

∥

√

1 + r̄2 li max
j s.t. j 6=i,

s̄∗j∈Sts̄
∗
i

(

(2r̄)di,j
∥

∥A∗j −A∗i
∥

∥κi,j
1+d̄i,j

d̄i,j

d̄i,j + 1

π(d̄i,j)/2

Γ((d̄i,j)/2)

)

(5.15)

and d̄i,j = d− di,j , li =
∑

s̄∗j∈Sts̄
∗
i
1, and r̄ = r1 + 2εc.

Proof of Lemma 5.2.

Let the constant ∆0 from the statement of the lemma be given by

∆0 := min

{

1

N

N
∑

j=1

∥

∥A∗j
∥

∥ ,

(

12

N

∥

∥H∗−1
∥

∥

N
∑

j=1

∥

∥A∗j
∥

∥

)−1
}

, (5.16)

where H∗ is given by Equation 5.17.

Solving p′ = argminx var L(x) is equivalent to solving Equation 4.2 with λ = 0. As

with Equation 4.2, a closed form expression for p′ can be found by “completing the square.”

Specifically, p′ = H−1h,

H :=





1

N

N
∑

j=1

Âj
TÂj



− ÂTÂ

h :=





1

N

N
∑

j=1

Âj
T(q̂j − Âjp

∗)



− ÂTb̂

2For even k, Γ(k/2) = (k/2)!. For odd k, let k′ = 1
2
(k − 1), then Γ(k/2) = Γ( 1

2
+ k′) =

√
π (2k′+2)!

(k+1)!4k′+1
.
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where Â = 1
N

∑N
j=1 Âj and b̂ = 1

N

∑N
j=1(q̂j − Âjp

∗). Let Ãj = Âj −A∗j and q̃j = q̂j −q∗.
Then H = H∗ + H̃ and h = h∗ + h̃, with

H∗ :=





1

N

N
∑

j=1

A∗j
TA∗j



−A∗TA∗, (5.17)

h∗ :=





1

N

N
∑

j=1

A∗j
T(q∗ −A∗jp∗)



−A∗T.

H̃ =
1

N





N
∑

j=1

(A∗j + Ãj)
TÃj +

N
∑

j=1

Ãj
TA∗j



−A∗TÃ − ÃTA∗ − ÃTÃ,

h̃ =
1

N





N
∑

j=1

(A∗j + Ãj)
T(q̃j − Ãjp

∗) +

N
∑

j=1

Ãj
T(q∗ −A∗jp∗)



−A∗Tb̃ − ÃTb∗ − ÃTb̃.

where

A∗ =
1

N

N
∑

j=1

A∗j b∗ =
1

N

N
∑

j=1

(q∗ −A∗jp∗)

Ã =
1

N

N
∑

j=1

Ãj b̃ =
1

N

N
∑

j=1

(q̃j − Ãjp
∗)

Notice that H∗ and h∗ depend only on A∗j , p
∗ and q∗. Moreover, since all functions in

L∗ go through (p∗,q∗), it must be that p∗ = argminx var L
∗(x), and thus p∗ = H∗−1h∗.

Rewriting p′ = H−1h, gives

(

H∗ + H̃
)

(

p∗ + (p′ − p∗)
)

= h∗ + h̃.

Applying H∗p∗ = h∗ and solving for p′ − p∗ yields

p′ − p∗ =
(

H∗ + H̃
)−1 (

h̃− H̃p∗
)

From the hypothesis it follows that
∥

∥

∥
Ãj

∥

∥

∥
< ∆ and ‖q̃j‖ < ∆. Applying these bounds and

the properties of norms, it follows after some computation that

∥

∥

∥
H̃
∥

∥

∥
≤ 2∆2 +

4∆

N

N
∑

j=1

∥

∥A∗j
∥

∥ ,

∥

∥

∥
h̃
∥

∥

∥
≤ 2 (1 + ‖p∗‖)∆2 +

2∆

N

N
∑

j=1

[∥

∥A∗j
∥

∥ (1 + ‖p∗‖) + ‖q∗‖+
∥

∥A∗j
∥

∥ ‖p∗‖
]

.
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Since ∆ < ∆0 and by definition ∆0 ≤ 1
N

∑N
j=1

∥

∥

∥
A∗j

∥

∥

∥
, the above bounds may be further

simplified to

∥

∥

∥H̃
∥

∥

∥ <





6

N

N
∑

j=1

∥

∥A∗j
∥

∥



∆ (5.18)

∥

∥

∥
h̃
∥

∥

∥
<





2

N

N
∑

j=1

[

2
∥

∥A∗j
∥

∥ (1 + ‖p∗‖) + ‖q∗‖+
∥

∥A∗j
∥

∥ ‖p∗‖
]



∆. (5.19)

Also by definition ∆0 ≤
(

12
N

∥

∥H∗−1
∥

∥

∑N
j=1

∥

∥

∥
A∗j

∥

∥

∥

)−1
, so the bound in Equation 5.18 can

be simplified to
∥

∥

∥H̃
∥

∥

∥ < 1
2‖H∗−1‖

, and thus
∥

∥

∥H∗−1H̃
∥

∥

∥ < 1
2 . From [GV96, Lemma 2.3.3], if

M ∈ Rn×n and ‖M‖ < 1, then I−M is nonsingular and
∥

∥(I−M)−1
∥

∥ ≤ 1
1−‖M‖ . Applying

this fact and the bound on
∥

∥

∥
H∗−1H̃

∥

∥

∥
, we derive after some computation

∥

∥

∥
(H∗ + H̃)−1

∥

∥

∥
< 2

∥

∥H∗−1
∥

∥ .

So then

∥

∥p′ − p∗
∥

∥ ≤
∥

∥

∥

∥

(

H∗ + H̃
)−1

∥

∥

∥

∥

∥

∥

∥
h̃− H̃p∗

∥

∥

∥

≤ 2
∥

∥H∗−1
∥

∥

(∥

∥

∥h̃
∥

∥

∥+
∥

∥

∥H̃
∥

∥

∥ ‖p∗‖
)

< c2∆

where c2 :=
4
∥

∥H∗−1
∥

∥

N

N
∑

j=1

(

6
∥

∥A∗j
∥

∥ ‖p∗‖+ 2
∥

∥A∗j
∥

∥+ ‖q∗‖
)

, (5.20)

which is the first part of the desired result. Applying this bound and the definition of q′,

we find after some computation that

∥

∥q′ − q∗
∥

∥ < c3∆

where c3 := 1 +
2c2
N

N
∑

j=1

∥

∥A∗j
∥

∥ (5.21)

which completes the desired result.

Proof of Proposition 5.1.

Let

∆m
0 = min

i s.t.
p∗i∈P

∗







1

Ni

Ni
∑

j=1

∥

∥

∥
A∗ij

∥

∥

∥
,





12

Ni

∥

∥H∗i
−1
∥

∥

Ni
∑

j=1

∥

∥

∥
A∗ij

∥

∥

∥





−1




, (5.22)

where s̄∗i1 , . . . , s̄
∗
iNi

are the Ni d-simplices in St{p∗i }, and

H∗i =





1

Ni

Ni
∑

j=1

A∗ij
TA∗ij



−





1

Ni

Ni
∑

j=1

A∗ij





T





1

Ni

Ni
∑

j=1

A∗ij



 .
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We will examine the effect of a single iteration of the minvar algorithm on pi ∈ P , qi ∈ Q.

The results will hold independently of i, giving the desired result.

The first stage of the minvar algorithm calculates the least squares projection Π(f ∗P |s̄i)

in each d-simplex s̄i of the approximation. (Step 2 of the algorithm. Since this proposition

addresses the approximation version of the problem, there is no partitioning of data to

be performed in Step 1.) Let s̄i1 , . . . , s̄iNi
be the d-simplices in St{pi}. Since f∗P and

fP are parameterized with the same abstract simplicial complex S∗, s̄∗i1 , . . . , s̄∗iNi
are the

corresponding d-simplices in St{p∗i }. Let f∗P |s̄∗ij (x) = A∗ij (x − p∗i ) + q∗i and Π(f∗P |s̄i) =

Âij (x−p∗i )+ q̂ij . Since ε < εd ≤ εc, it follows from Lemma 5.1 that for each j = 1, . . . , Ni,
∥

∥

∥

∥

∥

[

Âij
T −A∗ijT

q̂ij
T − q∗i T

]∥

∥

∥

∥

∥

< c1,ij ε
2, (5.23)

where c1,ij is given by Equation 5.15. Let

c1 = max
i=1,..,N

c1,i, (5.24)

where N is the total number of d-simplices in T (P,S∗). Then for j = 1 . . . , Ni,
∥

∥

∥

∥

∥

[

Âij
T −A∗ijT

b̂ij
T − b∗ijT

]∥

∥

∥

∥

∥

< c1ε
2. (5.25)

Step 3 of minvar moves the vertices, taking (pi,qi) → (p′i,q
′
i). Since ε < εd ≤

√

∆m
0 /c1

by hypothesis, it follows that c1ε
2 < ∆m

0 . Thus, Equation 5.25 implies that the bound in

Equation 5.4 is satisfied, permitting application of Lemma 5.2, which gives

∥

∥p′i − p∗i
∥

∥ < c2,ic1ε
2,

∥

∥q′i − q∗i
∥

∥ < c3,ic1ε
2,

where

c2,i :=
4
∥

∥H∗i
−1
∥

∥

Ni

Ni
∑

j=1

(

6
∥

∥

∥A∗ij

∥

∥

∥ ‖p∗i ‖+ 2
∥

∥

∥A∗ij

∥

∥

∥+ ‖q∗i ‖
)

, (5.26)

c3,i := 1 +
2c2,i
Ni

Ni
∑

j=1

∥

∥

∥A∗ij

∥

∥

∥ . (5.27)

For each pi, qi we can compute such bounds. Let

c4 := c1max
i
c2,i (5.28)

c5 := c1max
i
c3,i (5.29)

Then, for all i, p′i and q
′
i satisfy

∥

∥p′i − p∗i
∥

∥ < c4ε
2 (5.30)

∥

∥q′i − q∗i
∥

∥ < c5ε
2, (5.31)

which is the desired result.
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Proof of Theorem 5.1.

First we establish by induction that for k ≥ 1,

1

c4
(c4ε)

2k

< εd, (5.32)

∥

∥

∥
p
(k)
i − p∗i

∥

∥

∥
<

1

c4
(c4ε)

2k

, (5.33)
∥

∥

∥
q
(k)
i − q∗i

∥

∥

∥
<

c5
c4

(c4ε)
2k

. (5.34)

For k = 1, c4ε
2 < εd since ε < ε0 ≤

√

εd/c4. For k > 1, 1
c4
(c4ε)

2k

< εd by the induction hy-

pothesis. Moreover, c4ε < 1 since ε < ε0 ≤ 1
c4
. Then 1

c4
(c4ε)

2(k+1)

=
(

1
c4
(c4ε)

2k
)

(c4ε)
2k

<

εd. This establishes Equation 5.32. Since ε < ε0 ≤ εd, it follows that for k = 1, after a

single iteration of the minvar algorithm, Equation 5.33 and Equation 5.34 will hold by

Proposition 5.1. For k > 1, for all i,
∥

∥

∥
p
(k)
i − p∗i

∥

∥

∥
< 1

c4
(c4ε)

2k

by the induction hypothesis.

From Equation 5.32, proven above, 1
c4
(c4ε)

2k

< εd. Since for all i,
∥

∥

∥
p
(k)
i − p∗i

∥

∥

∥
< εd, it

follows from Proposition 5.1 that

∥

∥

∥p
(k+1)
i − p∗i

∥

∥

∥ < c4

(

1
c4
(c4ε)

2k
)2

=
1

c4
(c4ε)

2(k+1)

∥

∥

∥
q
(k+1)
i − q∗i

∥

∥

∥
< c5

(

1
c4
(c4ε)

2k
)2

=
c5
c4

(c4ε)
2(k+1)

,

which establishes Equation 5.33 and Equation 5.34. Since c4ε < 1, as argued above, it

follows that Equation 5.33 and Equation 5.34 go to 0 as k goes to infinity.
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CHAPTER 6

The Graph Intersection Algorithm: a Special Case of minvar

Exploration of piecewise linear homeomorphisms for approximation began with an in-

vestigation of the scalar case, i.e. where the domain and codomain are scalar. The Graph

Intersection (GI) algorithm, predecessor of the minvar algorithm, computes scalar piece-

wise linear approximations to data. This chapter presents the GI algorithm, which differs

slightly from the scalar version of minvar. A numerical study is presented, comparing the

GI algorithm with a gradient descent technique for computing PL approximations as well

as two other approximation techniques, neural networks and Taylor polynomials. The pre-

viously presented local convergence result for GI [GKK00] has been subsumed by the local

convergence result for the minvar algorithm, presented in Chapter 5.

6.1 The Graph Intersection Algorithm

The Graph Intersection (GI) algorithm is the scalar version of the minvar algorithm.

In the scalar case, a number of things are simplified in comparison to general dimension.

For example, the triangulation of a set of points in R is unique. The success of the GI

algorithm motivated the generalization to higher dimensions.

The parameterization of a scalar PL function is P = (P,Q), where P = {p1, p2, . . . , pn},
pi ∈ R with p1 < p2 < · · · < pn, and Q = {q1, q2, . . . , qn} with qi ∈ R. An abstract simplicial

complex does not need to be specified for a scalar PL function since a set of points in R has

a unique triangulation, specifically S = {{1, 2}, {2, 3}, . . . , {n−1, n}}. The triplet (P,Q,S)
is then a PL parameterization as defined in Chapter 3, and the scalar PL function could be

evaluated using Equation 3.1. In the scalar case, Equation 3.1 reduces to

fP(x) =

(

qi+1 − qi
pi+1 − pi

)

(x− pi) + qi for pi ≤ x ≤ pi+1 (6.1)

Clearly fP is invertible, equivalent to strict monotonicity in the scalar case, if the codomain

vertices are ordered, i.e. either q1 < q2 < · · · < qn or qn < qn−1 < · · · < q1. This condition

corresponds to the range forming a valid triangulation, corresponding to Claim 3.5.

Let a set of input-output data be given, Z = {(xi, yi)}Nd
i=1. Similar to the minvar algo-

81



rithm, the GI algorithm takes an initial parameterization P (0) = (P (0), Q(0)) and generates

a sequence of parameterizations, P (k) = (P (k), Q(k)), as follows:

Graph Intersection Algorithm

1. Partition data set Z into subsets Z (k)
i according to the intervals of P (k),

Z(k)
i = {(xi, yi) ∈ Z | }

2. For i = 1, ..., n− 1,

Compute the least squares affine approximation Li(x) = mix+ bi

to the data subset Zi.
3. For i = 1, ..., n− 2,

if Li, Li+1 are not parallel,

let (p′i+1, q
′
i+1) be the graph intersection point of Li, Li+1

p′i+1 =
bi+1−bi
mi−mi+1

, q′i+1 = mip
′
i+1 + bi.

if (p′i+1, q
′
i+1) meets the Acceptance Condition (see page 83)

(p
(k+1)
i+1 , q

(k+1)
i+1 ) = (p′i+1, q

′
i+1).

else

choose (p
(k+1)
i+1 , q

(k+1)
i+1 ) using “Special Rule” (see page 84)

else

let (p
(k+1)
i+1 , q

(k+1)
i+1 ) = (p

(k)
i+1, q

(k)
i+1)

4. (p
(k+1)
i+1 , q

(k+1)
i+1 ) = (p

(k)
i+1 , L1(p

(k)
i+1)).

