ECE 329 Operating Systems
Chapter 1
1 of 7

Operating Systems
An Operating System is software developed to facilitate a human’s use of the hardware of a computer by specifically controlling the operation and use of the machine’s I/O devices.
Goals of an operating system: convenience, efficiency, and protection.  
Convenience involves abstraction from the hardware level of a computer.

Efficiency does not refer necessarily to the efficiency of the hardware, but to the efficiency of a user being able to utilize the hardware.
Protection refers to preventing accidental or intentional misuse of the computer and it the data it manipulates.

[image: image1.emf]User A

Operating System

Computer (Machine)

User B

User C

User D

C 

Compiler

Assembler

Video

Game

Web

Browser

Application     Interface

(API)


Operating systems should provide an environment for user applications to be productive.
Operating systems should allocate resources efficiently and effectively, (where defining efficient and effective becomes the crux of the system.)  Author uses the word fair.  
What is fair?

Simple Definition:  The Operating System is the program running at all times on the computer.  (Called the Kernel).
Evolution of Operating Systems

In the 1950’s, the operating system was a set of punch cards read into the computer give functionality.  That is, to allow the computer to execute a single program.   The earliest Operating Systems were Single Process Monitors.  
· Their function was to load the program and collect common I/O functions, and their prime concern was simply the convenience of use.  
· There was a large overhead (humans and time) to start up and shut down each program.
Batch Systems

The next step was to sort the programs into similar functions, and then run them as a group, or Batch.  
· These Batch Systems still ran the programs (jobs, batch jobs) one at a time, and each program had exclusive access to memory and I/O. 

· There was, however, an automatic transfer of control from one program to another involving scheduling which saved valuable time.  
· Had simple file support since no need for concurrency, and there was little need for protection.
· Did not allow for user interaction with the program.

· Example IBM MVT OS.

At the early stages in computer technology, the mechanical speed of I/O was order of magnitudes slower than that of the CPU, so the CPU actually sat idle much of the time.  A solution was needed, as we waited for I/O devices to evolve.
Once disk storage was introduced, “all” jobs could be loaded onto one storage device and the computer could have access to all of them.  This allowed for multiprogramming using job scheduling.  The computer’s CPU could run one program while it was waiting for another’s I/O function to complete.  The CPU utilization was no much greater. 

This is the first instance where an operating system had to actually make decisions for the users.   That is primarily, which job to run next.

Time-Sharing/Multitasking Systems

Operating systems soon made the jump to overlapping I/O and processor functions.  This type system is called time-sharing or multitasking.

· Processes execute concurrently, making it necessary to share memory, share I/O resources, and decide what job gets the CPU next.

· Multitasking now switches between jobs frequently enough to allow for user interaction, allowing for completely new types of software programs.

· Processes still had to voluntarily yield to the CPU.  This meant that the user (application programmer) played an important part in the operation of the operating system.
Ironically, interactive, time-shared system software made itself inadequate.  The response time—typically about a second between programs—is critical for user satisfaction.   
The problem with multitasking  is that the application program must voluntarily yield to the system.  This obviously can cause problems with the “user friendliness” of an operation system.

A solution was to perform Pre-emptive Multitasking.  That is, have the operating system force a process to relinquish the CPU.

· Pre-emptive multitasking now must have a high level of protection, not just convenience, or efficiency.

· IBM MVS (1960’s)

· VAX MULTICS.  This was a “city-wide” OS that failed, but Kernigan and Ritchie wrote  UNIX to play a game written for MULTICS.
· Windows 95, Linux (1990’s).  Pre-emptive multitasking was now on desktops.

Evolution and Migration of Operating System Features

Operating system features migrate from the large mainframe computers to the desktop (and below/beyond.)

[image: image2.emf]

Parallel Systems

Multiprocessor Systems -  Computer system with multiple processors in “close” communication, sharing the buses and clock, and usually memory and peripherals.

· Multiprocessor systems can save money since hardware can be shared.
· Multiprocessor systems can be more reliable since the failure of one processor may not completely disable a machine.

A system’s ability to provide service proportional to the level of working hardware is said to be fault tolerant, or have graceful degradation.

What is the advantage to the new LED array traffic lights?

Symmetric Multiprocessing (SMP) -  Each processor runs an identical copy of the operating system which communicate with each other.

· Example:  Encore’s version of UNIX for the Multimax computer.

· Windows NT, Solaris, Digital UNIX, OS/2, and Linux all support SMP.
Asymmetric Multiprocessing -  Each processor is assigned a specific task which may or may not be closely related.  To be a system, an asymmetric multiprocessing system must have a master processor which controls the tasks of the slave processors.

· Example:  Sun’s SunOS Version 4 (Version 5 is Symmetric).

Real-Time Systems

Real-Time Systems are developed for systems which have certain time requirements on the processor or I/O.  Many embedded system which control machinery must have real-time operating systems.

Hard Real-Time System – A real time system which guarantees task completion within a given time parameter.  

· All delays of the system must be bounded.  (This puts strong restrictions on hardware used.)

· Hard Real-Time Systems preclude certain operating system features, such as time-sharing systems, since virtual memory cannot be used.

· Usually very low-level and small since absolute hardware control must be achieved.

Soft Real-Time System – A real time system which only guarantees that real-time (time-critical) tasks get priority over others.  

· These systems also must have bounded kernel delays.
· Not generally practical for industrial control.

· Fine for audio and graphics such as virtual reality.

Distributed Systems

A Distributed System is one in which multiple computers are networked together.  

A Network Operating System is an OS on a distributed system that provides for file sharing across the network and allows for inter-communication between possibly very different computer systems.  A computer running this operating system on a network becomes the master, while the other computers become slaves.
A Distributed Operating System is an OS on a distributed system which has no “master” but may be written so that the system appears to have one.






_1156315900.unknown

_1104059360.unknown

