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Chapter 17

Graph-Theoretic Analysis of Finite Markov Chains

J. P. Jarvis
D. R. Shier

17.1 Introduction

Markov chains arise frequently in the modeling of physical and conceptual pro-
cesses that evolve over time. For example, the diffusion of liquids across a semi-
porous membrane, the spread of disease within a population, and the flow of
personnel within the ranks of an organization can all be modeled using Markov
chains. In each of these cases, the system can be found in any of a finite number
of states, and transitions between states occur at discrete instants according to
specified probabilities.

As one illustration, suppose that there are M molecules in a vessel, separated
into two chambers by a membrane, across which molecules can pass. A typical
configuration of the system at any instant can be described by the distribution
of the M molecules between the two chambers. If there are k1 molecules in
the first chamber, then there will be k2 = M − k1 molecules in the second
chamber. Transitions from the current state (k1, k2) can occur by the movement
of a single molecule from the first chamber to the second, or from the second
chamber to the first. These two new states are represented by (k1 − 1, k2 + 1)
and (k1 + 1, k2 − 1), respectively. In one possible model of this process, the
probability of transition from (k1, k2) to (k1 − 1, k2 + 1) is given by k1/M ,
whereas the probability of transition to (k1 + 1, k2 − 1) is k2/M = 1 − k1/M .
This quantifies the idea that if more molecules are present in (say) chamber
1, then it is more likely for some molecule to transfer next from chamber 1 to
chamber 2. Using this mathematical model, one can answer questions such as:
(a) under what conditions do the molecules achieve an equilibrium configuation,
(b) what are the (probabilistic) characteristics of this configuration, and (c) at
what rate is this equilibrium approached?

The above is an instance of a finite-state Markov chain, which is the topic of
the present chapter. Normally, this subject is presented in terms of the (finite)
matrix describing the Markov chain. Our objective here is to supplement this
viewpoint with a graph-theoretic approach, which provides a useful visual repre-
sentation of the process. A number of important properties of the Markov chain
(typically derived using matrix manipulations) can be deduced from this picto-
rial representation. Moreover, certain concepts from modern algebra will also be
illuminated by developing this approach. In addition, the graph-theoretic rep-
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resentation immediately suggests several computational schemes for calculating
important structural characteristics of the underlying problem. This chapter in-
dicates how appropriate data structures and algorithms enable such calculations
to be carried out in an efficient manner.

17.2 State Classification

In this section some basic concepts of finite Markov chains are defined, leading to
the notion of classifying states of the chain as either “recurrent” or “transient.”
Both algebraic and graph-theoretic approaches turn out to be useful in identify-
ing such states. Algorithmic techniques for carrying out state classification are
also discussed.

17.2.1 Preliminaries

Suppose that M is a finite-state Markov chain with states {1, 2, ..., n}. At every
(discrete) instant t the chain M will be in one of these states. The quantity
pij denotes the conditional probability that M will be in state j at time t + 1,
given that it was observed in state i at time t. Implicitly, we are assuming
that the Markov chain is homogeneous: namely, the values pij are independent
of time t. These (one-step) state transition probabilities define the transition
probability matrix P = [pij ]. In general, let pk

ij denote the probability that M
proceeds from state i to state j after k transitions. Then the k-step transition
probability matrix P (k) = [pk

ij ] is given by P (k) = P k, the k-th matrix power
of the transition probability matrix P . Notice that when k = 0 this produces
P (0) = P 0 = In, the n × n identity matrix, agreeing with the observation that
after k = 0 steps the Markov chain is still in its initial state. The Markov chain
is called irreducible if, for every pair of states i and j, there exist r, s ≥ 0 with
pr

ij > 0 and ps
ji > 0.