(p
(k+1)
n , q

(k+1)
n ) = (p

(k)
n , Ln−1(p

(k)
n )).

5. If P(k) has converged

Stop.

Else k = k + 1. Goto 1.

The first and second steps of the algorithm correspond directly to the minvar algorithm.

The differences appear in step 3. In the minvar algorithm, the new location of the domain

vertex is given as the solution of a regularized quadratic minimization. In the scalar case,

the unregularized minimization reduces to finding the intersection point of the least squares

affine approximations on either side of the previous vertex, the “graph intersection point.”

Step 3 of the GI algorithm directly computes the GI point, using no regularization. Instead,

the domain vertex is checked to see if it meets the “acceptance condition,” which guarantees

that a tangle of the domain vertices will not occur.

In some circumstances, the best fit lines of neighboring cells have the same slope, pre-

cluding any intersection point (in the case of parallel lines) or yielding a continuum of

intersection points (in the case of coincident lines). An equally important, but less obvious

problem occurs when neighboring cells have best fit lines which are nearly parallel. This

may cause the resulting intersection point to be far away from the previous vertex, poten-

tially even outside of the domain of approximation, destroying the domain triangulation.

The Acceptance Condition and “Special Rule” ensure that the proper domain vertex or-

dering, and hence a well-defined approximation, is maintained. The Acceptance Condition
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Figure 6.1: Visualization of the Graph Intersection algorithm. Since the intersection point of

Lj and Lj+1 lie within the acceptance region, p
(k+1)
i and q

(k+1)
i are placed at the intersection

point. If the intersection point did not lie within the acceptance region, then a special rule

would be used.

checks if the intersection point is between the “midpoints” of the vertex’s two cells. If not,

the new vertex is selected using a “Special Rule” rather than the intersection point. The

“Special Rules” are also discussed below.

The least squares affine fits in step 2 of the algorithm can be computed using the

standard least squares methodology. Explicitly, for the subset of the data Zi, let

Ni =
∑

(xj ,yj)∈Zi

1.

sx,i =
1

Ni

∑

(xj ,yj)∈Zi

xj , sxx,i =
1

Ni

∑

(xj ,yj)∈Zi

xj
2,

sy,i =
1

Ni

∑

(xj ,yj)∈Zi

yj , sxy,i =
1

Ni

∑

(xj ,yj)∈Zi

xjyj ,

Then the parameters of the least squares affine fit Li(x) = mix+ bi to Zi are given by

mi =
sxy,i − sx,i sy,i
sxx,i − sx,i sx,i

,

bi =
sxx,i sy,i − sx,i sxy,i
sxx,i − sx,i sx,i

.

In Step 3 of the algorithm, the graph intersection point is checked to see if it is “accept-

able.” The Acceptance Condition is,

Acceptance Condition: A graph intersection point (p′i, q
′
i) is considered acceptable if

sx,i−1 < p′i < sx,i
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In other words, the intersection point is acceptable if it lies between the means of the data

in the left- and right-hand neighboring cells. If all intersection points are acceptable, then

clearly the order of the domain vertices is preserved and the triangulation does not tangle.

If an intersection point is not acceptable, then a new acceptable domain vertex is chosen via

a “special rule” described below. Forcing all domain vertices to be acceptable is sufficient

but not necessary for preventing tangles of the domain triangulation. Though conservative,

it provides a convenient method for diagnosing and fixing potential problems.

Several different “special rules” have been tested for selecting domain and codomain ver-

tices when the graph intersection point fails to be acceptable. Surprisingly the numerical

performance of the algorithm appears almost entirely independent of the rule used. Observ-

ing the algorithm’s convergence on a wide variety of datasets suggests a qualitative reason.

In general the special rules are needed only during the first few iterations of the algorithm,

after which time all intersection points are all acceptable as the algorithm converges. The

numerical results presented in the next section use the pointwise decision rule.

The Pointwise Decision rule, inspired by the Kioustelidis algorithm [Kio81, Kio80], di-

rectly examines the error modulus. The rule starts at the location of the previous domain

vertex and looks at the nearest data point. It determines which least squares affine map,

from the left or right interval, has smaller error at that data point. The domain vertex

is moved in the direction that reduces the error (e.g. if the least squares fit to the left

yields a smaller error on the data point, then move the domain vertex to the right). Then

pointwise-decision continues to step through data in this direction until the least squares

fit that was better begins to yield worse errors compared to the other least squares fit. For

the following discussion, assume the data set Z is ordered according to the domain value of

the data points. Let the error modulus be ei(xj , yj) = |yj − Li−1(xj)| − |yj − Li(xj)|. The

Pointwise Decision rule is given by:

1. Find the data point xj nearest to p
(k)
i

2. If ei(xj , yj) > 0

d = 1

Else

d = −1
3. While d · ei(xj , yj) > 0

j = j + d

4. p
(k)
i = xj , q

(k)
i = 1

2(Li−1(xj) + Li(xj))

This rule extends a domain interval data point by data point at the cost of its neigh-

bor, explicitly looking for a lower error modulus. In general, the Pointwise Decision rule

will stop where the two neighboring maps are discontinuous. Since we want a continuous

approximation, we pick the knot’s range value as the average of the two neighboring maps

at that point. The maps in the two neighboring cells are no longer the least squares maps
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which were used while determining the new knot, thus the error modulus reduction is not

guaranteed. Nevertheless, this rule works quite well in practice.

The second “special” rule is cross-validation. The underlying principle is to expand the

interval whose least squares fit is performing better in terms of mean square error over data

points. The mean square errors are computed and are used to form a convex combination

of the “midpoints” of the two intervals. Let MSE1 and MSE2 be the mean squared error

of Li−1(x) and Li(x) respectively on the data set {(xj , yj) ∈ Z| sx,i−1 < xj < sx,i}. Let

α =MSE1/(MSE1 +MSE2). Then the cross-validation rule gives

p
(k)
i = αsx,i−1 + (1− α)sx,i (6.2)

q
(k)
i = αsy,i−1 + (1− α)sy,i (6.3)

The new vertex locations are a convex combination of the mean of the data on the left and

right side of the knot, with the coefficients of the combination based on the mean square

error of the least squares affine approximations on the data lying in the acceptable region.

The side which has the larger mean square error will shrink, while the side with the lower

mean square error will expand.

A third special rule, “Error Balance,” was also inspired by Kioustelidas’s algorithm, and

was a precursor to the Pointwise Decision rule. The error balance rule is no longer used.

6.1.1 Relationship of Graph Intersection and minvar

An iteration of the GI algorithm in which all the intersection points are acceptable is

exactly the same as an iteration of the minvar algorithm with λ = 0. The local convergence

result presented in Chapter 5 considers the minvar with λ = 0, and shows that the vertices

of the approximation get closer and closer to the vertices of the data generating function,

if the initial approximation starts close enough. If the GI algorithm, rather than minvar,

is started close enough to the vertices of the data generating function, then the acceptance

condition is never violated, and the GI algorithm is identical to the minvar algorithm with

λ = 0. Thus the result from Chapter 5 applies to the GI algorithm as well, superseding a

specialized scalar result that appeared in [GKK00].

6.2 Implementation of Graph Intersection Algorithm

The GI algorithm was implemented as a set of Matlab scripts, which are available at

http://www.eecs.umich.edu/~regroff/research/software.html. The benefit of Mat-

lab is the speed with which code can be prototyped. Evaluating a scalar piecewise linear

function requires searching for the domain interval in which the point to be evaluated lies.

This is a particularly slow task in Matlab, requiring either for loops or a matrix-ized cal-

culation that computes much more than necessary, but is nonetheless faster due to the

speed of Matlab’s matrix routines. In the scalar case, the overhead of Matlab is tolerable.
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For higher dimensions, the overhead becomes too weighty, and it is best to write code for

evaluating and approximating PL functions in a compiled language, as was done for the

minvar implementation.

The GI Matlab scripts can produce PL approximations using both the GI algorithm as

well as the scalar minvar algorithm. (Recall that these algorithms differ in that minvar

uses regularization to prevent domain triangulation tangles while GI uses the special rules

to avoid tangles.) The following section presents results from the GI algorithm exclusively,

while the application section on camera calibration at the end of this chapter uses both

minvar and GI.

6.3 Numerical Results for the Graph Intersection Algorithm

We studied the approximation of homeomorphisms of the interval [0, 1] into itself from

noiseless data using piecewise linear approximants (PL) as well as neural networks (NN)

and Taylor polynomials (TP) representing truncated Taylor series. Each approximation

was given the same number of parameters. For example, the data shown here is for 16

parameters, corresponding to a NN with 5 neurons, a degree 15 TP and a PL approximant

with 9 segments (the endpoints are fixed). All code was implemented in MATLAB. TP

solves the standard linear least squares problem in closed form to find the coefficients. The

NN has a single hidden layer with hyperbolic tangent neurons and trains using Levenberg-

Marquardt descent on the squared error. Results for two different forms of PL training are

shown. The first (constr PL) uses MATLAB’s constrained optimization algorithm directly

on the squared error. The Graph Intersection (GI PL) algorithm is the second method for

computing PL approximations.

The choice of homeomorphisms, functions which are invertible, continuous, and have a

continuous inverse, is motivated by the proposed applications, where a “change of coordi-

nates” is learned between an a priori topological model with invariant properties and the

world as represented by data. Six families of homeomorphisms were chosen for study. Fam-

ilies tansig1 and tansig2 are invertible superpositions of hyperbolic tangents, and families

plfun1 and plfun2 are invertible piecewise linear. Families tansig1 and plfun1 lie within

the representational power of the neural network and the piecewise linear approximant, re-

spectively, whereas the approximations are “underparameterized” on tansig2 and plfun2.

The fifth family is high degree polynomials (rndply). These functions are generated by

taking the composition of seven invertible quadratic functions. The last family is time one

maps from differential equations (diffeq). Recall that the time one map of a differential

equation with unique solutions is not only a homeomorphism but also a diffeomorphism.

One hundred functions were randomly sampled from each of the six families.

Figure 6.2 summarizes the approximation error for the study. As expected, NN out-

performs the other three techniques on the class tansig1, where the functions lie with
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Figure 6.2: Comparison of approximation techniques on six function families. The approxi-

mation techniques are Taylor Polynomial(TP), Neural Network(NN), PL using constrained

optimization (constr PL) and PL using GI (GI PL). For each function family, 100 functions

were randomly sampled. Mean and standard deviation bars of the Log Mean Squared Error

are shown for each approximation technique on each function family.

Table 6.1: Mean computational cost (in megaflops) of the approximation techniques on the

six function families.

TP NN PL con PL GI

tansig1 0.187 10.2 1.89 0.168

tansig2 0.187 9.38 1.68 0.240

plfun1 0.187 9.71 1.93 0.185

plfun2 0.187 9.74 2.12 0.538

rndply 0.187 10.7 1.02 0.157

diffeq 0.187 9.71 2.06 0.195
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the parameter space of the NN. Similarly both PL techniques outperform the other two

techniques on plfun1, where the functions lie within the parameter space of PL. GI PL

consistently produces better results than constr PL. On most families the PL techniques

perform better than the other two techniques. An exception is the rndply family, on which

NN did notably better than PL, but otherwise PL is competitive in terms of error, and also

has the benefit of being closed form invertible.

Table 6.1 shows training cost in terms of floating point operations (flops) for the algo-

rithms on the various function families. By far the highest computational cost belongs to

NN, which is almost two orders of magnitude more intensive than TP. Note that constr PL

is also computationally expensive. GI PL is close to TP in computational cost and on some

families actually uses less flops than TP, which is a linear-in-parameters approximation.

Overall, on the classes of homeomorphisms studied, GI PL is competitive in terms

of squared error with both TP and NN, and it is surprisingly computationally efficient.

Moreover it is possible to easily check the invertibility of the resulting function, as well as

invert it in closed form.
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CHAPTER 7

Color Systems Management

Interest in invertible approximations was initiated through an NSF GOALI1 sponsored

collaboration between Xerox Corp. and the University of Michigan on control problems in

printing. Through this collaboration, color systems management emerged as a compelling

problem for which which progress could be made. The color systems management problem

requires a computationally effective representation for changes of coordinates.

If one repeatedly prints a color image on a laser printer over a period of weeks and

examines the resulting prints, one will notice variation in color tone from print to print,

though each may look fine individually. These variations are undesirable, and in some sit-

uations unacceptable, for instance when reproducing trademarked colors or photographic

quality images. Offset lithography, the technology currently used for the majority of color

printing, reproduces color with very high consistency, but has higher fixed costs per docu-

ment run2 [Bla83]. In comparison, electrophotography, the technology in laser printers and

photocopiers, has very low fixed costs per document run, making personally customized

documents feasible, but produces colors less consistently. With improved color consistency,

electrophotography would emerge as the preferred option in terms of overall quality and

economy for small color printing jobs, i.e. less than 2000 copies. Toward this goal, Xerox

has implemented low level signal controls inside laser printers and copiers for twenty years.

The next step is to wrap a higher level feedback around the color commands to the print

engine.

This chapter provides background on the electrophotographic process3 and an overview

of control of electrophotography. The color systems management problem is introduced,

and it is shown that this problem can be reduced to the approximation of a change of

1This work is a collaboration between the University of Michigan and Xerox Corp., funded in part by
NSF Award ECS-96322801 under the Grant Opportunities for Academic Liaison with Industry program.

2Offset lithography requires a set of etched metal plates, one plate for each color ink used, typically cyan,
magenta, yellow, and black. When printing a new document, the fixed costs associated with the initial
production of the plates is relatively high, but the marginal cost per printed page is low. In comparison,
electrophotography (used in laser printers and photocopiers) has essentially no fixed cost for printing a new
document, but the marginal costs are higher.

3A version of this background material appears in [GT03], cowritten with Tracy Thieret of Xerox Corp.
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Figure 7.1: The print engine of a laser printer with the steps of the electrophotographic

process labeled.

coordinates. A numerical study is presented, comparing minvar PLH approximations and

lookup tables, the industry standard, for a set of color data supplied by Xerox Corp.4

7.1 Electrophotography

Laser printers are based on electrophotography, the same marking technology used in a

photocopier. Electrophotographic reproduction centers around the photoreceptor, a belt or

drum consisting of at least two layers, a photoconductive layer and a conductive substrate.

