ECE 329 Handout
Spring 2003
1 of 2

Using clock()
The clock function is prototyped in <sys/time.h> as

clock_t clock (void);
This function returns the elapsed processor time. The base time is arbitrary but doesn't change within a single process. If the processor time is not available or cannot be represented, clock returns the value (clock_t)(-1).

Different computers and operating systems vary wildly in how they keep track of processor time. It's common for the internal processor clock to have a resolution somewhere between hundredths and millionths of a second.

In the GNU system, clock_t is equivalent to long int and CLOCKS_PER_SEC is an integer value. But in other systems, both clock_t and the type of the macro CLOCKS_PER_SEC can be either integer or floating-point types. Casting processor time values to double, as in the example above, makes sure that operations such as arithmetic and printing work properly and consistently no matter what the underlying representation is.

Macro: int CLOCKS_PER_SEC - The value of this macro is the number of clock ticks per second measured by the clock function.

Macro: int CLK_TCK - This is an obsolete name for CLOCKS_PER_SEC.

Data Type: clock_t - This is the type of the value returned by the clock function. Values of type clock_t are in units of clock ticks.

#include <stdio.h>

#include <time.h>

#define CPS CLOCKS_PER_SEC

void delay(float t)

{ clock_t start;

 start = clock();
 while (((clock()/CPS) - (start/CPS)) < t)

 { }

}

void main(void)

{ long i, j;

 float f;

 clock_t start, end;

 printf("Start = %f\n", (start = clock())/CPS);

 delay(4.2);

 printf("End = %f\n", (end = clock())/CPS);

 printf("The time was: %f\n\n", (end - start)/CPS);

 printf("Start = %f\n", (start = clock())/CPS);

 delay(0.1);

 printf("End = %f\n", (end = clock())/CPS);

 printf("The time was: %f\n\n", (end - start)/CPS);

 printf("Start = %f\n", (start = clock())/CPS);

 delay(0.001);

 printf("End = %f\n", (end = clock())/CPS);

 printf("The time was: %f\n\n", (end - start)/CPS);

}
Output

Start = 0.030000

End = 4.236000

The time was: 4.206000

Start = 4.236000

End = 4.346000

The time was: 0.110000

Start = 4.346000

End = 4.356000

The time was: 0.010000