Figure 1 gives the transition probability matrix P for a five-state Markov
chain, on the states 1, 2, 3, 4, 5. Also shown is the third power P 3 of P . Accord-
ingly, the conditional probability of being in state 4 at time 5, given that the
system is observed in state 3 at time 2, is p3

34 = 0.186. As will be seen later,
this chain is not irreducible.
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P =




1 2 3 4 5
1 0 0 1 0 0
2 0 0 0 0 1
3 .5 0 .2 .3 0
4 .4 .1 0 .2 .3
5 0 1 0 0 0




, P 3 =




1 2 3 4 5
1 .220 .030 .540 .120 .090
2 0 0 0 0 1
3 .318 .102 .328 .186 .066
4 .216 .164 .160 .128 .332
5 0 1 0 0 0




FIGURE 1 A transition probability matrix P

Associated with the Markov chain M is a digraph (directed graph) G = GM
having the set of nodes N = {1, 2, ..., n} and the set of edges E. Each node
corresponds to a state of M, and G contains edge (i, j) ∈ E if and only if
pij > 0. Thus the digraph, or state transition diagram, G captures the structure
of the possible one-step state transitions; the actual numerical values of the state
transition probabilities are ignored. In graph-theoretic terms, pk

ij > 0 means
there is a directed path Q of length l(Q) = k (number of edges) from node i to
node j in G. If this holds for some k ≥ 0, then node j is accessible from node
i, written i → j. Observe that i → i since we consider node i to be reachable
from itself by a path of length 0. If there is no path in G from i to j, then we
write i �→ j. If both i → j and j → i hold, then we say that states i and j
communicate, written i ↔ j. A path joining a node to itself is called a circuit.
If this circuit contains no repeated nodes, then it is a cycle. Figure 2 shows the
state transition diagram G for the Markov chain in Figure 1. Notice that there
is a path from node 1 to node 2, but no path from node 2 to node 1; thus 1 → 2
whereas 2 �→ 1. The node sequence [1, 3, 4, 1] defines a cycle in G. It is also seen
that 1 ↔ 3, 1 ↔ 4 and 3 ↔ 4.

2

5

1

3

4

FIGURE 2 The state transition diagram G

An important concept in the analysis of Markov chains is the categorization
of states as either recurrent or transient. The Markov chain, once started in
a recurrent state, will return to that state with probability 1. However, for a
transient state there is some positive probability that the chain, once started
in that state, will never return to it. This same concept can be illuminated
using graph-theoretic concepts, which do not involve the numerical values of
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probabilities. Namely, we define node i to be transient if there exists some node
j for which i → j but j �→ i. Otherwise, node i is called recurrent. (These
definitions apply only to finite Markov chains.) Let T denote the set of all
transient nodes, and let R = N − T be the set of all recurrent nodes.

17.2.2 Algebraic and Graph-Theoretic Considerations

Certain states in a Markov chain behave in a similar fashion. The following
algebraic fact underlies this type of “state classification.”

Lemma 1 : The relation ↔ is an equivalence relation: namely, (a) i ↔ i
for all i ∈ N ; (b) if i ↔ j then j ↔ i for all i, j ∈ N ; and (c) if i ↔ j
and j ↔ k then i ↔ k for all i, j, k ∈ N .

Consequently, the equivalence relation ↔ partitions N into a number of
equivalence classes (communicating classes): disjoint sets whose union is N .
Notice that M is irreducible precisely when there is just a single equivalence
class under ↔. A useful result is that nodes within a given equivalence class do
indeed behave similarly.

Lemma 2 : If node i is recurrent and i ↔ j then node j is recurrent. If
node i is transient and i ↔ j then node j is transient.

In the theory of directed graphs, G is called strongly connected if there is a
path between any pair of nodes i, j in G. In other words, i → j holds for all i, j,
meaning that i ↔ j for all i, j. Thus an irreducible Markov chain M is simply
one whose digraph G is strongly connected. In general, the communicating
classes of M are just the maximal strongly connected subgraphs of G — the
strong components of G. It is known that if nodes i and j lie on a common
circuit, then they belong to the same strong component, and conversely. As a
consequence, when the nodes within each strong component are combined into
a new “supernode,” then the condensed graph Ĝ governing these supernodes
can contain no cycles — Ĝ is an acyclic graph.