In darkness, the photoreceptor can hold a static charge, but when exposed to light it

discharges. The desired image is “painted” in static electricity and then developed with

toner, small charged plastic particles. The toner is transferred to the print medium and

then fused. The electrophotographic process consists of six steps: Charge, Expose, Develop,

Transfer, Fuse, and Clean. The photoreceptor transports the image, in its various forms,

between the subsystems. This section will discuss the steps of the electrophotographic

process for monochrome printing, illustrated in Figure 7.1. Further exposition is provided

in [DNT02, PS93, Sch88].

The Charge step deposits a uniform static charge on the photoreceptor. Typically, this

4Some of these results have been published in [GKK+99, GKKT00].
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is performed by a corona discharge, produced by a corotron or scorotron. A corotron is a

thin wire to which a high ac and dc voltage is applied. The voltage creates a corona, the

breakdown of the surrounding air, which transfers charge to the photoreceptor. A scorotron

is a corotron with the addition of a control grid between the wire and the photoreceptor.

Voltage is applied to the grid to limit and to improve the uniformity of the charge on the

photoreceptor. Consistent, uniform charging of the photoreceptor is necessary for accurate

image reproduction.

The Expose step produces a latent image, a pattern of charged and discharged areas,

of the desired output on the photoreceptor. In a traditional light lens photocopier, the

photoreceptor is discharged in the areas that are not to receive toner by bright light reflected

off the original document. In this case a process called Charged Area Development (CAD)

is used to develop the latent image, covering the remaining charged areas with toner. In a

printer or digital photocopier, the latent image is produced by an addressable light source, a

laser or light emitting diode (LED) array. For most text images, the total toner area coverage

is between 5 and 10%. For this reason, printers and digital copiers use the addressable light

source to discharge areas of the image that are to receive toner, reducing the duty factor

of the light source, the percentage of time the light source is on. In this case, a process

called Discharged Area Development (DAD) is used to develop the latent image, covering

the discharged areas with toner.

When the light source is a laser, the output image is rasterized, broken up into lines

from top to bottom, in a similar way as a video raster is painted on the screen of a monitor

by the electron beam. The light source, typically a diode laser, remains fixed in place, while

the laser beam, reflected off a rotating polygonal mirror with constant angular velocity,

sweeps across the photoreceptor. Each face of the mirror causes the laser to sweep out

one line across the photoreceptor. The laser is modulated on and off by a bit stream,

producing regions on the photoreceptor which are uncharged or charged, respectively. The

combination of the laser and the rasterizing optics is collectively referred to as a Raster

Output Scanner or ROS. The resulting pattern of charges on the photoreceptor is called

the latent image.

Another popular addressable light source is the LED bar. Light Emitting Diodes may

be constructed into silicon chip arrays and then assembled to produce an exposure system

covering the full width of the print medium called an image bar. Each of the individual

LEDs may be modulated directly by addressing logic contained in the carrier for the image

bar. The drive electronics may also contain compensating resistors that trim the intensities

of the individual LEDs so that the illumination from each is uniform across the bar. The

bar is placed in the appropriate exposure location and the LEDs are turned on and off by

a bit stream, similar to the laser imaging case. LED bars avoid the architectural (they

are smaller than the laser and the optical system) and control (no rapidly moving parts)

constraints that govern the use of laser diodes. However, the loss of a single LED shows up
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readily as an image quality defect that requires the purchase and installation of an expensive

new image bar.

In both cases the imaging system imposes a two dimensional grid of dots on the pho-

toreceptor. Each of these dots is called a pixel (from PICture ELement), analogous to

the well-known pixel of video display technology with the exception that most electropho-

tographic imaging technologies are capable of producing only binary (two level - on/off)

pixels. One dimension of the two-dimensional grid is achieved by moving the photorecep-

tor. This dimension is called the “process direction,” because the media moves through

the system in this direction, or the “slow scan direction,” and corresponds to the vertical

dimension in video rasters. The spatial frequency of the lines taken in the process direction

is a function of the photoreceptor speed and the scan speed of the laser or the strobing

frequency of the LED bar. The direction perpendicular to the slow scan direction is called

the “fast scan direction” and corresponds to the horizontal sweep in the video raster. The

spatial frequency of the pixels in this direction is governed by the frequency of modulation

provided to the laser for ROS systems or by the LED spacing in LED bars.

When the two dimensional grid of pixels is designed, the designer specifies a certain

addressability. This quantity indicates how many dots/inch (dpi) may be written to the

photoreceptor and is, for historical reasons, often specified in multiples of 300. Thus, when

a printing system is advertised as being 600x1200, the raster lines are placed 1/600in.

(42.3µm) apart and the modulation of the imaging system is 1200 dpi in the fast scan direc-

tion. “Addressability” is often confused with “resolution.” Addressability is associated with

the imaging system’s ability to space dots closer or farther from one another. Resolution

is the ability of an optical system to discriminate fine detail, referring in this case to the

imaging system’s ability to reproduce fine structure in an image. The difference between

these two terms arises as a function of the size of the dot produced by the imaging system.

Smaller dots will preserve image detail better than larger dots at the same addressability.

The imaging system does not use exactly rectangular dots, but usually elliptical, and thus

it is impossible to fill a pixel exactly. The dot size is often made larger than a pixel in order

to avoid holes at the corners of the pixels that would receive no exposure. Overfilled dots

reduce the resolution of the printer at constant addressability. Marketing statements tend

to focus on the easier to quantify number of addressability. The issues of addressability

versus resolution arise in the other printing technologies as well.

The Development step uses toner to develop the latent image. Toner consists of pig-

mented, electrostatically charged plastic particles, 5-25µm in diameter. In the developer

housing, the toner is mixed with larger carrier particles or beads, 80-700µm in diameter,

which serve two purposes. First, extremely fine powders such as toner are difficult to trans-

port, and can produce dirt inside the machine when it escapes the housing or spots on

portions of the document that were supposed to be white. The carrier beads may carry

up to 1000 toner particles, preventing powder contamination of other system components
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Figure 7.2: A carrier bead with attached toner. This bead is approximately 60 µm across.

or the image. Second, the carrier beads charge the toner particles triboelectrically, i.e. by

friction. A photomicrograph of a carrier bead and its attached toner is shown in Figure

7.2. The magnetic brush development system is the most widespread. In this system, the

carrier beads are also magnetic. The toner-covered carrier beads form brush like chains on

a revolving shell, bringing the beads into contact with the photoreceptor. The resulting

physical agitation in the development nip serves to break the adhesive and electrostatic

forces binding the toner to the carrier and frees the toner to move under the influence of

the photoreceptor latent image.

The developer housing is biased at a voltage between the photoreceptor’s charge and

discharge voltages. This dc bias produces two polarities of field with the photoreceptor. In

Discharged Area Development (DAD), used in digital printing, the areas that were exposed

by the imaging system, the “development” field, points toward the photoreceptor, attracting

the tribocharged toner. Meanwhile, in the unexposed photoreceptor regions (the areas

intended to be white in the final image), the electric field (“cleaning” field) points toward

the development roll, causing toner to remain on the roll. Thus, the charged toner can

discriminate between the image and background regions of the image.

The Transfer step moves the developed image to the print medium, generally paper.

The medium is brought in contact with the photoreceptor. A transfer corona, with polarity

opposite the toner, pulls the toner from the photoreceptor to the paper. Large particles tend

to be transferred more efficiently than small particles, placing a limit on the size reduction

of toner particles. In a typical, well-functioning system, between 90-100% of the toner is

transferred from the photoreceptor to the print medium.
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The Fusing step permanently fixes the toner to the print medium, typically by applying

heat and pressure by passing the medium between a pair of heated rollers. The rollers heat

the toner sufficiently above the plastic’s glass transition temperature to allow it to melt and

fuse with the print medium. The pressure forces the melted toner into intimate contact

with the paper fibers. When the toner cools, it undergoes thermal contraction. For images

that cover a large percentage of the paper, the thermal contraction can cause the paper to

curl, necessitating a de-curling step to obtain flat sheets.

The Cleaning step prepares the photoreceptor for the next image by removing any

remaining toner left from the transfer step. This is typically performed by a third corona,

which discharges the toner left on the photoreceptor, coupled with a bright light that

discharges the photoreceptor. A brush or elastomer blade, similar to that used in the

development stage, wipes the toner from the photoreceptor. Finally, an erase lamp removes

any remaining charge from the photoreceptor.

Laser printers are very quiet and fast. The printers range from desktop models that

print 2-4 pages per minute at an addressability of 300x300 dpi, to commercial printers at up

to 2400 dpi. The fastest of these devices can print and bind a 250-page book with covers,

inserted tabs, and binding in less than two minutes.

7.2 Control of Color Electrophotography

Color printing requires a number of other technologies layered on top of the monochrome

print engine described in the previous section. To print a color image, for each pixel the print

engine receives a command specifying a continuous tone value for each of the toner colors,

specifying how “dark” that toner color should be. Toners are typically cyan, magenta, and

yellow (CMY), though black (K) is often added to extend the color gamut, the range of

reproducible colors [Kan97]. Electrophotography, like many other print engine technologies

including ink jets, can only produce binary colored dots; toner is either on the page or

not. Continuous tones are approximated by halftoning, a technique that uses patterns

of binary pixels to trick the eye into “seeing” intermediate tones [Uli87, Kan02]. The

separate halftoned images corresponding to each color of toner are printed one on top

of the other, producing the desired colors. Misalignment of the separated images, called

misregistration, leads to poor color reproduction. Monochrome electrophotography is itself

a complicated process involving electrostatics and the sources for process variation are

many. Color electrophotography is still more complicated, and color consistency is difficult

to achieve.

Historically, stabilization of color reproduction has focused on stabilization of the elec-

trophotographic process itself. It is common practice to calibrate the electrophotography

during setup or warm-up and run the system largely open loop during printing. High quality,

high speed color printing at high throughput rates requires active feedback and feedforward
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controls of the electrophotographic process in order to maintain stable, predictable color

performance. Xerox has practiced closed-loop control in copiers and printers for nearly 20

years, and for monochrome and early color printing, stabilizing the process alone was suffi-

cient. However, the number of process actuators available is very limited and the number

of outputs that require stabilization are many. The need for improved consistency in color

printing is driving interest in control of electrophotography [MWD+96, GKK+99, THB95].

The tone reproduction curve (TRC) plots the printed (monochrome) tone against the

requested tone. A color printer has one TRC for each color of toner. Drift in the TRC

indicates drift in the image reproduction. In 1995, a three level control architecture for sta-

bilizing the TRCs of a color printer was devised and patented [THB95]. Level 1 wraps tight

feedback loops around sensor-actuator pairs in various subsystems. Sensors monitor system

variables such as toner concentration5, temperature, relative humidity, and photoreceptor

voltages. Actuators in the system include the grid biases, corotron voltage, and toner dis-

pense6. Level 2 uses subsystem performance information to update parameters, such as set

points, in Level 1 control algorithms. Level 3 uses system wide information to maintain con-

sistent TRCs. Recent innovations have been productized first in the DocuColor 40 printer

and more recently in the DocuColor 2060. These innovations involve color sensing at the

output and feedback to the TRCs in the imaging system. Many short term variations in

color reproduction are compensated for in this way. However, these three control processes

only stabilize the single separation TRCs and do not address the disturbances that affect the

color mixing recipes. Materials and process variability still require that these disturbances

be addressed. The customer’s frequent need for printer recalibration is testimony to this

fact.

7.2.1 Control Via the Forward and Inverse Device Characterization

An additional loop at the level of the preprocessor and print engine would further

improve color consistency. Figure 7.3 shows the decomposition of a printer into the prepro-

cessor and print engine. In order to understand how color images are specified to a printer

and how this outer loop would work, it is first necessary to introduce some concepts from

color science: color spaces and color space transformations.

The human eye has three different types of cones, the structures responsible for per-

ceiving color, that correspond roughly to red, green, and blue, though the response spectra

overlap considerably. If two light sources have different spectra but produce the same re-

sponse in the cones, then they will be perceived as the same color. A color space is a

coordinate space used to represent colors [Kan97]. Due to the nature of the human visual

sensor, a color space may have as few as three coordinates to describe all perceivable colors,

even though visible light spectra are, for all practical purposes, infinite dimensional. More-

5Toner concentration (TC) is the ratio of toner to carrier particles in the development housing.
6Toner dispense is the process of moving toner from the reservoir to the development housing.
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over, most perceivable colors can be reproduced by mixing just three appropriately chosen

colors. In printers, cyan, magenta and yellow (CMY) pigments are typically used. Three

pigments are not sufficient to produce all colors, because the spectra of the pigments do not

exactly match the response spectra of the cones, so reproducing some colors would require

“negative” pigment. A previously mentioned, black (K, giving CMYK) is often added in

order to extend the color gamut. Printer manufacturers are interested in moving eventually

to six or even more colors to further extend the gamut.

Color spaces are divided into two categories, device independent and device dependent.

A device independent color space is based upon some absolute standard for color. For exam-

ple, the L*a*b* coordinate space is a device independent space based on the psychophysics

of the human eye [Kan97]. It is constructed so that a “just noticeable difference,” the

smallest perceivable difference in color, corresponds to a ball of approximately radius 1 in

L*a*b*, though the true size of the just noticeable difference sphere varies with position

in L*a*b*. In contrast, a device dependent coordinate system is related to how a specific

device produces colors. For example, in a color printer the device dependent color space

coordinates give a recipe for creating the color, specifying how much toner of each type to

use. In a computer monitor, the device dependent color space is RGB (red, green, blue)

and indicates the intensities of the electron guns or LEDs. Note that a color represented

by the device dependent coordinates depends on the specific device and on the settings and

configuration of that device.

A color space transformation is a transformation from one color space to another such

that a point in the first color space is perceptually identical to the transformed point in

the second color space [Kan97]. In other words, a color space transformation is a change of

coordinates. The print engine of the printer accepts a color command in CMY coordinates

and prints a color measured in L*a*b* coordinates. Thus, the print engine can be modeled

as the embodiment of a color space transformation T : CMY → L*a*b* (See Figure 7.3).

The transformation T , known as the forward device characterization, indicates how a CMY

color command to the engine results in a printed color measured in L*a*b* coordinates.

The user’s objective in color printing is to reproduce specific psychophysically perceived

colors accurately. Ideally, the reproduced images should appear the same independent of

the printer or time. Images are specified to the printer in terms of a device independent

color space, say L*a*b*, so that the combinations of pigments used to reproduce the desired

colors on a particular print engine are transparent to the user. In order to print an image

specified in L*a*b*, the printer must perform a color space transformation to its device

dependent coordinate system, CMY.7 This transformation is in fact T−1, the inverse of the

forward device characterization, known appropriately as the inverse device characterization.

