ECE 329 Operating Systems
Chapter 6
15 of 19

 CPU Scheduling
What do we have to consider when deciding what to Dispatch?
· CPU Utilization. Keep the CPU busy all of the time.
· Throughput. Finish the most jobs per unit time.
· Turn-around Time. Minimize the total time between the start and end of a job.

· Waiting Time. Minimize the amount of time job spends in the Ready Queue. That is, the time a job is ready to run but isn’t.
· Response Time. Minimize the time from job creation until the first output.
Typically, a job is modeled as a series of bursts:
· CPU Bursts are the periods a job spends executing before voluntarily relinquishing the CPU.

· I/O Bursts are periods a job spends in the I/O Waiting Queue before it can be scheduled again.

[image: image1.emf]
CPU Burst Duration

[image: image2.emf]
CPU Burst Scheduling
Consider three jobs, where job 1 has a 20ms burst, job 2 has a 2ms burst and job 3 has a 5 ms burst. (No I/O for this example.) If we run them in order, job 1, job 2, and job 3, we have:

[image: image3.emf]
Throughput is three jobs in 20 + 2 + 5 = 27 ms.
Turn-around Time is 20 ms for job 1, 22 ms for job 2, and 27 ms for job 3

Average turn-around time is (20 + 22 + 27) / 3 = 69/3 = 23 ms per job.
Waiting Time is 0 for job 1, 20 ms for job 2, and 22 ms for job 3.

Average waiting time is (0 + 20 + 22) / 3 = 42 /3 = 14 ms per job.

Now, let’s reorder the jobs starting with the shortest first.

[image: image4.emf]
Throughput is still the same for the three jobs, 27 ms.

Turn-around Time is now 27 ms for job 1, 2 ms for job 2, and 7 ms for job 3

So the Average turn-around time is (27 + 2 + 7) / 3 = 36/3 = 12 ms per job!
Waiting Time is now 7 ms for job 1, 0 for job 2, and 2 ms for job 3.

The Average waiting time is now (7 + 0 + 2) / 3 = 9 /3 = 3 ms per job!
Order does matter. Shortest-Job-First (SJF) scheduling is better.
CPU and I/O Burst Scheduling with Arrival times
First-Come, First-Serve [FCFS] Non-Pre-emptive Scheduling
Consider the following jobs with following bursts:
Process
Arrival Time
Bursts

1
0
10 CPU, 10 I/O, 1 CPU, 10 I/O, 2 CPU

2
1
2 CPU, 5 I/O, 2 CPU, 5 I/O, 2 CPU, 5 I/O

3
2
1 CPU, 5 I/O, 10 CPU

4
15
8 CPU

5
20
5 CPU, 1 I/O, 5 CPU
Use FCFS scheduling to start each burst. Put each job in ready queue after its I/O is finished, and then select head of queue each time CPU is free.

[image: image5.emf]
First-Come, First-Serve [FCFS] Non-Pre-emptive Scheduling

[image: image6.emf]
CPU Utilization = (total time – idle time)/ total time = (50–2)/50 = 96%
Turn-Around Time
J1: 50 – 0 = 50 ms

J2: 48 – 1 = 47 ms

J3: 35 – 2 = 33 ms

Avg: (50 + 47 + 33 + 8 + 28) / 5 = 33.2 ms
J4: 23 – 15 = 8 ms

J5: 48 – 20 = 28 ms

Waiting Time

J1: 15 + 2 = 17 ms

J2: 9 + 6 + 11 = 26 ms

J3: 10 + 7 = 17 ms

Avg: (17 + 26 + 17 + 0 + 17) / 5 = 15.4 ms
J4: 0

J5: 16 + 1 = 17 ms

Throughput = 5 jobs / 50 ms = 0.1 job/ms = 100 jobs/sec.
Notice that job 5 didn’t take very long (relatively) but had to wait a long time because of FCFS scheduling.

For FCFS, short jobs generally have a longer wait and turn-around time than do large jobs because long jobs are not pre-empted.