For example, the state transition diagram in Figure 2 has two strong com-
ponents: K1 = {1, 3, 4} and K2 = {2, 5}. Thus the Markov chain M is not
irreducible. For the larger state transition diagram shown in Figure 3, the four
strong components are K1 = {2, 5, 6}, K2 = {3, 4}, K3 = {1, 7} and K4 = {8}.
The condensed graph Ĝ on these components is also displayed. All nodes in
components K2 and K4 are recurrent, whereas all nodes in components K1 and
K3 are transient. Recall that Lemma 2 assures us that all nodes within a strong
component have the same classification. This example suggests that the recur-
rent components are precisely those with no leaving edges in the graph Ĝ. This
is true in general.
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Lemma 3 : The recurrent nodes of graph G are precisely those nodes
whose corresponding supernodes have no leaving edges in Ĝ.

K1 K2

K3 K4

8

2 3

4

6

71

5

G G
^

FIGURE 3 A sample digraph G with its condensed graph

In view of Lemma 3, inspection of the state transition diagram G of the finite
chain M allows one to classify each node as either recurrent or transient. In ad-
dition, these concepts are important in connection with stationary distributions
π = [π1, π2, . . . , πn] for a Markov chain having states N = {1, 2, ..., n}. These
probabilities represent the long run proportion of time the chain M spends
in each state. Such probabilities can be found by solving the linear system
π = πP,

∑
j∈N πj = 1. The following standard results in the theory of Markov

chains are stated in terms of the state transition diagram G for M.

Theorem 1 : If G is strongly connected then there is a unique stationary
distribution π for M. Moreover, this distribution satisfies πj > 0 for
all j ∈ N .

Theorem 2 : If the condensed graph Ĝ for G has a single supernode
with no leaving edges then there is a unique stationary distribution π
for M. Moreover, this distribution satisfies πj > 0 for all j ∈ R, and
πj = 0 for all j ∈ T .

17.2.3 Depth-First Search Algorithm

A natural question concerns computational methods for identifying the recur-
rent and transient nodes of G. Fortunately, this can be done very efficiently by
use of a depth-first search (or, pre-order traversal) of the digraph G = (N, E).
A depth-first search produces a numbering or labeling of the nodes of G, where
each node is numbered in the order in which it is first encountered. This num-
bering can then be used in conjunction with the depth-first search to produce the
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strong components of G. In general, the entire procedure has time complexity
O(n + m) where n = |N | and m = |E|.

To carry out a depth-first search on G, an arbitrary node v0 ∈ N is selected
as the starting node and is labeled as lab(v0) = 1. The algorithm will end up
labeling all vertices that are accessible from v0. When the algorithm terminates,
there may be unlabeled nodes (not accessible from the starting node v0). In
that case, the algorithm is restarted with an unlabeled node. Continuing in this
manner, eventually all nodes will be labeled. For simplicity, the algorithm is
now described for a graph G in which all nodes are accessible from the initially
selected node v0.

The algorithm labels the nodes of G with the numbers 1, 2, . . . , n according
to the order in which they are first encountered, starting with lab(v0) = 1.
In addition, edges are partitioned into two sets: tree and non-tree edges. As
each newly labeled node v is processed, an edge (v, w) is considered. If node
w has not yet been labeled, then w becomes labeled with lab(w) = lab(v) + 1,
edge (v, w) is classified as a tree edge, and processing continues with the newly
labeled node w. If w has already been labeled, (v, w) is a non-tree edge and
can be further classified as a back edge, forward edge, or cross edge. Back edges
(v, w) have lab(v) > lab(w) with v a descendant of w in the tree; forward edges
(v, w) have lab(v) < lab(w) with w a descendant of v; cross edges (v, w) have
lab(v) > lab(w) with w neither a descendant nor ancestor of v. (See Figure 4.)

When all edges incident from v have been considered, processing is continued
using the node u that was used to label node v. (Note that there is a unique
tree edge incident to v: namely, (u, v).) Assuming that all nodes are accessible
from the initial node v0, the depth-first search algorithm will terminate when
all nodes have been labeled and all edges have been classified.

Figure 4 shows a depth-first search tree rooted at node 1 for the state tran-
sition diagram given in Figure 3. Self-loops on nodes have been ignored, and
the labels of nodes in Figure 4 turn out to be the original node numbers.

tree edge

back edge

cross edge

forward edge

2

1

3

4

5

6

7

8

FIGURE 4 Types of edges in a depth-first search of a digraph



7

At the same time as a depth-first search is carried out on G, additional
information can be collected to enable identification of the strong components
of G. Our objective is not to describe the intricacies of this modification; the
reader is referred to Aho et al. [1] for details. Rather we briefly describe here
the overall strategy of this approach for finding strong components.