7Printers often use four or even more pigments, but the present discussion addresses only CMY. When
the dimension of the device dependent color space is greater than three, numerous combinations of toner
produce the same observed color in L*a*b*. Thus, there is no single well defined inverse of T , but rather
only a pseudoinverse T#, such that T ◦ T# = id, where id is the identity transform. The present discussion
is restricted to the case where the device dependent coordinate system is CMY.
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Figure 7.3: Decomposition of an electrophotographic (laser) printer into the print engine and

preprocessor. The engine embodies the transformation T , while the preprocessor performs

an approximation of the inverse T̃−1, such that T ◦ T̃−1 ≈ id.

In the absence of sufficiently accurate first principles models for T or T−1, an approximation

to T−1 must be computed, written as T̃−1. An overview of this type of inverse problem in

color science is provided in [Bal03].

Industry practice has gradually settled on that least parsimonious of nonparametric rep-

resentations — the look-up table (LUT) [Kan97] — for the inverse device characterization.

These large LUTs, known as color mixing tables, are constructed at printer calibration and

interpolated to yield the halftone densities of the individual toners layered to construct

the desired color. The data used to construct these tables is typically 1000 or more color

patches, each printed using a specified recipe (CMY) and then colorimetrically measured to

determine the resulting L*a*b* coordinates. Color patch experiments correspond to evalu-

ating T rather than T−1. In order to generate a uniform grid in L*a*b* space for the LUT,

either the results of the color patch experiments must be interpolated or the experiments

must be cleverly iterated. Since color patch experiments are time consuming, interpolation

is generally used [KNPH95, KK92], increasing the potential error.

Generating an approximation to the inverse device characteristic is part of the printer

calibration procedure. For low end printers, a single calibration may be performed in the

factory for an entire product line, while high end printers are individually calibrated in the

factory and can be recalibrated in the field by a technician. The forward device charac-

terization of the print engine drifts due to environmental factors such as temperature and

humidity as well as a variety of disturbances that remain unaccounted for in the control

loops of Levels 1-3. The resulting mismatch between the current forward device charac-

terization and the formerly calibrated approximation to the inverse device characterization

causes undesirable variation in the reproduced image.

Rather than periodically calling a technician to recalibrate the printer, real-time or

automatic periodic updates to the inverse device characterization approximation could be

used to stabilize color reproduction. For this purpose, it is useful to have access to an

effectively computable approximation to both the forward device characterization and its

inverse8. The forward device characterization is useful for performing feedback on the print

8It is of considerable importance in the application that the functional representation itself be invertible.
The alternative of separately fitting to data an independent forward and inverse model is undesirable.
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engine, while the inverse device characterization is required for generating color commands

for the print engine. The term “effectively computable” means that the approximation

should be both numerically simple and parsimoniously parameterized, which would ensure

that the control action could be imposed in a timely manner using a small amount of data.

Two difficulties are associated with transferring this process to real time in the machine.

The first is the number of patches required and the resources needed to print them. Making

paper prints reduces the productivity of the device and also requires that the patches be

read. Input scanners would be useful for this purpose but there are large regions of color

space where their sensitivity is inadequate. The second is that if the patches are made slowly

and read by machine sensors, then the number of patches required would consume a time

comparable to the disturbances, making the exercise pointless. This situation further argues

for a technique that will yield sufficient accuracy but require many fewer patches. Fewer

patches implies a more parsimonious representation of the inverse device characteristic.

If such a technique were realized, the goal of real-time control of color mixing might be

accomplished.

The degree of parsimony of an approximant reduces to the question of how approxima-

tion errors decrease as the dimension of the defining parameter space is allowed to increase.

In the case of a PL, the dimension of the parameter space is a linear function of the num-

ber of vertices in the domain triangulation. It is standard practice in the color systems

management industry [Kan97] to use piecewise linear interpolation, often called tetrahedral

interpolation, on calibrated LUTs9. Since the grid density of an LUT is typically quite

high (e.g. entailing thousands of color patches) the resulting approximation cannot be con-

sidered parsimonious. Moreover, the resulting PL is not generally invertible, at least not

in the form of a LUT. Given an LUT data set, it seems natural to inquire whether some

better means of locating the vertices might yield an invertible and far more parsimonious

PL representation.

This thesis proposes piecewise linear homeomorphisms (PLH) as an effectively com-

putable approximation of the device characteristic and its inverse. An approximation of

the forward device characteristic could be computed from color patch experiments. This

approximation can be inverted in closed form to give an approximation to the inverse device

characteristic. A PLH computed with minvar can be considerably more parsimonious than

a LUT since the domain triangulation is adjusted to place more parameters in areas of the

domain where they are needed. minvar, a batch algorithm, could periodically recalibrate

the device characteristic approximation. A yet-to-be-developed online version of the min-

var algorithm could eventually allow real-time control at the level of the print engine and

Calibration experiments and control measures are typically affected with respect to the forward map since
that is how real user inputs are presented to a physical device. If the inverse cannot be computationally
derived from the forward representation, then a new inverse must be fit independently at each re-calibration,
and, worse, at each new control step.

9Section 3.2 discusses data interpolation. In tetrahedral interpolation, the data forms a regular grid of
the space and each cube of data uses the same local triangulation.
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preprocessor using the device characterizations.

7.3 Numerical Performance of the minvarAlgorithm on Color

Data

Xerox provided a set of data from CMY to L*a*b* generated from a color model of a

commercial printer [Bal96]. This data set is used here to perform a comparison between

minvar PL approximations and uniform lookup table (LUT) approximations. LUTs are

the industry standard for representing color space transformations in printers. Note that

the approximations in this section are from CMY to L*a*b*, whereas a printer preproces-

sor requires the inverse device characteristic, from L*a*b* to CMY. As discussed in the

previous section, an LUT approximation of L*a*b* to CMY is more difficult to construct.

A comparison of approximations from CMY to L*a*b* is more straightforward to conduct

using the data set, and the results illustrate the comparative performances of minvar PLs

and LUTs.

The Xerox data set is a 21x21x21 uniform grid in CMY color space. Three LUTs

were subsampled from the data, with sizes 3x3x3, 6x6x6, and 11x11x11. A validation

set, one tenth of the total amount of data, was selected from the points remaining after

the subsampling of the 11x11x11 table. All data except the validation data was used for

computing the PL approximation using the minvar algorithm.

Tetrahedral interpolation is used on the lookup tables [Kan97]. This interpolation

scheme breaks up each cube of data in the LUT into six tetrahedra and performs piecewise

linear interpolation on these tetrahedra. In this case the LUT is itself a PL function, but

with very rigidly located domain vertices and a fixed combinatorial structure. The potential

benefit of the minvar computed PL approximation derives from the flexibility of moving

the vertices to apply more approximation effort in areas that need it.

The minvar algorithm is implemented in C++ and includes affinely constrained domain

vertices and heuristically guided retriangulation. Documentation on the minvar code will

appear as a University of Michigan technical report [Gro03]. The minvar PL approxima-

tions are labeled as PL(i, j, k, l), where i is the number of fixed domain vertices, j is the

number of domain vertices constrained to a 1-dimensional affine subspace, k is the num-

ber of domain vertices constrained to a 2-dimensional affine subspace, and l is the number

of unconstrained domain vertices. The total number of domain (or codomain) vertices is

i + j + k + l. All codomain vertices are unconstrained. As mentioned in Chapter 4, once

minvar has converged, the least squares continuous PL approximation can be computed

for the final minvar triangulation as a post processing step. This appears as the column

MV LS in the Table 7.1.

Three different error statistics are presented for each approximation. The first is the
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root mean squared error (RMSE) given by

RMSE =

√

√

√

√

1

N

N
∑

i=1

‖yi − fP(xi)‖2. (7.1)

The second error measure is called ∆E (read “average ∆E”). ∆E is the Euclidean distance

in L*a*b* space, and ∆E is the average of the ∆E errors, given by

∆E =
1

N

N
∑

i=1

‖yi − fP(xi)‖ . (7.2)

∆E is a standard metric used in color science. Note that this quantity will be less than or

equal to the RMSE10. A ∆E of 1 corresponds roughly to a just noticeable color difference,

the smallest difference in color that can be distinguished by an average human observer.

The radius of the just noticeable difference sphere actually varies a bit depending on the

location in L*a*b* space. The third error measure is E∞, or the “max” error, given by

E∞ = max
i=1,...N

‖yi − fP(xi)‖ . (7.3)

Th E∞ error measure is important, because sometimes, as in the case of trademark colors,

it is necessary to print specific colors very accurately. A small E∞ error ensures that the

color errors are small over the entire space, whereas the other two measures can trade off

large errors in one region with very small errors in another.

The results for the numerical experiments are provided in Table 7.1, showing for each

approximation the number of vertices, the number of parameters, and the three error statis-

tics of the approximation on the validation data. For minvar approximations, the RMSE

of the postprocessed approximation, MV LS, is also provided. Visualizations of two min-

var PL approximations are provided in Figures 7.4 and 7.5. It is instructive to compare

the approximations in terms of the number of parameters each approximation has at its

disposal and the resulting error statistics on the validation data. For an LUT, the domain

vertices are rigidly fixed. The only parameters are the codomain values in the table, and

since the codomain is three dimensional, there are three parameters per point. Thus, a

k×k×k LUT has 3k3 parameters. For a minvar PL approximation, each codomain vertex

has three parameters, but the number of parameters for a domain vertex depends on the

dimension of the space in which it is constrained to move: 0 parameters for a fixed vertex

(0-dimensional affine subspace), 1 parameter for a 1-dimensional affine subspace, 2 param-

eters for a a 2-dimensional affine subspace, and 3 parameters for an unconstrained vertex.

Thus, the approximation PL(i, j, k, l) has j + 2k + 3l + 3(i+ j + k + l) parameters.

10In most fields, RMSE is the preferred over ∆E, since the parameters of the approximation that minimizes
RMSE, or equivalently MSE, corresponds to maximum likelihood estimate of those parameters under the
assumption of independent identically distributed Gaussian additive noise. Nevertheless ∆E is the metric
of choice in the the color industry.
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Figure 7.4: PL(8,12,6,1) minvar approximation to the color data, with the domain (CMY)

on the left and codomain (L*a*b*) on the right. See Table 7.1 for approximation perfor-

mance statistics. Anecdotally, the color transformation becomes very nonlinear as cyan

saturates. This is reflected in the converged positions of the domain vertices being toward

the right of the domain, corresponding to high cyan values.

Figure 7.5: PL(8,28,32,12) minvar approximation to the color data, with the domain

(CMY) on the left and codomain (L*a*b*) on the right. See Table 7.1 for approxima-

tion performance statistics. Notice again that the domain vertices have moved toward the

right, corresponding to high values of cyan.
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Table 7.1: Comparison of various error measures for tetrahedral interpolation LUTs and

PL approximations computed by the minvar algorithm. PL(i, j, k, l) is a PL function with

i vertices fixed in the domain, j vertices constrained to a 1D affine subspace in the domain,

k vertices constrained to a 2D affine subspace in the domain, and l freely movable vertices.

MV LS RMSE is the RMSE of the least squares approximation on the domain triangulation

provided by minvar. For the PLs with all domain vertices fixed, errors are reported for the

least squares approximation on the fixed domain triangulation.

Vertices Parameters RMSE MV LS RMSE ∆E E∞

PL (27,0,0,0) 27 81 N/A 3.37 2.94 12.4

PL (26,0,0,1) 27 84 3.29 3.25 2.91 10.8

PL (8, 12,6,1) 27 114 2.89 2.84 2.59 9.29

PL (64,0,0,0) 64 192 N/A 2.31 2.05 7.65

PL (56,0,0,8) 64 216 2.06 2.04 1.82 6.39

PL (8,24,24,8) 64 288 1.67 1.63 1.48 6.55

PL (125,0,0,0) 125 375 N/A 1.56 1.38 5.77

PL (98,0,0,27) 125 456 1.50 1.44 1.36 4.23

PL (80,0,0,0) 80 240 N/A 1.88 1.67 6.82

PL (8,28,32,12) 80 364 1.55 1.51 1.38 6.27

PL (8,0,0,1) 9 30 5.01 4.19 16.98

PL (26,0,0,8) 34 126 2.95 2.46 10.59

PL (28,0,0,8) 36 132 2.72 2.31 8.42

PL (28,0,0,9) 37 138 2.73 2.32 8.87

PL (23,4,2,8) 37 143 2.36 2.07 6.89

PL (10,11,11,9) 41 186 1.83 2.07 5.29

LUT 3x3x3 27 81 6.94 6.17 16.92

LUT 6x6x6 216 648 1.31 1.10 3.66

LUT 11x11x11 1331 3993 0.62 0.40 2.35

The benefit of moving the domain vertices is illustrated by comparing the approxima-

tions in the top half Table 7.1. There are several groups of PL approximations that use the

same number of vertices but allow different numbers of domain vertices to move, such as

PL(27,0,0,0), PL(26,0,0,1), and PL(8,12,6,1). These results show that allowing the domain

vertices on the convex hull to move reduces the error, at the cost of added parameters. The

difference between PL(56,0,0,8) and PL(8,24,24,8) is perhaps the most striking. It is also

interesting to compare the PL approximations with 27 vertices with the 3x3x3 LUT. These

use the same number of vertices and display a significant differences due to domain vertex

movement.
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The 6x6x6 and 11x11x11 LUTs have huge numbers of parameters and very good error

statistics. The PL approximations approach the 6x6x6 LUT in terms of error while using

significantly fewer parameters. No PL approximations, however, have even close to the the

number of parameters as the 11x11x11 LUT. This is because minvar runs into difficulties

when it does not have enough data in each simplex. Consider a PL approximation with

63 = 216 vertices that are initially placed on a uniform grid. The resulting triangulation

will have about 6 · 53 = 750 tetrahedra (3-simplices). Since the entire data set, including

validation data, has 213 = 9261 points, there will be about 12.3 points in each simplex on

average when the algorithm is initialized. As the domain vertices move, some tetrahedra

gain data, at the expense of other tetrahedra losing data. Tetrahedra start to crowd into

regions of the domain that are curvy, and then tetrahedra no longer have enough data

compute the least squares affine approximation in stage 1 of the minvar algorithm. Some

heuristics are in place to allow minvar to continue when a few d-simplices have too little

data, but the algorithm runs into problems when this condition becomes too widespread.

The competition for data between d-simplices currently places a limit on the number of

parameters in the approximant. One of the areas for future work is how to deal with sparse

data better.

The PL approximations in the top half of Table 7.1 use a regular grid as their initial

triangulation, while the PL approximations in the lower half of the table use less structured

initial conditions. Incorporating domain knowledge about color space transformations into

the initial conditions admits improvement in performance. Anecdotally, the color space

transformation is more complicated along the boundary of the domain. From numerical

experience with the Xerox data, it was found that points having the highest error norm

were generally on the exterior. Generally the more vertices a simplex has on the boundary,

the higher its MSE, suggesting that extra vertices should be put on the boundary to drive

down the errors. This was a motivating factor in developing constrained movement for

domain vertices. Also anecdotally, there tend to be strong nonlinearities as cyan saturates

in the color space transformation from CMY to L*a*b* . Examining the domain vertices

in the approximation visualized in Figures 7.4 and 7.5, notice that a plane of the movable

vertices position themselves close and reasonably parallel to the plane where cyan saturates.