Shortest Job First [SJF] Non-Pre-emptive Scheduling
Consider the following jobs with following bursts:

Process
Arrival Time
Bursts

1
0
10 CPU, 10 I/O, 1 CPU, 10 I/O, 2 CPU

2
1
2 CPU, 5 I/O, 2 CPU, 5 I/O, 2 CPU, 5 I/O

3
2
1 CPU, 5 I/O, 10 CPU

4
15
8 CPU

5
20
5 CPU, 1 I/O, 5 CPU
Use SRTN scheduling to start each burst. Put each job in ready queue after its I/O is finished in ascending order of CPU burst length, and then select head of queue (shortest job in queue) each time CPU is free. (Ties should can be decided by order in queue.)

[image: image7.emf]
Shortest Job First [SJF] Non-Pre-emptive Scheduling

[image: image8.emf]
CPU Utilization = (50–2)/50 = 96%
Turn-Around Time

J1: 40 – 0 = 40 ms

J2: 38 – 1 = 37 ms

J3: 50 – 2 = 48 ms
 Avg: (40 + 37 + 48 + 8 + 18) / 5 = 30.2 ms
J4: 23 – 15 = 8 ms

J5: 38 – 20 = 18 ms

Waiting Time

J1: 3 + 4 = 7 ms

J2: 10 + 6 = 16 ms
J3: 8 + 24 = 32 ms

Avg: (7 + 16 + 32 + 0 + 7) / 5 = 12.4 ms
J4: 0

J5: 6 + 1 = 7 ms

Throughput = 5 jobs / 50 ms = 0.1 job/ms = 100 jobs/sec.
The SJF algorithm gives the minimum average waiting time, but can cause starvation and must predict the shortest job.
How do we predict the burst length of jobs? There is no way to know the length of a burst until after it has been run, so we must predict the length using a running average of previous bursts to guess what the next will be. We use the predictor n+1 as the guess of the next (n+1)st burst length, where n+1 is given as:
n+1 = tn + (1-)n
and tn is the recent/last/latest burst length.

For  = 0, we simply use the past average and ignore the current burst as transient. For  = 1, only the most recent CPU burst is considered to be important. Generally,  is about 0.5. Consider the following curve with  = 0.5 and n = 10.

	
	
	ti
	
	6
	3
	6
	4
	13
	12
	11
	10
	11

	0.9
	
	i
	10
	6.4
	3.3
	5.7
	4.2
	12.1
	12.0
	11.1
	10.1
	10.9

	0.7
	
	
	10
	7.5
	4.6
	5.4
	4.5
	9.8
	11.4
	11.2
	10.4
	10.8

	0.5
	
	
	10
	8.2
	5.8
	5.8
	5.0
	8.5
	10.3
	10.7
	10.4
	10.7

	0.3
	
	
	10
	9.2
	7.8
	7.1
	6.3
	7.4
	8.6
	9.4
	9.7
	10.0

	0.1
	
	
	10
	9.8
	9.4
	9.0
	8.6
	8.6
	8.8
	9.0
	9.1
	9.3

[image: image9.emf]

First Come First Serve [FCFS] Pre-emptive Scheduling

or “Round Robin” [RR]

Performance is heavily dependent on the length of the time slice implemented.

· If quantum is relatively large, this algorithm is FCFS.

· If the quantum is relatively small, then the effect is that of processor sharing. Context switching becomes an important factor, however.

Consider the following jobs with following bursts:

Process
Arrival Time
Bursts

1
0
10 CPU, 10 I/O, 1 CPU, 10 I/O, 2 CPU

2
1
2 CPU, 5 I/O, 2 CPU, 5 I/O, 2 CPU, 5 I/O

3
2
1 CPU, 5 I/O, 10 CPU

4
15
8 CPU

5
20
5 CPU, 1 I/O, 5 CPU
Use FCFS scheduling to start each burst. At each time slice (1ms for this example), switch to task at head of queue. Round Robin scheduling is designed primarily for time-sharing systems.