It is not difficult to see that all nodes in the same strong component will
have a common ancestor (within that component) relative to a depth-first search
tree. The minimum label common ancestor (for a particular depth-first search
tree) is referred to as the root of the strong component. Suppose G has strong
components G1, G2, . . . , Gk and let ri denote the root associated with Gi. The
components are numbered in the order that the depth-first search from each
root node is completed. The following lemma identifies the nodes in the strong
components of G.

Lemma 4 : The nodes in strong component Gi consist of those nodes
that are descendants of ri but are not in Gk, 1 ≤ k < i.

In Figure 4, the root nodes turn out to be 3, 2, 8, 1. Notice that the de-
scendants of node 3 are {3, 4} while the descendants of node 2 are {2, 3, 4, 5, 6},
producing the strong components G1 = {3, 4} and G2 = {2, 5, 6}. Similarly,
G3 = {8} is the strong component derived from root node 8, and G4 = {1, 7} is
the strong component derived from root node 1. These components correspond
to supernodes K2, K1, K4, and K3 respectively in Figure 3.

Thus the real task is to identify the roots of each strong component. The
algorithm in [1] does this by executing a depth-first search and keeping auxil-
iary information for each node (which is updated whenever non-tree edges are
encountered). Overall, the strong components can be found (and states clas-
sified as recurrent or transient) very efficiently, in O(n + m) time. By using
appropriate data structures for representing G, the storage required by the en-
tire algorithm is also O(n + m). Recall that n is the number of states of the
Markov chain and m is the number of edges in G or equivalently the number of
non-zero transition probabilities in P . Accordingly, the sparsity of the transi-
tion probability matrix P can be exploited computationally by this algorithmic
approach.

17.3 Periodicity

In this section, the important concept of periodicity is explored. This concept
is quite useful in understanding the “limiting behavior” of a Markov chain M.
Suppose that there is positive probability that M, started in state i, will return
to state i in a finite number of steps. That is, there is some k > 0 such that
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pk
ii > 0. Then the period of state i is the largest integer d such that pk

ii = 0
whenever k is not a positive integer multiple of d (that is, k �= d, 2d, 3d, . . .).
Note that pk

ii is allowed to be positive only when k is a multiple of d, but it is
not necessary that all such pk

ii be positive. A state with period d = 1 is called
aperiodic.

For the example of Figure 5(a), returns to state 1 can only occur at steps
k = 3, 6, 9, 12, . . ., so pk

11 = 0 for k not a multiple of 3; consequently state
1 has period d = 3. In Figure 5(b), returns to state 1 can only occur at
steps k = 8, 10, 16, 18, 20 and even k ≥ 24; state 1 has period d = 2. Notice
that in this case, pk

ii is not positive for all even k > 0; namely, pk
ii = 0 for

k = 2, 4, 6, 12, 14, 22.

6
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(a) (b)

FIGURE 5 Examples of periodic Markov chains

17.3.1 Analytical Results

Here we state some standard facts concerning the period of a Markov chain,
indicative of the importance of this concept in analyzing the long term behavior
of the chain. The remainder of this subsection focuses on setting up the machin-
ery needed for the efficient computation of the period d. The following result
shows that all states in the same communicating class have the same period.

Lemma 5 : If state i has period d and i ↔ j then state j has period d.

When viewed in terms of the state transition diagram G, the period of strong
component Ki is just the greatest common divisor (gcd) of the lengths of all
directed circuits in the subgraph induced by the nodes of Ki. Equivalently, the
period of Ki is the gcd of the lengths of all directed cycles in this subgraph.
For the state transition diagram of Figure 2, all states of K1 = {1, 3, 4} are
aperiodic while all those of K2 = {2, 5} have period 2.

Let α = [α1, α2, . . . , αn] be the vector of initial probabilities of being in any
of the n states at time t = 0. Then the vector αP k gives the absolute probability
of being in each state at time t = k. Under certain conditions, this probability
vector approaches a vector of limiting probabilities as t → ∞.