In this sense, the location of the vertices provides some intuitive insight into the structure

of the underlying function. Most of the uniform grid initial conditions for minvar have a

grid of the form k × k × k. Since it is known that the cyan direction is more complicated

in general, PL(80,0,0,0) and PL(8,28,32,12) (the latter is shown in Figure 7.5) use a grid

of 5x4x4 vertices, with an extra plane of vertices in the cyan direction. This provides error

performance very similar to 5x5x5, but with fewer parameters.

Examining the number of parameters in an approximation is one way of estimating the

amount of data needed to compute the approximation, but comparing the number of pa-

rameters in a minvar PL and LUT approximation is not the only manner of comparison
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and not necessarily even the most appropriate. Consider a PL and with the same number

of vertices as a corresponding LUT, but with more parameters due to movable domain ver-

tices. It is true that more data will be required to compute the PL approximation initially,

but after the initial printer calibration at the time of manufacture using a large amount of

data, some or all of the domain vertices in the color space transformation approximation

could be fixed. If the minvar algorithm finds the major nonlinearities in the transforma-

tion and places vertices there during the initial calibration, and if the drift in the color

space transformation is mostly local, then it may be sufficient to allow successive approx-

imations to update only the remaining movable vertices, permitting less data to be used

when calibrating the printer in the field. If this is the case, then comparing PL and LUT

approximation on the basis of vertices rather than parameters may be appropriate.

Many further improvements to these minvar PL approximations of color space trans-

formations can be made, both through further development and experimentation with the

minvaralgorithm as well as by incorporating further domain knowledge into the approxi-

mation. It is expected that minvar PL will perform considerably better in terms of error

as compared to LUT for approximations with a similar number of parameters, especially

once the limitations in parameterization due to data competition are overcome.
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CHAPTER 8

Conclusion

Changes of coordinates play an important role in design and analysis in a wide variety

of fields. Finding a good coordinate system can highlight previously unnoticed structure

in a problem, for example action-angle coordinates in mechanics [Arn89], the separation

property of observers for linear control systems [Che84], and, in a more specific setting,

analysis of biped walking [WGK03]. A change of coordinates can permit solutions developed

for systems with a particular structure to be applied to other systems related through a

change of coordinates, for example pole placement in linear control systems [Che84], and

robot navigation [RK91] and visual servoing [CWK02] via artificial potential functions. In

other situations, computing a change of coordinates is the itself objective, for example in

color systems management (Chapter 7), and in pattern recognition [TY00].

Finding an appropriate change of coordinates for one’s problem is in most cases an

art [RK91, CWK02]. Once a candidate change of coordinates is written down, it is often

difficult to determine whether the candidate is a valid change of coordinates, i.e. one-

to-one and onto. Many applications that use changes of coordinates also simultaneously

require the inverse change of coordinates, for example to construct a conjugate dynamical

system. For most nonlinear changes of coordinates one must resort to computing the inverse

numerically, either by constructing an approximation of the inverse or by using an iterative

procedure to find the inverse for each query point. Using an approximation to the inverse

requires more parameters and more training time. Approximating the inverse online for

each query point requires more runtime computation for evaluating the approximation. For

some applications, the error between the approximation of the inverse and the inverse of

the forward approximation may be as critical as (or even more than) the error between the

forward approximation and the data. Numerical inversion introduces a potential source of

error which would be absent if the change of coordinates were closed form invertible.

This thesis proposes piecewise linear homeomorphisms (PLH) as a computationally ef-

fective, finitely parameterized family of nonlinear changes of coordinates. Though parame-

terizations of PLHs similar to the one presented in this thesis have been used in algebraic

topology since the fifties, they have generally not been used for approximation. PLHs are
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a subset of the space of continuous piecewise linear (PL) functions, and the same param-

eterization is used with PL functions. Given a candidate PL change of coordinates, one

can check its invertibility geometrically, and if invertible, the inverse can be computed in

closed form. The forward and inverse change of coordinates can thus be parsimoniously

represented by a single PL function. One obvious limitation of PLHs is that they do not

offer smoothness beyond continuity. They are, nevertheless, a powerful computational tool

for representing changes of coordinates.

The focus of this thesis is on computing PLH approximations to a data set drawn from

an invertible function, a change of coordinates. The minvar algorithm, the tool developed

for this purpose, moves the vertices of both the domain and codomain, allowing the PL

approximation to place more of its approximation power to areas of the domain that need

it. This permits a more parsimonious representation than, say, a traditional lookup table.

The geometry underlying PL functions permits invertibility to be checked and to invert

it in closed form, but the geometry also causes complications. Triangulation tangles are

a difficult problem to overcome. The λ regularization parameter in minvar is used to

slow down the movement of vertices in order to prevent domain triangulation tangles, but

currently there is no principled way to choose λ. It is hand picked based on the data set

and to a lesser extent on the initial condition. In the short term, one can imagine many

methods to adapt λ in order to guarantee a valid domain triangulation. In the long term, a

principled way to avoid tangles may result from a better understanding of the configuration

space of triangulations, the space of valid placements of vertices for a given combinatorial

structure. Computational geometry research on triangulations in higher dimensions is still

actively progressing [Ede01, ES96], so these sorts of results may emerge soon. Very little

is understood about the interaction between the combinatorial and continuous parameters

when approximating a function. When and how should retriangulation be performed? What

do triangulation tangles indicate about the data generating function? What is the best way

to ensure that a PL function is a PLH at each iteration? Hopefully this thesis will serve as

the groundwork to address these and the many other questions.

The color systems management problem was the initial motivation for approximating

changes of coordinates from data, and hence for interest in PLH approximations to data.

A preliminary numerical study on a set of simulated color data yielded encouraging re-

sults. minvar-generated PLH approximations compare favorably to the current industry

standard, lookup tables, providing better approximations with a more parsimonious param-

eterization. Further study is required, but the author and his collaborators at the University

of Michigan and Xerox remain cautiously optimistic that these methods may have eventual

impact on the color printing industry.

As the rewritten PL toolbox in C++ becomes available later this year, these PL ap-

proximation techniques can be more broadly tested. minvar has been preliminarily applied

in several other applications not reported in this thesis, including approximation of lens
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skew in camera calibration, of nonlinear spring models from experimental data, of time T

maps of differential equations, specifically the Van der Pol oscillator, and of the stance map

of the spring loaded inverted pendulum [SK00, Sch98]. Stance maps for more complicated

models of legged systems are of immediate interest. It will be exciting to see what other

applications emerge.

minvar could benefit from a more automated method to generate initial PL approx-

imations. A triangulation of the domain is required in order to generate the initial ap-

proximation. If the domain is specified explicitly, e.g. as a hypercube, then it is reasonably

straightforward to place vertices appropriately, for example in a grid. Triangulation software

can be used to generate the initial triangulation of these vertices, though the software must

be able to handle degeneracies in the vertex set. In many cases, however, the domain is not

defined explicitly, but rather implicitly by the region from which data is available. One can-

not make an overly large estimate of the domain, since minvar has difficulty with domain

simplices that lack data, so the domain of the initial PL approximant must fit snugly around

the data. The convex hull of the data could be used to define the domain, but this presents

two immediate concerns. First, the data set might not be convex, so large regions of the

domain might be left without data. Second, using the convex hull of the data as the domain

may result in many fixed vertices on the domain boundary, whereas defining the domain

with fewer vertices placed slightly away from the hull of the data may be more effective.

Currently the initial placement of vertices is performed by hand, but automated techniques

and heuristics could greatly improve the utility of the minvar algorithm, especially in high

dimensions.

A nonparametric version of minvar would add and remove vertices from the approxi-

mation in order to improve the fit to the data set. This is related to automatic generation

of initial conditions since both place vertices in the PL approximant. The major addition

for a nonparametric version is an appropriate set of heuristics for adding and removing ver-

tices. The author suspects that a nonparametric version may help mitigate the competition

among simplices for data, discussed in the numerical results of Chapter 7.

An online (i.e. realtime) version on minvar is desired both for the color printing problem

as well as other applications. Using the current batch version of minvar, a printer could

occasionally update its approximation of the forward device characteristic, but printing all

the test patches at once would occupy the printer for some time. An online algorithm could

frequently update its approximation, printing test patches when it gets the chance, and

would allow the printer to react to process drift more rapidly. Other applications, such as

robot navigation, could benefit from an online algorithm. In the navigation problem, the

change of coordinates between the observed and model environments could be constructed

as the robot navigates. With an online version of minvar, the inverse of the approximation

would be immediately available, thanks to the closed form invertibility of PL functions,

whereas other approximation techniques would generally require a numerical inverse, which
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would take additional time to compute.

There are several possible approaches to developing online algorithms for PL approxi-

mation. The easiest approach would be to mix the batch version of minvar with standard

linear-in-parameters online approximation techniques. The batch version of minvar could

be applied to a large set of data initially. Then, fixing the domain vertices of the minvar

generated approximation would make the approximant linear-in-parameters, permitting ap-

plication of standard techniques for adaptive approximation [Lju99]. This may work well if

the data generating function does not change too dramatically over time. In essence, min-

var is used in this case to adapt a set of basis functions to the data generating function,

then standard methods are used once these basis functions are determined. On the down-

side, this technique fixes the domain vertices during the online phase, though numerical

work with minvar indicates that moving the domain vertices has a substantial effect on

improving the approximation. Developing an online algorithm that allows domain vertices

of the PL approximation to move is more difficult. One approach would be to save all past

data, and at each step compute a new batch approximation using the minvar algorithm.

This approach may be feasible since the minvar algorithm runs in a relatively short amount

of time, but it goes against the spirit of what is usually meant by “online algorithm,” since

this approach is not incremental. That is, the longer data is collected, the longer each

update would take as more and more data accumulates. If the data is not stored, then

computing the least squares affine approximations in stage 1 of minvar is tricky. While

there are recursive least squares algorithms that permit incremental updates to an affine

approximation, it is not clear, without explicitly storing the data, how to account for data

points that would be in different domain simplices after an iteration of the minvar algo-

rithm due to domain vertex movement. This is a chief challenge in generating an online

version of minvar.

Another interesting direction for exploration is PL pseudoinverses. Many sensor fusion

problems can be posed as a system where a d-dimensional state maps to a c-dimensional

sensor measurement, c > d. The pseudoinverse, from the c-dimensional measurement space

to the d-dimensional state space, can be used to estimate the system’s state given the

sensor measurements. If a one-to-one PL function maps from a d-dimensional space to a

c-dimensional space, c > d, then the image of the PL function is a d-dimensional triangu-

lation embedded in the c-dimensional space. An appropriate geometric projection from the

c-dimensional space onto the d-dimensional triangulation provides a method of computing

a pseudoinverse to the PL function. To compute the pseudoinverse, project to the trian-

gulation and then find the true inverse for that point. The main tasks in this line of work

would be to find geometric projections which are efficiently computable and to determine

which type of projection would work best on sensor fusion problems.

The minvar algorithm constructs a PL approximation to a set of explicit input-output

data. In many applications one knows only that a change of coordinates exists that pro-
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vides specific structure to the problem, without having a method to construct or to evaluate

directly the change of coordinates. For example, one may know that a given control system

can be feedback linearized without knowing an appropriate change of coordinates and feed-

back to do so. This raises an approximation problem of a different sort, where input-output

data is not directly available, but rather one wishes to find a change of coordinates that

approximately changes a given system into a system that has some desired structural prop-

erty. In the feedback linearization case, the quality of the change of coordinates is reflected

in how close to linear the transformed system is. As another example, some nonconvex

optimization problems can be transformed into convex optimization problems through an

appropriate change of coordinates, but again input-output data is not directly available, but

rather the quality of the approximation is gauged by how close to convex the transformed

optimization problem is. The representation of PLHs developed in this thesis could be put

to use these contexts, but requires development of entirely new algorithms.

PLHs lack smoothness beyond continuity, but smoother approximations are desired or

required for many applications. In some practical settings a bounded Lipschitz constant

would be as good as differentiability. A clever method of simultaneously refining the domain

and codomain triangulations of a PL function could be used to find a nearby PL function

with more vertices but with a lower Lipschitz constant. Alternatively, a higher order spline

could be use to approximate a PL function on a refined domain triangulation. By refining

the domain triangulation enough, one should be able to find a spline that is arbitrarily close

to the original PL function. If the spline approximation is close enough to the PLH, then

the spline will also be invertible, since invertibility is an open property.

While PLHs have been around for a long time, they seem to have been overlooked in

the field of approximation as a computationally effective way to represent multidimensional

nonlinear changes of coordinates. This thesis represents only the preliminary stages of the

application of PLH representations in systems engineering, and there remain many lines of

research to explore.
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APPENDIX A

Geometry and Triangulations

This appendix contains proofs of the claims from Chapter 2. A deep understanding of

the underlying geometry is vital to understanding piecewise linear functions, so proofs are

provided even for the first few claims of Chapter 2, which are standard results in the field

of convex geometry. Also included is a comparison of simplicial complexes as defined in

this dissertation, simplicial complexes as defined in traditional combinatorial topology, and

δ-complexes, the modern algebraic topological generalization of simplicial complexes. The

structure of this appendix roughly parallels that of Chapter 2.

A.1 Geometry

Claim (Restatement of 2.1). p1,p2, . . . ,pm ∈ Rd are affinely independent if and only

if the vectors p1 − pm,p2 − pm, . . . ,pm−1 − pm are linearly independent.

Proof. Let p1, . . . ,pm be affinely independent. Let L = span{p1−pm,p2−pm, . . . ,pm−1−
pm}. From linear algebra dimL ≤ m. It must be that dimL = m, because otherwise L+pm

would be an affine subspace of dimension less than m containing m+2 points, contradicting

that p1,p2, . . . ,pm are affinely independent. It follows that p1−pm,p2−pm, . . . ,pm−1−pm
are linearly independent.

Now let p1 − pm,p2 − pm, . . . ,pm−1 − pm be linearly independent. Let L be a k-

dimensional linear subspace and x ∈ Rd. Let pi1 , . . . ,pin be the n points from p1,p2, . . . ,pm

contained in the affine subspace L + x. Since pin ∈ L + x, then L + pin = L + x.

Since p1 − pm,p2 − pm, . . . ,pm−1 − pm are linearly independent, so are pi1 − pin ,pi2 −
pin , . . . ,pin−1 −pin . From linear algebra it follows that n ≤ k+1. Thus p1,p2, . . . ,pm are

affinely independent.

