Project #0
Design of a Hash Table Library
Joe Q. Guru
ECE 329 Computer Systems Structures
Section 1

June 16, 2003

Overview - This report describes the design of a library of functions for providing a hash table to application programs.
Status - Code is 100% implemented but only 75% functional. The function remove is not functioning properly.
Design Overview – This report describes the design of a library of functions for providing a hash table to application programs. A hash table provides storage for a set of keyed values. Values are stored in no particular order. Data is retrieved by providing appropriate keys. Typical operations include create, destroy, add, remove, get (by key) and contains.
In this design, the interface to the hash table has the following functions:
Htbl Init(); which creates a new table,

int Add(Htbl table, int key, void value); to add a new object with the specified integer key,

int Remove(Htbl tble, int key); to remove the entry with the specified key,

void *Get(Htbl table, int key); which returns the data pointer to the value associated with key, and finally,

boolean Contains(Htbl table, int key); which will return true or false based on whether or not the key is in the table.

The specification for these functions is in the attached header file hashtable.h, and the implementation is in the attached source file hashtable.c. As per the specifications of the problem, keys for this hash table can only be integers, so these functions only accept integer arguments. The data values associated with the keys can be any valid C data type, so the decision was made to store only a pointer to the data. Since the type of the data is unknown a void pointer was used. Htbl is an opaque type defined to point to the hash table, and an argument of this type is passed to each library function to define which table the function is acting on.

In order to implement these functions, two utility functions beyond the initial specification were defined for internal use and added to the library. These functions are:

int size(Htbl table); which returns the current size, and

int *keys(Htbl table); which returns an array containing all keys in the table.

These functions were employed in the add(), remove(), and contains() functions.

The primary challenge in the building the implementation was the determination of an efficient algorithm for hashing for use in the get() and remove() functions. The decision was made to go with the well-known algorithm xxxx, which is described at xxxx. The init() function simply allocates the memory for the structure, and sets up an unique ID field. The contains() function uses the size() and keys() functions, and then simply searches the keys in a while loop.

Each function in the library performs some rudimentary error checking. Functions taking an Htbl argument check the validity of the structure. All functions using malloc() check for out-of-memory. The remove function will return an error if the key to be removed in not in the table.

Test Overview
The test program tablettest.c (attached) was used to test the library functions.

Output from the test program is attached. The first set of tests simply exercised each function under normal functions. A single table was created and three keys were added with three different types. The contains() function was used to examine each of the three keys to show that they were added to the table, then the get() function was used to retrieve the data for each key and compare it to what was originally added. The remove() function was then tested on each of the keys, and the contains() function was again used to verify that the keys were no longer in the table.

The second set of tests tested multiple tables. Two hash tables were created, several objects were added to each one, and the contains() function was used to check that the correct keys were all added to the correct tables.

The final set of tests tested error conditions. An invalid argument was passed to in for the table parameter to each of the functions, and each responded with an appropriate error message. The remove() function was called on an empty table, and the correct error message was generated. Finally, the add() function was called repeatedly in a loop until an out-of-memory error was generated.

These tests cover all the intended uses of these functions, and a reasonable set of common errors. The code as submitted successfully completed each test.

Test Output
xxxxxxxxx

xxxxxxxxx
.

.

.