Theorem 3 : Suppose that the condensed graph Ĝ for G has a single su-
pernode K with no leaving edges and that all states of K are aperiodic.
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Then limiting probabilities exist and are independent of the initial prob-
ability vector α. Moreover, these limiting probabilities coincide with the
(unique) stationary distribution for the chain.

A special but important case of Theorem 3 occurs when G is strongly con-
nected and all states are aperiodic. Indeed, for the remainder of this section it
will be assumed that G is strongly connected (M is irreducible). Lemma 5 then
assures us that every state of M has the same period d. If d = 1 then M will
be called aperiodic; if d ≥ 2 then M will be called periodic.

The period d has been defined in terms of the gcd of the lengths of all cycles
in G. Now we explore another graph-theoretic characterization of the period
that will be useful in developing an efficient algorithm for computing d. The
following result characterizes the period d of M through a decomposition of G
into “cyclically moving classes.”

Theorem 4 : M has period d if and only if its digraph G can be parti-
tioned into d sets C0, C1, . . . , Cd−1 such that (a) if i ∈ Ck and (i, j) ∈ E
then j ∈ C(k+1) mod d ; and (b) d is the largest integer with this property.

Property (a) says that starting with any state in set Ck, the next transition
must be to a state in Ck+1, then to a state in Ck+2, and so on, where the
succeeding set index is taken modulo d. This situation is depicted in Figure 6.
If M is aperiodic (d = 1), then there is a single set C0 containing all states.

C0

C1

C2

Cd–1

. ..

FIGURE 6 State transitions in a Markov chain with period d

It is easy to see that if the digraph G is partitioned into d sets with properties
(a) and (b) then d must be the period of M. Since all paths in G proceed from
Ck to Ck+1 to Ck+2, and so forth, every path from i to i must have length 0
modulo d. In M this means that if pr

ii > 0, then r mod d = 0. Hence the period
of the chain must be a multiple of d. The maximality of d for the partition in
G implies that the period is exactly d.

To establish the converse, it is instructive to define a relation on the nodes
of the strongly connected graph G associated with M, assumed to have period
d. Namely, define i ∼ j if every (i, j)-path has length 0 modulo d. Note that
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since G is strongly connected, a path exists between every pair of nodes in G.
The following result asserts that we again have an equivalence relation.

Lemma 6 : ∼ is an equivalence relation.

While it is conceivable that some paths between nodes i and j might have
length 0, while others might have positive length (modulo d), this cannot occur.
In fact the following general result holds concerning path lengths, modulo d.

Lemma 7 : For every pair of nodes i and j in G, all (i, j)-paths in G
have the same length modulo d.

The equivalence classes associated with ∼ form the desired partition when
labeled appropriately. Choose any node i0 and a cycle containing i0. Since M
has period d, this cycle must contain at least d edges. Let the first d nodes
of this cycle be denoted i0, i1, . . . , id−1. Notice that no two of these nodes can
be elements of the same equivalence class because this would identify a path
between those two nodes of length less than d, whereas all such paths must
have length 0 modulo d. Label the equivalence class containing node ik as Ck.

Lemma 8 : Let {C0, C1, . . . , Cd−1} be the equivalence classes induced
by ∼ and numbered according to any (i0, i0) cycle. If (i, j) is an edge
of G with i ∈ Ck, then j ∈ C(k+1) mod d.

Corollary 1: Let Q1 and Q2 be (i, j1) and (i, j2)-paths in G, respectively.
If l(Q1) mod d = l(Q2) mod d, then j1 and j2 are elements of the same
equivalence class.

Lemma 8 shows that property (a) of Theorem 4 holds. Property (b) follows
from the maximality of the period d. Moreover, by Corollary 1 and the fact that
there are exactly d remainders modulo d, it is seen that {C0, C1, . . . , Cd−1} is
indeed a partition of the nodes of G. This establishes the stated characterization
for the period d of an irreducible Markov chain. Consequently, determining d
can be reduced to finding an appropriate partition of the nodes in the associated
digraph G. Although this might seem to be a more difficult problem, it can be
accomplished efficiently in conjunction with a breadth-first search of G.

