ECE 329 Operating Systems
Chapter 10
7 of 7

Virtual Memory
Virtual Memory is the separation of logical memory from physical memory.

For many real programs, parts of the program may never be needed. For example, the following items may be unused:
· Error Conditions.

· Large Data Structures.
· Special Options or Features.

And even if all parts of a program may eventually be needed, they generally are not needed all “at the same time.”

The ability to execute only portions of a certain process would have the following advantages:

· Size - Programs could be larger than physical memory.

· Number - More programs could be run concurrently.

· Speed - Programs could be loaded (and swapped) faster and hence run faster.

[image: image1.emf]Page 0

Page 0

Page 0

Page 0

Page 2

Page 2

Page 2

Page 4 Page 4

Page 1 Page 1

Page 1

Page 1

Page 3

Page 3

Page 3

Page 5

Page 5

... ...

...

...

Virtual

Memory

Logical

Memory

Page

Table

Physical

Memory

Secondary

Storage

Memory

Map

Page n+m-1

Page n+m-1

Page n

Page m

Demand Paging

Virtual memory is commonly implemented by demand paging, which is really just a paging scheme which incorporates swapping.

[image: image2.emf]
Demand Paging Performance
Page Faults involve a lengthy sequence of events:

1. Trap to Operating System.
2. Save State.

3. Decode Interrupt (Page Fault).

4. Check for Legality of Reference and decode Disk Address.

5. Issue Disk Read to a Free Frame.

6. Perform Context Switch while waiting for I/O.

7. Receive Interrupt from Disk.

8. Save State of New Process in Step 6.

9. Decode Interrupt (Disk I/O).

10. Update Page Table.

11. Wait for CPU.

12. Restore Original State and Resume Faulting Instruction.

The Average Access Time can be calculated as

Average_Access_Time = (1-p) x ma + p x Page_Fault_Time
where ma is the memory access time and p is the probability of a page fault.
If a disk has a latency of 8 ms, a seek time of 15 ms, and a transfer time of 1 ms, then Page_Fault_Time would be a minimum of 24 ms. If ma were 100 ns, then

Average_Access_Time = (1-p) x 100ns + p x 24 ms
To have only a 10 percent degradation (110 ns access time), p would have to be 417 x 10-9. (or one fault out of every 2.4 millions accesses!
Luckily, programs tend to exhibit a locality of reference.

The fact that a memory reference tends to be “near” the previous reference is called spatial locality.
The fact that an area of memory referenced tends to also be referenced in the “near” future is called temporal locality.

Therefore, an efficient operating system which uses paging keeps a counter (UIC – unreferenced interval counter) and a reference bit in a page table to log when memory has been reference “recently.” A Test and Set on the reference bit is used along with an interval timer (say a second) to either increment the counter or reset it.

Page Replacement Policies
To efficiently use memory, the operating system keeps a reserve list of available free memory blocks so that when demanded, it can supply free memory for a new process.
Typically, at some time threshold, the operating system makes sure that enough free pages exist for use (instead of page faulting many times in a row.)

Page replacement policies deal with which pages should be removed from memory.

FIFO Replacement – “Steal” the pages that were brought into memory at the earliest time.

What’s wrong with this option?
Optimal Page Replacement – Remove the pages that will not be used for the longest amount of time. This method is optimal.

What’s wrong with this option?
Least Recently Used (LRU) – Since the optimal solution is impossible, the next best thing is to remove the pages that have not been referenced in the longest time—have the highest unreferenced counter value.

Second Chance – The second chance algorithm is basically the FIFO algorithm which checks to see it the page has recently been used (or already given a second chance). If is has been used (reference bit = 1), then it is given a second chance and its reference bit cleared.

What’s the effect of the second chance algorithm? How does it functionally differ from FIFO?

[image: image3.emf]
Generally, when the system has less than 15% of its address space available, medium-term scheduling should be used to swap out entire processes.

Thrashing occurs when most applications are blocked waiting on free pages and most of the I/O resources are busy swapping pages out to disk.

Working Set Page Replacement

Our objective is to allocate pages to minimize thrashing and maximize use of memory.
The working set of a process is

W(n,h),

where n is the time of the memory reference and h is the window size.

W(n,h) is the list of page references in the last h references at reference time n.

|W(n,h)| is the number of pages referenced.

For example, consider the logged page references below:
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
 |---|---|---|---|---|---|---|---|---|---|---|---|---|---|
100 101 100 95 101 102 100 93 18 102 101 15 100 96 95
W(5,5) = 101,95,100,101,100 =(101,95,100)
|W(5,5)| = 3
W(10,5) = 102,18,93,100,102 =(102,18,93,100)

|W(10,5)| = 4
W(7,5) = (100,102,101,95)

|W(5,5)| = 4
The working sets are used to try identify the optimal values for h, so as to allocate |Wp(n,h)| frames to each process.
If h is too small, thrashing occurs, so increase h.

If h is too large, fewer processes get to run, so decrease h.

When the operating system steals pages, it simply steals a number equal to the working set.
What’s a problem with using W(), |W()|?
If 100-MIP computer makes, on average, two memory references per instruction, then 200 million references are made per second!

Since calculating these working sets is very time consuming, we need to implement an approximation.

Instead of checking continuously, check every second (or so) to see what pages have been referenced and use a time interval t instead of a window h, to give
Wp(n,t) ≈ Wp(n,h)

After each interval, t, test and reset the reference bit of each page used by the process to count the number of pages referenced and approximate W(n,h).

[image: image4.emf]

_1111221952.unknown

_1162620857.unknown

_1111395400.unknown

_1111210252.unknown