Claim (Restatement of 2.2). Let p1,p2, . . . ,pm ∈ Rd. Then p1, . . . ,pm are affinely

independent if and only if

m
∑

i=1

αipi = 0 and
m
∑

i=1

αi = 0 where αi ∈ R (A.1)
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holds only when αi = 0 for all i, or equivalently in matrix notation if

P =

[

p1 p2 · · · pm
1 1 · · · 1

]

(A.2)

has a trivial null space.

Proof. From Claim 2.1, p1, . . . ,pm are affinely independent if and only if p1 − pm,p2 −
pm, . . . ,pm−1 − pm are linearly independent. The matrix PA,

PA =

[

p1 − pm p2 − pm . . . pm−1 − pm pm

0 0 0 1

]

,

where A =

[

Im 0m×1

−1 · · · −1 1

]

is full rank if and only if p1 − pm,p2 − pm, . . . ,pm−1 − pm are linearly independent. Since

A is full rank, the matrix PA is full rank if and only if P is full rank, and P is full rank if

and only if P has a trivial nullspace.

Claim (Restatement of 2.3). The affine set generated by p1, . . . ,pm ∈ Rd is the affine

hull of the points, aff{p1, . . . ,pm}.

Proof. First we show that every point in the affine subspace L+pm, where L = span{p1−
pm, . . . ,pm−1 − pm} is generated by an affine combination of p1, . . . ,pm. Let x ∈ L and

let βi be coefficients such that x =
∑m−1

i=1 βi(pi−pm). Let αi = βi for i = 1, . . . ,m− 1 and

αm = 1−∑m−1
i=1 αi. Then the affine combination

∑m
i=1 αipi = x+ pm. Thus, any point in

L+ pm is an affine combination of p1, . . . ,pm.

It remains to show that no smaller affine subspace than L + pm contains p1, . . . ,pm.

Any affine subspace containing p1, . . . ,pm can be written as L′ + pm, where L
′ is a linear

subspace. Since p1, . . . ,pm are contained in L+pm, we can restrict our attention to L′ ⊂ L.
If dimL′ < dimL, then there exists i, 1 ≤ i ≤ m − 1, such that pi − pm 6∈ L′, but this

implies that pi 6∈ L′ + pm, which is a contradiction. Thus dimL′ = dimL, and L + pm is

the affine hull of p1, . . . ,pm.

A.1.1 Barycentric Coordinates

Claim (Restatement of 2.4). Let p1, . . . ,pk+1 ∈ Rd be affinely independent. Let x ∈
aff {p1, . . . ,pk+1}. The barycentric coordinates of x with respect to p1, . . . ,pk+1 are unique.

Proof. Let x ∈ aff {p1, . . . ,pk+1}. Let α = [α1 · · ·αk+1]
T and β = [β1 · · ·βk+1]

T be barycen-

tric coordinates for x, that is x =
∑k+1

i=1 αipi =
∑k+1

i=1 βipi and
∑k+1

i=1 αi =
∑k+1

i=1 βi = 1.

Let

P =

[

p1 p2 . . . pk+1

1 1 1

]

.
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Then we may equivalently write that x = Pα = Pβ. Rewriting gives P(α − β) = 0.

Since p1, . . . ,pk+1 are affinely independent, by Claim 2.1 the matrix P has a nontrivial

nullspace. Thus, α = β, and the barycentric coordinates of x with respect to p1, . . . ,pk+1

are unique.

Claim (Restatement of 2.5). Let p1, . . . ,pd+1 ∈ Rd be affinely independent. Let x ∈ Rd.

The barycentric coordinates of x with respect to p1, . . . ,pd+1 are given by

α = P−1

[

x

1

]

, (A.3)

where

α =







α1

· · ·
αd+1






, P =

[

p1 p2 . . . pd+1

1 1 1

]

. (A.4)

Proof. Since p1, . . . ,pd+1 are affinely independent, the matrix P is invertible as a result

of Claim 2.1. Let α = [α1 · · ·αd+1]
T be given by Equation A.3. Equivalently, Pα =

[xT 1]T. The bottom row of this equation is
∑d+1

i=1 αi = 1. That is,
∑d+1

i=1 αipi is an affine

combination. Moreover,

[

p1 · · · pd+1

]

α =
[

p1 · · · pd+1

]

P−1

[

x

1

]

=
[

Id 0d×1

]

[

x

1

]

= x.

Thus α1, . . . , αd+1 are the barycentric coordinates of x with respect to p1, . . . ,pd+1.

Claim (Restatement of 2.6). Let x ∈ Rd. Let α =
[

α1 · · · αd+1

]

T be the barycentric

coordinates of x with respect to the affinely independent points p1, . . . ,pd+1 ∈ Rd. Then

δs(x, Hi) = αiδ(pi, Hi).

Proof. First we establish that δ(x, Hi) = |αi| δ(pi, Hi), and then show that the sign of αi

indicates the side of Hi on which pi lies, giving the desired result. Let (ai, ci) be an implicit

representation of Hi. Then

δ(x, Hi) =

∣

∣ai
Tx+ ci

∣

∣

‖ai‖

=
1

‖ai‖

∣

∣

∣

∣

∣

∣

ai
T





d+1
∑

j=1

αjpj



+ ci

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

d+1
∑

j=1

αj

(

ai
Tpj + ci
‖ai‖

)

∣

∣

∣

∣

∣

∣
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For j 6= i, pj ∈ Hi, which implies that ai
Tpj + ci = 0. It follows that

δ(x, Hi) = |αi| δ(pi, Hi) .

Since i) for a given x, αi = 0 if and only if x ∈ Hi, ii) for x = pi, αi = 1, and iii) αi is an

affine function of x by Claim 2.5, it follows that αi > 0 for x on the same side of Hi as pi,

and αi < 0 for x on the opposite side of Hi as pi. Thus, δs(x, Hi) = αiδ(pi, Hi).

Claim (Restatement of 2.7). Let x ∈ Rd. Let α =
[

α1 · · · αd+1

]

T be barycentric

coordinates of x with respect to the affinely independent points p1, . . . ,pd+1. The distance

from x to the affine subspace A = aff({p1, . . .pk}), is given by δ(x, A) = ᾱs
TGᾱs, where

ᾱs =
[

αk+1 αk+2 · · · αd+1

]

T and G ∈ R(d−k+1)×(d−k+1), defined in Equation A.6, is a

positive definite matrix whose entries depend only on p1, . . . ,pk.

Proof. The distance of a point to a linear subspace can be computed using Gram determi-

nants [Lue69]. A translation by pk turns the affine subspace A into a linear subspace. Let

Ã = A− pk. Let p̃i = pi − pk for i = 1, . . . , d+ 1. Let x̃ = x− pk, and note that

x̃ =

(

d+1
∑

i=1

αipi

)

− pk =
d+1
∑

i=1

αi(pi − pk) =
d+1
∑

i=1

αip̃i. (A.5)

Let

g(y, z) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p̃1
Tp̃1 p̃2

Tp̃1 · · · p̃k−1
Tp̃1 yTp̃1

p̃1
Tp̃2 p̃2

Tp̃2 p̃k−1
Tp̃2 yTp̃2

...
...

p̃1
Tp̃k−1 p̃2

Tp̃k−1 p̃k−1
Tp̃k−1 yTp̃k−1

p̃1
Tz p̃2

Tz · · · p̃k−1
Tz yTz

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

,

b =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

p̃1
Tp̃1 p̃2

Tp̃1 · · · p̃k−1
Tp̃1

p̃1
Tp̃2 p̃2

Tp̃2 p̃k−1
Tp̃2

...
...

p̃1
Tp̃k−1 p̃2

Tp̃k−1 · · · p̃k−1Tp̃k−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The quantity g(y,y) is the Gram determinant for p̃1, . . . , p̃k−1,y, while b is the Gram

determinant for p̃1, . . . , p̃k−1. The squared distance from x to A, δ2(x, A), is given by the

ratio of Gram determinants

δ2(x, A) = δ2
(

x̃, Ã
)

=
g(x̃, x̃)

b
.

Using Equation A.5, δ2(x, A) can be rewritten as

δ2(x, A) =
1

b

d+1
∑

i=1

d+1
∑

j=1

g(p̃i, p̃j) αiαj
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Notice that g is symmetric in its arguments, g(y, z) = g(z,y). Also, for 1 ≤ i ≤ k,

g(p̃i,y) = 0. Thus

δ2(x, A) =
1

b

d+1
∑

i=k+1

d+1
∑

j=k+1

g(p̃i, p̃j) αiαj = ᾱs
TGᾱs

where G is given by

G =
1

b













g(p̃k+1, p̃k+1) g(p̃k+2, p̃k+1) · · · g(p̃d+1, p̃k+1)

g(p̃k+1, p̃k+2) g(p̃d+1, p̃k+2)
...

...

g(p̃k+1, p̃d+1) g(p̃k+2, p̃d+1) · · · g(p̃d+1, p̃d+1)













. (A.6)

It remains to show that G is positive definite. Consider x such that αi 6= 0, for some

i = k + 1, . . . , d + 1. By the previous claim, x must lie some nonzero distance away from

Hi. Since A ⊆ Hi, δ(x, A) > 0. Thus, G must be positive definite.

A.1.2 Convexity and Simplices

Claim (Restatement of 2.8). Let S ⊂ Rd. Let A be the set of all convex combinations

of points in S,

A =

{

x ∈ Rd

∣

∣

∣

∣

∣

x =
k
∑

i=1

αipi,
k
∑

i=1

αi = 1 , αi ≥ 0, pi ∈ S
}

. (A.7)

Then A = conv(S).

Proof. (Adapted from [Web94]) First we show that conv(S) ⊂ A. Clearly S ⊂ A, so it is

sufficient to show that A is convex. Consider points u,v ∈ A with convex combinations

u =
∑m

i=1 βiui and v =
∑n

i=1 γivi, where the ui,vi ∈ S. Let α ∈ [0, 1]. Then αu+(1−α)v =

α
∑m

i=1 βiui + (1 − α)∑n
i=1 γivi is a convex combination of points from S. It follows that

[u,v] ⊂ A whenever u,v ∈ A, and thus A is convex. Since conv(S) is the smallest convex

set containing S, conv(S) ⊂ A.
Next we show that A ⊂ conv(S). Let u ∈ A be expressed as the convex combination

u =
∑m

i=1 αiui where ui ∈ S. Without loss of generality αi > 0 (otherwise drop the

corresponding terms from the sum). We will prove that u ∈ conv(S) by induction on m.

If m = 1, clearly u ∈ S ⊂ conv(S). Now assume that a convex combination of m − 1

points in S is in conv(S), and consider a convex combination of m, u =
∑m

i=1 αiui, where

ui ∈ S. This may be rewritten as u = αmum+(1−αm)p, where p =
∑m−1

i=1
αi

1−αm
ui. Since

∑m−1
i=1

αi
1−αm

= 1, p is a convex combination of m− 1 points in S, and thus p ∈ conv(S) by

the induction hypothesis. Since um,p ∈ conv(S), and u ∈ [um,p] and conv(S) is convex,

it follows that u ∈ conv(S). Thus A ⊂ conv(S).

Thus A = conv(S).

115



Claim (Restatement of 2.9). Let p1, . . . ,pk+1 ∈ Rd be affinely independent. The simplex

s = conv({p1, . . . ,pk+1}) has the vertices vert(s) = {p1, . . . ,pk+1}.

Proof. Let z ∈ s, and let α be the barycentric coordinates of z with respect to p1, . . . ,pd+1.

Since z ∈ s it follows that α∆k. We will show that z can only be an extreme point of s if

z ∈ {p1, . . . ,pd+1}.
Let x,y ∈ s be such that 1

2(x + y) = z. Let β, γ be the barycentric coordinates of

x and y respectively. Since x,y ∈ s, then β,γ ∈ ∆k. We then have the relationship in

coordinates α = 1
2(β + γ), with α,β,γ ∈∆k. By inspection, this implies that α = β = γ

only if all components of α are zero except for one that is 1. It follows that the extreme

points of s are p1, . . . ,pk+1.

Claim (Restatement of 2.10). Let p1, . . . ,pd+1 ∈ Rd be affinely independent. The signed

volume of the simplex s̄ = conv({p1, . . . ,pd+1}) is V (s̄) = 1
d! det P̃ = 1

d! detP, where

P̃ =
[

p1−pd+1 p2−pd+1 · · · pd−pd+1

]

P =

[

p1 p2 · · · pd+1

1 1 1

]

.

Proof. The change of coordinates x̄ = P̃−1(x − pd+1) transforms the simplex s into s′ =

conv({0, e1, . . . , ed}), where ei is the ith vector of the standard basis for Rd. V (s) is given

by

V (s) =

∫

s
1 dx =

∫

s′
det P̃ dx̄

From calculus,
∫

s′
1 dx̄ =

∫ 1

0

∫ 1−x̄1

0

∫ 1−x̄1−x̄2

0
· · ·
∫ 1−x̄1−···x̄d−1

0
1 dx̄d · · · dx̄1 =

1

d!
,

thus V (s) = 1
d! det P̃. Let

A =

[

Id×d 0d×1

−1 · · · −1 1

]

,

but detA = 1, so detP = detPA. Examining the structure of PA, we see

PA =

[

P̃ pd+1

01×d 1

]

.

Expanding the determinant PA about the bottom row gives detPA = det P̃. Thus, V (s) =
1
d! det P̃ = 1

d! detP.

A.2 Properties of the Dilation

Claim (Restatement of 2.11). Let s̄ ⊆ Rd be a d-simplex with vertices p1, . . . ,pd+1. Let

εmin = −
(

d+1
∑

i=1

1/δ(pi, Hi)

)−1

, (A.8)
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where Hi is the opposing hyperplane to pi. D(s̄, εmin) is a single point. For ε > εmin, D(s̄, ε)
is a d-simplex, with faces parallel to and translated distance |ε| away from the faces of s̄.

For εmin ≤ ε ≤ 0, D(s̄, ε) ⊆ s̄, while for ε ≥ 0, s̄ ⊆ D(s̄, ε).

Proof. Recall that the definition of the dilation is

D(s̄, ε) :=







x =
d+1
∑

j=1

αjpj

∣

∣

∣

∣

∣

d+1
∑

j=1

αj = 1 with αj ≥
−ε

δ(pj , Hj)







,

First we will show that D(s̄, εmin) is a single point. Note that

d+1
∑

i=1

−εmin

δ(pi, Hi)
= 1,

and any point in in D(s̄, εmin) has αi ≥ −εmin/δ(pi, Hi) for all i. It follows that D(s̄, εmin)

is a single point.

For ε > εmin, D(s̄, εmin) can be viewed in light of Claim 2.6 as the intersection of

d + 1 closed halfspaces, where the boundary hyperplane of each halfspaces is parallel to a

respective Hi. Moreover the intersection is nonempty, since each of the halfspaces contains

D(s̄, εmin), and bounded, since the αi’s are bounded. By Theorem 3.2.5 of [Web94], a

polyhedral set (intersection of closed halfspaces) is a polytope (convex hull of a finite number

of points) if and only if the set is bounded. Thus D(s̄, ε) is a polytope. Since D(s̄, ε) is the
intersection of d + 1 closed halfspaces, it can have at most

(

d+1
d

)

= d + 1 extreme points.