[image: image10.emf]
First Come First Serve [FCFS] Pre-emptive Scheduling

or “Round Robin” [RR] with 1-ms time-slice

[image: image11.emf]
CPU Utilization = (50–3)/50 = 94%
Turn-Around Time

J1: 50 – 0 = 50 ms

J2: 31 – 1 = 30 ms

J3: 39 – 2 = 37 ms
 Avg: (50 + 30 + 37 + 27 + 26) / 5 = 34.0 ms
J4: 42 – 15 = 27 ms

J5: 46 – 20 = 26 ms

Waiting Time

J1: 16 ms

J2: 10 ms
J3: 21 ms

Avg: (16 + 10 + 21 + 19 + 15) / 5 = 16.2 ms
J4: 19 ms

J5: 15 ms

Throughput = 5 jobs / 50 ms = 0.100 job/ms = 100 jobs/sec.

First Come First Serve [FCFS] Pre-emptive Scheduling

or “Round Robin” [RR] with 2-ms time-slice

Now consider doubling the time slice as shown below:

[image: image12.emf]
CPU Utilization = (49–1)/49 = 98%
Turn-Around Time

J1: 49 – 0 = 49 ms

J2: 34 – 1 = 33 ms

J3: 40 – 2 = 38 ms
 Avg: (49 + 33 + 38 + 26 + 25) / 5 = 34.2 ms
J4: 41 – 15 = 26 ms

J5: 46 – 20 = 25 ms

Waiting Time

J1: 16 ms

J2: 12 ms
J3: 22 ms

 Avg: (16 + 12 + 22 + 18 + 15) / 5 = 16.6 ms
J4: 18 ms
J5: 15 ms

Throughput = 5 jobs / 49 ms = 0.102 job/ms = 102 jobs/sec.

First Come First Serve [FCFS] Pre-emptive Scheduling

or “Round Robin” [RR] with 5-ms time-slice

Now consider a time slice of 5 ms:

[image: image13.emf]
CPU Utilization = (48–0)/48 = 100%
Turn-Around Time

J1: 48 – 0 = 48 ms

J2: 32 – 1 = 31 ms

J3: 46 – 2 = 44 ms
 Avg: (48 + 31 + 44 + 24 + 25) / 5 = 34.4 ms
J4: 39 – 15 = 24 ms

J5: 45 – 20 = 25 ms

Waiting Time

J1: 15 ms

J2: 10 ms
J3: 28 ms

 Avg: (15 + 10 + 28 + 16 + 14) / 5 = 16.6 ms
J4: 16

J5: 14 ms

Throughput = 5 jobs / 48 ms = 0.104 job/ms = 104 jobs/sec.

Shortest Remaining Time Next [SRTN] (or SJF)
Pre-emptive Scheduling

Consider the following jobs with following bursts:

Process
Arrival Time
Bursts

1
0
10 CPU, 10 I/O, 1 CPU, 10 I/O, 2 CPU

2
1
2 CPU, 5 I/O, 2 CPU, 5 I/O, 2 CPU, 5 I/O

3
2
1 CPU, 5 I/O, 10 CPU

4
15
8 CPU

5
20
5 CPU, 1 I/O, 5 CPU
Use SRTN scheduling to start each burst. At each time slice (1ms for this example), switch to task with shortest CPU burst time remaining.

[image: image14.emf]

Shortest Remaining Time Next [SRTN]

Pre-emptive Scheduling

[image: image15.emf]
CPU Utilization = (48–0)/48 = 100%
Turn-Around Time

J1: 39 – 0 = 39 ms

J2: 22 – 1 = 21 ms

J3: 48 – 2 = 46 ms
 Avg: (39 + 21 + 46 + 10 + 17) / 5 = 26.6 ms
J4: 25 – 15 = 10 ms

J5: 37 – 20 = 17 ms

Waiting Time

J1: 3 + 2 + 1= 6 ms

J2: 0
J3: 1 + 22 + 7 = 30 ms
 Avg: (6 + 0 + 30 + 2 + 6) / 5 = 8.8 ms
J4: 2 ms

J5: 6 ms

Throughput = 5 jobs / 48 ms = 0.104 job/ms = 104 jobs/sec.
Comparison of Algorithm Examples
	Algorithm
	CPU Utilization

(%)
	Average

Turn-Around Time (ms)
	Average

Waiting Time (ms)
	Throughput

(jobs/s)

	FCFS [NP]
	96
	33.2
	15.4
	100

	SRTN/SJF [NP]
	96
	30.2
	12.4
	100

	FCFS [P] “RR” 1
	94
	34.0
	16.2
	100

	FCFS [P] “RR” 2
	98
	34.2
	16.6
	102

	FCFS [P] “RR” 5
	100
	34.4
	16.6
	104

	SRTN/SJF [P]
	100
	26.6
	8.8
	104

Where is the information (tn + (1-)n) for SJF algorithms stored?
How do we set the time quantum for pre-emptive scheduling?

