
Fall 2008

ECE329 HW #3

In this assignment you will write the basics of a simple file system. The file system will
be flat (all files in a single directory), and files will not (yet) contain any data. Your
entire simulated file system will be stored in a single file on the hard disk. Augment your
UNIX shell with the following commands:

• ls

lists the files in the directory (single column is okay). If –l is given as an
argument, then files are listed in long format (permissions, owner, size, last
modified date, file name). For this assignment, the size of all files will be zero,
and permissions will include two categories of people (“user” and “other”) and
two types of access (“read” and “write”).

• touch file
sets the modification time of file, or creates an empty file if none exists. For
simplicity, file names can be limited to 14 characters (as in UNIX System V).
The default permissions should be rw-- (i.e., read-write for “user”, nothing for
“other”.

• rm file
removes a file. Must have permission to do this (i.e., must be root or owner of
file). If file is read-only, then should prompt user before removing.

• chown file user
changes the owner of a file. Must be root to do this.

• chmod [uo][+-][rw] file
changes permissions of a file. Must have permission to do this (i.e., must be root
or owner of file).

As indicated above, the commands to modify a file should first check the owner and
read/write permissions of the file to ensure that the current user has the appropriate
access. If not, an error message should be printed.

Instead of using your own simulated hard disk, your code should interface with the
SimulatedHardDisk provided by the instructor. Note that in this class the read/write lines
do not go low automatically. As a result, it is your responsibility to set these lines to low
yourself in the interrupt handler to prevent the hard disk from initiating another
read/write.

In addition, you will need to modify mkfs to format the simulated hard disk. Your file
system will be divided into blocks. For simplicity, set the block size to be the same as the
sector size. The file system should consist, in order, of

• an unused boot block
• a super block that specifies the number of i-nodes in the list (i.e., the maximum

number of files that the file system can handle). For simplicity, limit the number
of i-nodes to the number that can fit into a single block.

• an i-node list (i.e., an array of i-nodes, one per file). Each i-node should contain
a valid bit, the file name, owner, permissions, last modified date, and size, along

Fall 2008

with an indicator of the location of the actual file data. If the valid bit is 0, then
the other fields are ignored.

• file data (empty for now)

Note: To add a file to the project in VC++ 6.0, click on the FileView tab in the
Workspace window, then right-click on the name of the project and select “Add Files to
Project.”

Separately, answer the following problems in Chapter 2 of the textbook (Tanenbaum,
Modern Operating Systems, 3rd ed.): 23, 24, 25, 26, 28, 29, 33.