17.3.2 Breadth-First Search Algorithm

In the irreducible Markov chain M, every transition moves from a node in Ck

to a node in C(k+1) mod d. This property can be used to identify the sets of
nodes Ck in the associated digraph G by examining the nodes of G in order
of non-decreasing path length from an arbitrary starting node. A breadth-first
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search of G provides a systematic examination of such paths.

A breadth-first search of G from node v produces a collection of level sets.
The kth level set consists of those nodes j that can be reached from node v by
a shortest path of length k; in this case we define level(j) = k. Since all nodes
within a level set share this common path length, every level set is contained
in a single equivalence class (by Corollary 1). This property is independent of
the node from which the breadth-first search is started. The difficulty lies in
determining which level sets belong to the same equivalence class. Lemma 7
shows that certain information about d can be gleaned from the knowledge of
path lengths. Sufficient information of this type can be gathered as we carry
out the breadth-first search to determine d.

A breadth-first search of the (strongly connected) digraph G visits all nodes
of G in order of non-decreasing level. In addition, this search partitions the
edges of G into tree and non-tree edges. The breadth-first search is started
from an arbitrary node v, setting level(v) = 0. As the search progresses, all
edges incident from nodes on each level are successively examined in order of
increasing level. Suppose edge (i, j) emanates from a node i with level(i) = r.
Edge (i, j) is a tree edge if node j has not yet been encountered in the traversal
of G. In this case, node j is assigned level(j) = r + 1. The collection of all such
tree edges induces a directed tree T (the breadth-first search tree) rooted from
the starting node v. If j has already been encountered, then (i, j) is a non-tree
edge and j already belongs to some level set, with s = level(j) ≤ r+1. If j is an
ancestor of i in the search tree, the edge is called a back edge (s < r); otherwise,
the edge is called a cross edge (s ≤ r + 1). See Figure 7. In both cases, these
non-tree edges provide information regarding the period of M.

tree edge

back edge

cross edge

level

0

1

2

3

4

FIGURE 7 Tree, back, and cross edges in a breadth-first search

If (i, j) is a back edge, then the tree edges from j to i plus the edge (i, j)
form a cycle in G. The length of the cycle, r − s + 1, is divisible by the period
of the Markov chain. If (i, j) is a cross edge, two distinct paths from the root
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to j have been identified. One of these follows tree edges directly to j and has
length s. The other path follows tree edges to i and then uses edge (i, j), giving
a length of r + 1. Since (by Lemma 7) alternative paths between any pair of
nodes have the same length modulo d, the difference in path lengths, r − s + 1,
is again divisible by the period d of the Markov chain. When s = r + 1, the
paths have the same length and this provides no additional information about
the period. Accordingly, we define the value of any edge e = (i, j) by val(e) =
val(i, j) = level(i) − level(j) + 1 ≥ 0. Note that val(e) = 0 when e ∈ T . Also d
must divide val(e) for e �∈ T , so d must divide g = gcd{val(e) > 0 : e �∈ T}. In
fact we claim that g = d, which will be established after first stating the implied
algorithm for determining the period of a finite irreducible Markov chain M.
This approach was first developed by Denardo [3].

Algorithm 1: Finding the period d of M
1. From an arbitrary root node, perform a breadth-first

search of G producing the rooted tree T .
2. The period g is given by gcd{val(e) > 0 : e �∈ T}.

As a practical matter, it is not necessary to keep all of the values generated
by non-tree edges; rather, we maintain only the current gcd g, initialized to be
the first positive edge value encountered. Whenever a new val(e) > 0 is found
for e �∈ T , then g is updated using g := gcd{g, val(e)}. If at any step val(e) = 1
is generated (from a cross edge within the same level set), then the gcd is 1 and
the Markov chain is aperiodic; the algorithm can be terminated immediately in
such an instance.

To illustrate Algorithm 1, consider the digraph G with six nodes shown in
Figure 8. A breadth-first search tree for G rooted at node 1 is shown in Figure 9.
The first non-tree edge encountered is (2, 1), a back edge. Then g is initialized
to be level(2) − level(1) + 1 = 3 − 0 + 1 = 4. The only other non-tree edge is
(6, 4), a cross edge. It has value level(6) − level(4) + 1 = 3 − 2 + 1 = 2, giving
the final g = gcd{4, 2} = 2. Notice that G contains no cycle of length 2, but it
does have cycles of lengths 4 and 6, yielding a period of 2.