In general, the quantum should be large relative to the dispatcher (context switching) run time, but small relative to average job length.

Statistical studies suggest that 80% of the CPU bursts should be shorter than the time quantum. Only pre-empt the longer bursts, let the shorter ones finish.

[image: image16.emf]CPU Burst DurationOptimal Time QuantumFrequencyMeasured Burst LengthDistribution80%20%

Priority Scheduling

In priority scheduling, each process has a priority associated with it which determines which process gets the CPU next. The Shortest Job First algorithm is a special case, where the shortest job has the implied highest priority.

What algorithm does an Emergency Room use?

What algorithm does a Doctor’s Office Use?

What are some advantages/disadvantages of each?

Multilevel Queue Scheduling

· Each process is assigned permanently to a queue.

· Each queue has its own scheduling algorithm for jobs within that queue.

· Priority or Round Robin Scheduling is used between each queue.

Multilevel Feedback Queue Scheduling

· Same as above, but processes can move between queues.

· Processes are sorted by execution characteristics.

· I/O bound jobs and interactive jobs are moved up in priority.

· CPU bound jobs move down in priority.

· Starving jobs are moved up in priority.

Solaris 2 Scheduler

Solaris 2 uses four classes for priority scheduling

· Real-time

· System

· Time-Sharing

· Interactive

Real-time tasks have highest priority.

Interactive tasks have higher priority.

CPU bound processes have lower priority.

Each newly created thread inherits the priority of its parent. Priorities are then altered dynamically using feedback.
Windows NT/2000 Scheduler

Windows uses multilevel feedback.
· 32 different queues: 16 are real-time queues (for higher priority tasks) and 16 regular queues.
· Uses pre-emptive priority scheduling between queues.

· Uses round robin scheduling within a queue.
· Has an “aging” mechanism to prevent starvation.

· CPU intensive jobs have priority lowered.

Linux Scheduler

Linux uses dynamic priority scheduling based on credits, where

credits = credits/2 + initial_priority

Every time the operating system computes credits (when no jobs available), a real-time process gets 2000.
Linux Credit Example
	Calculation
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Credits
	2
	3.0
	3.5
	3.8
	3.9
	3.9
	4.0
	4.0
	4.0
	4.0

	
	20
	30.0
	35.0
	37.5
	38.8
	39.4
	39.7
	39.8
	39.9
	40.0

	
	200
	300.0
	350.0
	375.0
	387.5
	393.8
	396.9
	398.4
	399.2
	399.6

	
	2000
	3000.0
	3500.0
	3750.0
	3875.0
	3937.5
	3968.8
	3984.4
	3992.2
	3996.1

[image: image17.emf]Linux Credits

1

10

100

1000

10000

1 2 3 4 5 6 7 8 91011

Calculation Period

Credits

	Calculation
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10

	Credits
	2
	3
	3
	3
	3
	3
	3
	3
	3
	3

	
	20
	30
	35
	37
	38
	39
	39
	39
	39
	39

	
	200
	300
	350
	375
	387
	393
	396
	398
	399
	399

	
	2000
	3000
	3500
	3750
	3875
	3937
	3968
	3984
	3992
	3996

What’s the difference in the second table above?
What’s its advantage/disadvantage?

_1105938143.unknown

_1105939271.unknown

_1105966994.unknown

_1105968875.unknown

_1129101613.unknown

_1105964728.unknown

_1105938261.unknown

_1105507750.unknown

_1105795808.unknown

_1105796013.unknown

_1105778714.unknown

_1105422604.unknown