For ε > εmin, inspection of the αi’s shows that D(s̄, ε) must have a nonempty interior, in

which case D(s̄, ε) must have at least d+1 vertices. Thus D(s̄, ε) is a polytope with exactly

d+ 1 vertices, i.e. D(s̄, ε) is a d-simplex.

That D(s̄, ε) ⊆ s̄ for εmin ≤ ε ≤ 0 and s̄ ⊆ D(s̄, ε) for ε ≥ 0 follows from the definition

of the dilation and Claim 2.6.

Claim (Restatement of 2.12). Let s̄a, s̄b ⊆ Rd be incident d-simplices, that is s̄a ∩
s̄b = sab, where sab ¹ s̄a, s̄b is a (k − 1)-simplex, 1 ≤ k < d + 1. Let vert(s̄a) =

{p1, . . . ,pd+1}, vert(s̄b) = {p1, . . . ,pk,qk+1, . . . ,qd+1}, and vert(sab) = {p1, . . . ,pk}.
Let A = aff sab. Then ∃κa,b > 0 such that ∀ε > 0, if x ∈ D(s̄a, ε) ∩ s̄b then δ(x, A) < κa,bε.

Proof. Let

V1 =

[

p1 . . . pk

1 . . . 1

]

, V3 =

[

pk+1 . . . pd+1

1 . . . 1

]

, V2 =

[

qk+1 . . . qd+1

1 . . . 1

]

,

Va =
[

V1 V3

]

, Vb =
[

V1 V2

]

.

The barycentric coordinates of x ∈ Rd with respect to s̄a and s̄b are given respectively by

[

α1 · · · αd+1

]

T = Va
−1

[

x

1

]

,
[

β1 · · · βd+1

]

T = Vb
−1

[

x

1

]

.
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For x ∈ D(s̄a, ε), the barycentric coordinates of x with respect to s̄a must satisfy

[

α1 · · · αd+1

]

T ≥
[

−ε/δ(p1, H1) · · · −ε/δ(pd+1, Hd+1)
]

T (A.9)

by the definition of the dilation of a simplex. For x ∈ s̄b, the barycentric coordinates of x

with respect to s̄b must satisfy

[

β1 · · · βd+1

]

T ≥
[

0 · · · 0
]

T (A.10)

We are interested in x ∈ D(s̄a, ε)∩ s̄b, so both Equation A.9 and Equation A.10 must hold.

The barycentric coordinates of x with respect to s̄a and s̄b are related by

[

α1 · · · αd+1

]

T = Va
−1Vb

[

β1 · · · βd+1

]

T. (A.11)

Since Va and Vb have the first k columns in common, Va
−1Vb has the structure

Va
−1Vb =

[

Ik M1

0 M2

]

where M1 ∈ Rk×(d+1−k) and M2 ∈ R(d+1−k)×(d+1−k).

The vertices of s̄b are partitioned into two sets, σ1 = {p1, . . . ,pk} and σ2 = {qk+1, . . . ,qd+1}.
Any point x ∈ s̄b can be described as a triplet (t,β1,β2), where t ∈ [0, 1], β1 ∈∆k−1, and

β2 ∈ ∆d−k. β1 and β2 are barycentric coordinates of two points, x1 ∈ conv(σ1) and

x2 ∈ conv(σ2), respectively. The parameter t gives the position of x along the line through

x1 and x2, that is x = (1−t)x1+tx2. This representation is unique for x ∈ Rd\(affσ1∪affσ2).
The relationship between x and (t,β1,β2) is given by

[

xT 1
]

T = (1− t)V1β
1 + tV3β

2.

The relationship between the barycentric coordinates of x with respect to s̄b and the triplet

(t,β1,β2) is
























β1
...

βk

βk+1

...

βd+1

























= (1− t)

























β11
...

β1k
0
...

0

























+ t

























0
...

0

β21
...

β2d+1−k

























and (t,β1,β2) may be computed from β by

t =
∑d+1

i=k+1 βi

β1i = βi/(1− t) i = 1, . . . , k

β2i = βi+k/t i = 1, . . . , d+1−k
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Rewriting the right-hand side of (A.11) using this representation gives









α1
...

αd+1









= (1− t)
[

Ik

0

]









β11
...

β1k









+ t

[

M1

M2

]

[

β21 · · · β2d+1−k

]

T.

The desired result will be achieved by bounding
∑d+1

i=k+1 βi using the following two subclaims

and then applying Claim 2.7. The proofs of the subclaims follow the present proof.

Subclaim 1. Let ζ be given by

ζ = − max
β2∈∆d−k

f(β2) (A.12)

f(β2) = min
1≤i≤d+1−k

[

M2β
2
]

i
δ(pi+k, Hi+k) , (A.13)

where [·]i is the i-th vector component. Then ζ is well defined and ζ > 0.

Note that tM2β
2 =

[

αk+1 · · ·αd+1

]T
and recall from Claim 2.6 that δs(x, Hi) = αiδ(pi, Hi).

Consider a point x with representation (t,β1,β2). Then ζ in Subclaim 1 can be interpreted

as a bound (which scales with t) on how far x is on the negative side of hyperplanes

Hk+1, . . . , Hd+1. This is made formal with the following subclaim.

Subclaim 2. Let x ∈ s̄b have representation (β1,β2, t). If t > 1
ζ ε, then there exists i such

that αi < −ε/δ(pi, Hi).

Let ε > 0 be given. Let x ∈ D(s̄a, ε)∩s̄b. It follows that the barycentric representation of

x with respect to s̄a satisfies αi ≥ −ε/δ(pi, Hi) for all i. By the contrapositive of Subclaim

2, the representation of x as (t,β1,β2) must have t ≤ 1
ζ ε. It follows that the barycentric

coordinates of x with respect to s̄b satisfy

d+1
∑

i=k+1

βi = t ≤ 1

ζ
ε. (A.14)

Let β̄s
T =

[

βk+1 · · · βd+1

]

T. By Claim 2.7 and the properties of symmetric positive

definite matrices,

δ(x, A) =
√

β̄sGβ̄s ≤
√

λmax(G)
∥

∥β̄s
∥

∥

2
,

whereG is the positive definite matrix given by Equation A.6. The infinity norm dominates

the 2 norm, and x ∈ s̄b, βi ≥ 0, so

δ(x, A) ≤
√

λmax(G)

d+1
∑

i=k+1

βi

Finally, applying Equation A.14 gives

δ(x, A) ≤
√

λmax(G)

ζ
ε,
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which is the desired result, with

κa,b =

√

λmax(G)

ζ
. (A.15)

Proof of Subclaim 1. First we show that M2β
2 has a strictly negative component ∀β2 ∈

∆d−k. Let β
2 be given. Let β1 ∈∆k−1 be

β1 =
[

1/k · · · 1/k
]

T

For t = 0, the point with representation (t,β1,β2) has barycentric coordinates with respect

to s̄a given by

[

α1 · · · αk αk+1 · · · αd+1

]

T =
[

1/k · · · 1/k 0 · · · 0
]

T

For any point with 0 < t ≤ 1, the point with representation (t,β1,β2) lies strictly outside

of s̄a. Thus, in the barycentric coordinates of this point with respect to s̄a, there exists i

such that αi < 0. Consider a point given by (t,β1,β2) with t > 0, but very small, then

[

α1 · · ·αk αk+1 · · ·αd+1

]

T = (1− t)
[

1
k · · · 1k 0 · · · 0

]

T + t
[

(

M1β
2
)

T
(

M2β
2
)

T
]

T.

For t very small, the first k components of α must be positive by continuity. Since some

component αi must be strictly negative when t > 0, it must be that a component of tM2β
2

is strictly negative. Since t is positive, it follows that a component of M2β
2 is strictly

negative.

Since δ(pi+k, Hi+k) > 0 for 1 ≤ i ≤ d + 1 − k, and at least one component of M2β
2

is strictly negative, it follows that f(β2) < 0 for all β2. Since sum, multiplication, and

minimum are continuous, f is a continuous function. Since ∆d−k is compact, f must take

its maximum for some β2, thus ζ is well defined. As we argued above, f(β2) < 0 for all β2,

thus

max
β2∈∆d−k

f(β2) < 0.

Thus ζ > 0.

Proof of Subclaim 2. By the definition of ζ there exists i such that

[M2β
2]i δ(pi+k, Hi+k) ≤ −ζ and by hypothesis t > 1

ζ ε. Thus

αk+i = t [M2β
2]i

< − 1

−ζ ε
−ζ

δ(pi+k, Hi+k)

= − ε

δ(pi+k, Hi+k)
,

Thus, there exist i such that αi < ε/δ(pi, Hi).
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A.3 Triangulations

A.3.1 Comparison of Simplicial- and ∆- Complexes

The definition of simplicial complex presented in 2.2.1 is geometrically motivated, adapted

from [Ede01]. It is slightly more constrained (and significantly less abstract) than the def-

inition of simplicial complex found in the traditional algebraic topology literature such as

[Spa66], which in turn is more constrained than the notion of a∆-complex found in modern

algebraic topology [Hat01]. In order to distinguish between the definitions of simplicial com-

plex in the following discussion, we will use “geometric” to refer to the definitions presented

in section 2.2.1 and “combinatorial” for the algebraic topology definition.

The definition of simplicial complex from traditional algebraic topology, such as [Spa66,

page 108] is as follows. A simplicial complex K consists of a set V of vertices and a set S of

finite nonempty subsets of V called simplices such that

i) any set consisting of exactly one vertex is a simplex, and

ii) any nonempty subset of a simplex is a simplex.

The dimension of the K is dimK := sups∈S card(s) − 1. The combinatorial simplicial

complex is equivalent to the abstract simplicial complex presented in section 2.2.1. The

underlying space |K| of a combinatorial simplicial complex is constructed and depends only

on the combinatorial structure of vertices of K. Let |K| be the set of all functions α : V → I,

where I is the closed interval [0, 1], such that

i) For any α, the set {v ∈ V|α(v) 6= 0} is a simplex of K, and
ii) For any α,

∑

α∈V α(v) = 1.

The closed simplex |s| ⊆ |K| is similarly defined by |s| = {α ∈ |K| | α(v) 6= 0 ⇒ v ∈ s}.
A metric can be defined on |K| by d(α, β) =

√
∑

v∈V [α(v)− β(v)]2. Applying this metric

to |K|, it can be shown that for any s ∈ K the closed simplex |s| is homeomorphic to the

standard simplex ∆d (defined in Equation 2.7), where d = card(s)−1. Notice that a closed

simplex is uniquely determined by its vertices, the consequences of which will be examined

in the example below.

Consider a geometric simplicial complex L defined as in section 2.2.1. Then the set V =

vert(L) and the collection of sets S = {{vert(s)} |s ∈ L} define a combinatorial simplicial

complex K. Moreover, using the metric defined above, |L| is homeomorphic to |K|, and each

simplex in L is homeomorphic to the corresponding closed simplex of K. So any geometric

simplicial complex has a corresponding combinatorial simplicial complex. By Theorem 3.2.9

of [Spa66, page 120], if a combinatorial simplicial complex K is countable (i.e. the collection

of simplices S is countable) and locally finite (each vertex v ∈ V is in a finite number of

simplices in S) and dimK ≤ n, then K has a realization as a closed subset in R2n+1. That

is, there exists a geometric simplicial complex equivalent to |K|. Since this dissertation is

concerned with computable piecewise linear functions, it is reasonable to restrict attention

to the geometric definition of simplicial complex at the loss of representing complexes that
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Figure A.1: Embeddings of an abstract simplicial complex and ∆-complex. A linear em-

bedding (a) and a general embedding (b) of |K| for the simplicial complex given in Equation

A.16. The disjoint simplices (c) and an embedding of the ∆-complex (d) from Equation

A.17.

would not be computable.

Consider the combinatorial simplicial complex K defined by

V = {p1, p2, p3}, S = {{p1, p2}, {p2, p3}, {p1, p3}, {p1}, {p2}, {p3}}. (A.16)

Then |K| is homeomorphic to S1. Figure A.1 (a) and (b) show a linear embedding of |K|
and the image of a homeomorphism of |K| to S1. Further contemplating the example, it

is clear that a simplicial complex equivalent to S1 cannot be constructed with less than 3

vertices (Because the underlying space of a simplicial complex with two vertices contains at

most one closed 1-simplex). Although it might seem natural to represent the circle with two

vertices and two edges as in Figure A.1 (d), this is not possible with a simplicial complex,

however it is possible with a ∆-complex, the modern generalization of simplicial complex.

A ∆-complex is a quotient space of a collection of disjoint simplices obtained by iden-

tifying certain sets of faces. Somewhat more formally [Hat01, page 103], a ∆-complex is

based on a collection of disjoint (geometric) simplices sα of various dimensions along with

sets Fi of faces of the sα, all faces in a given Fi having the same dimension. The ∆-

complex is the quotient space formed by taking the disjoint union of the simplices,
∐

α sα

and identifying the faces of each Fi through a transformation to the canonical simplex (i.e.

the ordering of the vertices in the face affect the way the faces are “glued” together through

the identification). As an example, consider a ∆-complex consisting of two edges and two

sets of faces identified,

S = {[p1, p3], [p2, p4]}, F1 = {p1, p2}, F2 = {p3, p4}, (A.17)

illustrated in Figure A.1 (c). This ∆-complex is homeomorphic to S1, but contains only

two vertices and two 1-simplices. Figure A.1 (d) shows the image of a homeomorphism of

the ∆-complex to S1.
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Since the present work involves only PL functions in Euclidean space, the distinction be-

tween simplicial complexes and ∆-complexes does not arise. Several potential applications

involve PL functions on non-Euclidean space, such as gait-generation [WBGK03], which

requires PLHs from T k (the k-torus) into itself. In this context it may well prove useful to

switch from simplicial complexes to ∆-complexes.

A.3.2 Parameterization of Triangulations

Claim (Restatement of 2.13). K(P,S) is a geometric simplicial complex if

1. ∀α ∈ S, P (α) are affinely independent

2. s1, s2 ∈ K(P,S) =⇒ s1 ∩ s2 ¹ s1, s2.

Moreover, if these properties hold, then vert(K(P,S)) = P .

Proof. Let s1 ∈ K(P,S) and let s2 ¹ s1. Since s1 ∈ K(P,S), there exists α1 such that

s1 = conv(P (α1)). By Property 1, P (α1) is affinely independent, thus vert(s1) = P (α1).

Since s2 ¹ s1, vert(s2) ⊆ vert(s1). Since S is an abstract complex, ∃α2 ∈ S such that

α2 ⊆ α1 and P (α2) = vert(s2). Thus s2 ∈ K(P,S). Thus, s1 ∈ K and s2 ¹ s1 =⇒ s2 ∈ K.
Since K(P,S) is a collection of simplices satisfying this and Property 2, it follows that

K(P,S) is a geometric simplicial complex.