2

51 3

4 6

FIGURE 8 A Markov chain with period 2
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FIGURE 9 Breadth-first search for the Markov chain in Figure 8

To establish the correctness of Algorithm 1, it is sufficient to show that g
= gcd{val(e) > 0 : e �∈ T} divides the length of an arbitrary cycle W in G. If
so it must divide the period d, the gcd of all cycle lengths in G. Since we have
already seen that d divides g, then we must have g = d.

Relative to the breadth-first search tree T , let the edges E of G be partitioned
into sets D and R. Set D consists of down edges (i, j), in which level(j) =
level(i) + 1, and set R contains the remaining edges. Notice that all tree edges
are in D, all back edges are in R, whereas cross edges can be in either set.
Also edge e has val(e) > 0 precisely when e ∈ R. Now let Q = [i0, i1, . . . , ik]
be any path of length l(Q) = k in G and define val(Q) =

∑k−1
s=0 val(is, is+1).

Since val(is, is+1) = level(is) − level(is+1) + 1, it then follows that val(Q) =
level(i0) − level(ik) + l(Q). In particular if W is any cycle from node i to itself
in G, then val(W ) = level(i) − level(i) + l(W ) = l(W ). This gives l(W ) =
val(W ) =

∑ {val(e) : e ∈ W} =
∑ {val(e) : e ∈ W ∩ R}. However, each term

in the last sum is positive and divisible by g (the gcd of all positive non-tree
values), so g divides l(W ), as required.

The computational effort associated with Algorithm 1 can be split into two
parts: executing the breadth-first search and then finding the greatest common
divisor associated with certain non-tree edges. Let m = |E| denote the num-
ber of edges in the digraph G. Then the time complexity associated with the
breadth-first search is O(n + m) = O(m) [7]. There are m − n + 1 non-tree
edges, hence a greatest common divisor must be found at most m − n times
(some non-tree edges are down edges and are thus not considered). Since val(e)
= level(i) − level(j)+1 ≤ level(i)+1 ≤ n, the complexity of carrying out m−n
gcd’s turns out to be O(log n + m) = O(m) [2]. Hence the overall complexity
of the algorithm is O(m). Using appropriate data structures, the algorithm
requires O(n + m) = O(m) space. As in the depth-first search algorithm for
finding strong components, this algorithm for determining d can exploit sparsity
present in the transition probability matrix P , which often has relatively few
non-zero entries.
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17.4 Conclusion

Our aim in this chapter is to provide a parallel development to the standard,
matrix-based analysis of finite-state Markov chains [6, 8]. These graph-theoretic
interpretations not only maintain a visual representation of the model but also
reinforce a number of algebraic concepts. Specifically, the idea of an equivalence
relation turns out to be quite useful in carrying out state classification as well as
in determining periodicity. Moreover, an important step in any modeling effort
is the development of efficient algorithms and data structures that “solve” the
model in an effective way. This is especially important for the successful com-
pletion of large-scale modeling projects. Interestingly, certain of the Markov
chain computations are most easily carried out using a depth-first search of G
(state classification), while others involve a breadth-first search of G (determin-
ing the period). Overall, a mathematical sciences approach (blending discrete,
algebraic, and computational elements) is illustrated here.

17.5 Exercises

1. Prove that the relation ↔ is an equivalence relation (Lemma 1).

2. Prove that all states in a communicating class have the same character with
regard to transience and recurrence (Lemma 2).

3. Consider the Markov chain whose non-zero transition probabilities are indi-
cated by ‘+’ in the matrix below:

P =




1 2 3 4 5 6
1 + 0 0 0 0 0
2 0 0 0 0 + 0
3 0 0 + + + 0
4 + 0 0 0 0 +
5 0 + 0 0 + 0
6 + 0 0 + 0 0




(a) Draw the state transition diagram G for this Markov chain and determine
the communicating classes.

(b) Classify the states of this Markov chain (recurrent or transient).

(c) Does the chain have a unique stationary distribution?

(d) Draw a depth-first search tree obtained by starting the search at node 3.
Show the node labels and the non-tree edges produced by the search.

(e) What are the root nodes associated with the strong components of G?
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4. The node adjacency matrix A = [aij ] for a digraph G = (N, E) with n = |N |
is the n × n matrix with aij = 1 if (i, j) ∈ E, aij = 0 otherwise.

(a) Show that the (i, j) entry of Ak is the number of distinct (i, j)-paths in G
having length k. (Such paths are allowed to contain repeated nodes and edges.)

(b) The reachability matrix R = [rij ] for G is the 0-1 matrix in which rij = 1
if i → j, rij = 0 otherwise. Show that R = B((I + A)n−1) where B(·) is the
(entrywise) Boolean function taking on the value 1 for non-zero arguments and
0 for zero arguments.

(c) Show that node j is in the strong component of G containing node i if and
only if rij · rji is non-zero. Compare the complexity of this approach for finding
strong components with the graph-theoretic approach outlined in Section 17.2.3.

5. Let i be a state of a Markov chain such that there is positive probability of a
return to state i in a finite number of steps. Let D denote the set of all positive
integers r such that pk

ii = 0 for all k not divisible by r.

(a) Show that 1 ∈ D.

(b) Show that D is bounded above (and hence contains a largest positive mem-
ber).

6. Prove that if i and j are communicating states, then i and j have the same
period (Lemma 5). Hint: Consider paths P, Q that make i accessible from j and
j accessible from i respectively. Then the union of P and Q is a circuit through
both i and j. Now apply the definition of periodicity.

7. Prove that the relation ∼ is an equivalence relation (Lemma 6).

8. Prove Lemma 7.

9. Consider the Markov chain whose non-zero transition probabilities are indi-
cated by ‘+’ in the matrix below:

P =




1 2 3 4 5 6 7 8 9 10
1 0 0 0 + 0 0 0 0 0 0
2 + 0 0 0 + 0 0 0 0 0
3 0 0 0 0 0 0 + 0 0 0
4 0 + + 0 0 0 0 + 0 0
5 0 0 0 + 0 0 0 0 0 0
6 0 0 0 0 + 0 0 0 0 0
7 0 0 0 + 0 0 0 0 0 0
8 0 0 0 0 0 0 + 0 + 0
9 0 0 0 0 0 0 0 0 0 +

10 0 0 0 0 0 + 0 0 0 0



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(a) Draw the state transition diagram for this chain. Explain why the chain is
irreducible.

(b) Show the breadth-first search tree obtained by starting with state (node) 1.
Also indicate the level of each node and display the non-tree edges.

(c) Use the techniques described in Section 17.3.2 to determine the period of
this Markov chain.

(d) Use the level sets obtained from the breadth-first search to identify the
partition of states induced by periodicity (see Figure 6).

10. The Euclidean algorithm can be used to find the greatest common divisor of
two integers. Find a reference to this algorithm and then implement the method
in some programming language.

11. Suppose that an irreducible finite-state Markov chain with period d has the
associated cyclic partition of states {C0, C1, . . . , Cd−1}. Suppose that the states
are numbered so that states from Ci receive smaller numbers than those from
Ci+1, 0 ≤ i < d − 1.

(a) Show that the state transition probability matrix in block form is




0 P0 0 0 · · · 0
0 0 P1 0 · · · 0
0 0 0 P2 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · Pd−2

Pd−1 0 0 0 · · · 0




(b) Show that P d is block diagonal and hence the Markov chain with one-step
transition probability matrix given by P d has d irreducible, aperiodic classes of
states.

(c) Show that the ith diagonal block of P d is (PiPi+1 . . . Pd−1P0 . . . Pi−1) for
0 ≤ i ≤ d − 1.

(d) Let πi denote the limiting probabilities associated with the ith class of states
in the Markov chain with one-step transition matrix P d. This distribution is
unique because the classes are irreducible and aperiodic (Theorem 3). Show
that πi+1 = πiPi and that the unique stationary distribution of the original
Markov chain is given by π = (π0, π1, . . . , πd−1)/d.

(e) By part (d), the stationary distribution for a periodic Markov chain with
n states can be obtained by solving a system of equations with fewer than n
equations. Which set of equations should be chosen?
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