Since the vertex set of S is {1, . . . , n}, it follows from the definition of K(·, ·) that

{pi} ∈ K(P,S) for i = 1, . . . , n, and moreover these are the only singleton sets in K(P,S).
If follows that vert(K(P,S)) = P .

A.3.3 Delaunay Triangulation

Claim A.1. Let p1, . . . ,pd+1 ∈ Rd be affinely independent. Then there is a unique sphere

through these points, with center c = 1
2A

−1b and radius r = ‖pi − c‖, where

A =













(p1 − pd+1)
T

(p2 − pd+1)
T

...

(pd − pd+1)
T













, b =













‖p1‖2 − ‖pd+1‖2

‖p2‖2 − ‖pd+1‖2
...

‖pd‖2 − ‖pd+1‖2













. (A.18)

Proof. If there is a unique point which is equidistant from the points p1, . . . ,pd+1, then

there is a unique sphere through these points. The hyperplane defined by

H =

{

x ∈ Rd | (pi − pd+1)
T(x− pd+1) =

1

2
‖pi − pd+1‖2

}

is the set of all points equidistant from pi and pd+1. Algebraic manipulation shows that

x ∈ H if and only if

(pi − pd+1)
Tx =

1

2

(

‖pi‖2 − ‖pd+1‖2
)
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Expressing this relationship in matrix form for i = 1, . . . , d gives Ax = 1
2b, with A and

b defined as above. Since the points are affinely independent, the rows of A are linearly

independent by Claim 2.1, so A is invertible. Thus there is a unique point, c = 1
2A

−1b,

equidistant from p1, . . . ,pd+1. A hypersphere with center c and radius ‖pi − c‖ contains

p1, . . . ,pd+1.

Claim A.2. Let p1, . . . ,pd+1 ∈ Rd be affinely independent, and let p̃1, . . . , p̃d+1 ∈ Rd+1

be the projection to the paraboloid, p̃i =
[

pi
T ‖pi‖2

]T
. Then conv({p̃1, . . . , p̃d+1}) has a

downward pointing normal vector given by

n =

[

A−1b

−1

]

(A.19)

where A and b are given by Equation A.18.

Proof. n is normal to conv({p̃1, . . . , p̃d+1}) if and only if it is orthogonal to p̃1−p̃d+1, . . . , p̃d−
p̃d+1. Moreover, the last component of n should be −1. These conditions can be expressed

in matrix form as


















(p̃1 − p̃d+1)
T

(p̃2 − p̃d+1)
T

...

(p̃d − p̃d+1)
T

01×d 1



















n =



















0

0
...

0

−1



















⇐⇒



















(p1 − pd+1)
T ‖p1‖2 − ‖pd+1‖2

(p2 − pd+1)
T ‖p2‖2 − ‖pd+1‖2

...

(pd − pd+1)
T ‖pd‖2 − ‖pd+1‖2

01×d 1



















n =



















0

0
...

0

−1



















⇐⇒
[

A b

01×d 1

]

n =













0
...

0

−1













.

But
[

A b

01×d 1

]−1

=

[

A−1 −A−1b
01×d 1

]

from which the result follows directly.

Claim A.3. The algorithm from Section 2.3.2 for computing the Delaunay triangulation

by computing the convex hull of the projection to the paraboloid is correct.

Proof. Let T (P,S) be the triangulation given by the algorithm. Assume it is not Delaunay.

Then there exists a d-simplex whose circumsphere contains a point of P that is not one

of its vertices. Without loss of generality assume that the vertices of the d-simplex are

p1, . . . ,pd+1 and that pi, i > d + 1, is the point that lies within the circumsphere of the

d-simplex. Let c = 1
2A

−1b be the center of the circumsphere, with A and b as defined in
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Equation A.18. Let n be the downward pointing normal to conv({p̃1, p̃2, . . . , p̃d+1}) that

has the last coordinate of −1. By Claim A.2 above,

n =

[

A−1b

−1

]

=

[

2c

−1

]

where A and b are the same as for the center calculation, and c is the center of the

circumsphere. Since this d-simplex was put in the triangulation by the algorithm, n must

also be an outward pointing normal for the facet conv({p̃1, p̃2, . . . , p̃d+1}) of the convex

hull of the projected points. Now consider the quantity nT(p̃i − p̃1). If this quantity is

positive, then the point pi must lie outside the convex hull, which would be a contradiction.

Algebraic manipulation gives

nT(p̃i − p̃1) = 2cT(pi − p1)− (‖pi‖2 − ‖p1‖2)
= (‖p1‖2 − 2cTp1 + ‖c‖2)− (‖pi‖2 − 2cTpi + ‖c‖2)
= ‖p1 − c‖2 − ‖pi − c‖2

> 0

which is greater than 0 since pi lies within the circumsphere of p1, . . . ,pd+1. But this

implies that p̃i lies outside the convex hull of the projected points, a contradiction. Thus

all simplexes in T (P,S) satisfy the circumsphere condition. By a similar argument, any

d + 1 points in P that satisfy the circumsphere criterion will be a face of the convex hull.

Thus the algorithm constructs the Delaunay triangulation.
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APPENDIX B

minvar Calculations

This appendix presents the details of calculations involved in the minvar algorithm.

Specifically, Section B.1 presents how to perform the “min var” computation in closed form,

while Section B.2 shows how to compute the least squares and best L2 affine approximations

by “completing the square.”

B.1 Solving the “min var” Equation

The following claim shows how to perform the “min var” calculation of the minvar

algorithm. For the purpose of this claim, it is assumed that λ > 0, which guarantees that

the matrix Hi is positive definite. This condition can be relaxed to allow λ = 0 so long as

conditions are imposed on the affine maps to cause Hi to be positive definite rather than

just positive semidefinite.

Claim B.1. Let Li be a collection of Ni affine maps, Lj(x) = Âjx+ b̂j, j = 1, . . . , Ni. Let

pi ∈ Rd and let λ > 0. Let

xmin = argmin
x∈Rd

varLi(x) + λ‖x− pi‖2 (B.1)

where

varLi(x) =
1

Ni

Ni
∑

j=1

∥

∥

∥

∥

∥

Lj(x)−
1

Ni

Ni
∑

k=1

Lk(x)

∥

∥

∥

∥

∥

2

. (B.2)

Then xmin is given by

xmin = −Hi
−1hi (B.3)
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where

Hi =
1

Ni

Ni
∑

j=1

(

Âj − Âi

)T (

Âj − Âi

)

+ λI (B.4)

=
1

Ni

Ni
∑

j=1

ÂT
j Âj − Âi

T
Âi + λI

hi =
1

Ni

Ni
∑

j=1

(

Âj − Âi

)T (

b̂j − b̂i
)

− λpi (B.5)

=
1

Ni

Ni
∑

j=1

Âj
Tb̂j − Âi

T
b̂i − λpi

and

Âi =
1

Ni

Ni
∑

j=1

Âj , b̂i =
1

Ni

Ni
∑

j=1

b̂j .

Proof. The proof relies on a series of algebraic manipulations. The key step is “completing

the square,” which happens in the last steps of the proof.

varLi(x) + λ
∥

∥

∥x− p(k)i

∥

∥

∥

2

=
1

Ni

Ni
∑

j=1

∥

∥

∥

∥

∥

∥

Âjx+ b̂j −
1

Ni

Ni
∑

j=1

(Âkx+ b̂k)

∥

∥

∥

∥

∥

∥

2

+ λ ‖x− pi‖2

=
1

Ni

Ni
∑

j=1

∥

∥

∥(Âj − Âi)x+ (b̂j − b̂i)
∥

∥

∥

2
+ λ ‖x− pi‖2

To simplify notation, let

Ej = Âj − Âi,

fj = b̂j − b̂i.
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Then, continuing from above,

=
1

Ni

Ni
∑

j=1

(Ejx+ fj)
T (Ejx+ fj) + λ (x− pi)T (x− pi)

= xT





1

Ni

Ni
∑

j=1

Ej
TEj + λI



x+ 2xT





1

Ni

Ni
∑

j=1

Ej
Tfj − λpi





+
1

Ni

Ni
∑

j=1

fj
Tfj + λpi

Tpi

= xTHix+ 2xThi +
1

Ni

Ni
∑

j=1

fj
Tfj + λpi

Tpi (B.6)

=
(

x+Hi
−1hi

)

THi

(

x+Hi
−1hi

)

− hiTHihi +
1

Ni

Ni
∑

j=1

fj
Tfj + λpi

Tpi

The matrix Hi is positive definite since λ > 0. If λ were zero, Hi would still be at least

positive semidefinite, and additional conditions on the linear maps could be imposed to

achieve definiteness. The manipulation in the last step is “completing the square,” in which

all appearances of x are grouped into the first quadratic term. Thus the overall quantity is

minimized when the first term is minimized. Since Hi is positive definite, the first term is

minimized when x+Hi
−1hi = 0. Then xmin = −Hi

−1hi.

Claim B.2. Let Li be a collection of Ni affine maps, Lj(x) = Âjx+ b̂j, j = 1, . . . , Ni. Let

pi ∈ Rd and let λ > 0. Let C ∈ Rd×k, k < d, be full rank and let d ∈ Rd. Let

xmin = argmin
x=Cx̂+d, x̂∈Rk

varLi(x) + λ
∥

∥

∥
x− p(k)i

∥

∥

∥

2
(B.7)

where varLi(x) is given by Equation B.2. Then xmin is given by

xmin = −CHc,i
−1hc,i + d (B.8)

where

Hc,i = C
THiC, hc,i = C

T (Hid+ hi) , (B.9)

and Hi and hi are given by Equations 4.7 and 4.8.

Proof. Since the function to be minimized is the same as in Claim B.1, just over a different
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domain, we jump directly to the equivalent of Equation B.6, substituting x = Cx̂+ d,

xTHix+ 2xThi +
1

Ni

Ni
∑

j=1

fj
Tfj + λpi

Tpi

= (Cx̂+ d) THi (Cx̂+ d) + 2 (Cx̂+ d) Thi +
1

Ni

Ni
∑

j=1

fj
Tfj + λpi

Tpi

= x̂TCTHiCx̂+ 2x̂CT (Hid+ hi) + d
THid+ 2dThi +

1

Ni

Ni
∑

j=1

fj
Tfj + λpi

Tpi

= x̂THc,ix̂+ 2x̂hc,i + d
THid+ 2dThi +

1

Ni

Ni
∑

j=1

fj
Tfj + λpi

Tpi

=
(

x̂+Hc,i
−1hc,i

)

THc,i

(

x̂+Hc,i
−1hc,i

)

− hc,iTHc,i
−1hc,i

+ dTHid+ 2dThi +
1

Ni

Ni
∑

j=1

fj
Tfj + λpi

Tpi

Since Hi is positive definite, as argued in Claim B.1, the quantity above is minimized by

x̂ = −Hc,i
−1hc,i. But x = Cx̂+ d, thus xmin is given by Equation B.8.

B.2 Best Affine Approximations by Completing the Square

This section describes how the best affine approximations, namely the least squares

and best L2, may be computed by “completing the square,” the algebraic manipulation

applied in the quadratic minimization of the previous section. These computations also

illustrate the similarities between the least squares and best L2 approximations, namely

that the best L2 approximation may be viewed as the infinite data limit of the least squares

approximation.

Let Θ ∈ R(d+1)×c,

Θ =

[

ÂT

b̂T

]

, (B.10)

be the parameterization of the affine function fΘ : Rd → Rc given by fΘ(x) = Ax+b. Note

that fΘ can also be written

fΘ(x) = Θ
T

[

x

1

]

. (B.11)

Let Z = {(xi,yi)}Ni=1 be the input output data for which we wish to compute the least

squares affine approximation. Let

di =







yi

xi

1
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for i = 1, . . . , N . Let M be

M =

[

−I
Θ

]

.

The summed squared error for the data set is given by

N
∑

i=1

‖yi − fΘ(xi)‖2 =
N
∑

i=1

di
TMTMdi

and the objective is to find Θ to minimize this quantity.

N
∑

i=1

di
TMTMdi =

N
∑

i=1

tr
(

MTdidi
TM

)

= tr

(

MT

(

N
∑

i=1

didi
T

)

M

)

= tr
(

MTSM
)

where

S =
N
∑

i=1

didi
T =

[

Syy Sxy
T

Sxy Sxx

]

,

Syy =
N
∑

i=1

yiyi
T, Sxy =

N
∑

i=1

[

xi

1

]

yi
T, Sxx =

N
∑

i=1

[

xi

1

]

[

xi
T 1

]

. (B.12)

Continuing from above,

tr
(

MTSM
)

= tr
(

Syy −ΘTSxy − SxyTΘ+ΘTSxxΘ
)

= tr
(

Syy +
(

Θ− Sxx−1Sxy
)

TSxx
(

Θ− Sxx−1Sxy
)

− SxyTSxx−1Sxy
)

= tr
(

Syy − SxyTSxx−1Sxy
)

+ tr
((

Θ− Sxx−1Sxy
)

TSxx
(

Θ− Sxx−1Sxy
))

Notice that Θ only appears in the second term. The matrix Sxx is positive semi-definite,

and positive definite if the affine hull of the xi’s is Rd, a condition on the richness of the

data set. Thus the second term is greater than or equal to zero, since it is the trace of a

positive semi-definite matrix. Thus the quantity is minimized by choosing

Θ = Sxx
−1Sxy, (B.13)

where Sxx and Sxy are given by Equation B.12, giving the least squares solution. Note that

thankfully this solution is exactly the same as given in Section 4.1.1.

Next we proceed to the analogous problem of computing the best L2 affine approximation

to a function f : D → Rc, D ⊂ Rd. The affine function fΘ is parameterized as above, and

M is defined as above. The square of the L2 norm between f and fΘ is given by

‖f − fΘ‖2 =
∫

D

[

f(x)T xT 1
]

MMT







f(x)

x

1






dx,
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which is analogous to the expression for the squared error in the least squares case. Basically,

the summation is replaced with the integral, and yi is replaced with f(x). Thus an argument

analogous to that for least squares above shows that the parameterization Θ for the best

L2 affine approximation to f is given by

Θ = Sxx
−1Sxy, (B.14)

where

Sxx =

∫

D

[

x

1

]

[

xT 1
]

dx, Sxy =

∫

D

[

x

1

]

f(x)T dx. (B.15)

The similarity in form between the least squares and best L2 affine approximations pro-

vides insight into why, under appropriate statistical assumptions, the limit as the quantity of

data goes to infinity of the least squares affine approximation is the best L2 approximation.
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[Háj69] Jaroslav Hájek, A course in nonparametric statistics, Holden-Day, 1969.

[Hat01] Allen Hatcher, Algebraic topology, Cambridge University Press, 2001.
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