ECE 329 Operating Systems
Chapter 11
5 of 5

File-System Interface
The File is a logical abstraction of data stored on a storage device such as disks or tapes.
Each file has certain file attributes that generally vary from one system to another. Most systems, however, contain the following:
· Name – The symbolic name which the user refers to.
· Identifier – The unique tag (number) which identifies the file in the system.
· Type – Used to define type of file if various types are allowed.

· Location – A pointer to a device and the location of the file on that device.

· Size – Current size of file (may be in Bytes, words, or blocks).
· Protection – Access-control information.

· Time/Date/User ID – Dates and times may be kept for creation, modification, and use.

To define a file system, we must also discuss the file operations associated with it. The six basic functions are:

· Create –Finds space for file and logs the file information in directory. fopen
· Write – Specifies the file and the data to be written (and maybe the location to write to if not sequential). fwrite,fprintf
· Read – Specifies a file, the place to store what is read (and maybe where to read from if not sequential). fread, fscanf
· Reposition File Pointer (Seek) – Specifies the file and where to reposition the counter. rewind
· Delete – Removes the file and releases the used memory.

· Truncate – Releases the memory but does not remove the entry.

An open-file table contains information about the files that are being used. An open file has the following information associated with it:

· File Pointer – A pointer unique to each process denoting the current position in the file.

· File Open Count – Specifies the number of processes using a file. When decremented to zero, the file table for that file is removed.

· Disk Location – This is stored so that the operating system will not have to read from the disk each time it desires to operate on a file.

· Access Rights – Specifies what type processes will be allowed for each file.
#include <sys\stat.h>

int fstat(int handle, struct stat *statbuf);

Gets open file information.

fstat stores information in the stat structure about the file or directory associated with handle.

stat stores information about a given file or directory in the stat structure. The name of the file is path.

statbuf points to the stat structure (defined in sys\stat.h). That structure contains the following fields:

st_mode
Bit mask giving information about the file's mode

st_dev
Drive number of disk containing the file or file handle if the file is on a device

st_rdev
Same as st_dev

st_nlink
Set to the integer constant 1

st_size
Size of the file in bytes

st_atime
Most recent access (Windows) or last time modified (DOS)

st_mtime
Same as st_atime

st_ctime
Same as st_atime

Sequential Access – A file pointer is initially set to the beginning of the file. After each read (or write) the pointer is incremented to the next block.

Example
int i=7; float f=3.14159; str[10] = “Clemson”;

FILE *f_out, *f_in;
if ((f_out = fopen("\\out.txt", "wt"))== NULL)

{ fprintf(stderr, "Cannot open out file.\n");

 return 1;

}
if ((f_in = fopen("\\in.txt", "rt"))== NULL)

{ fprintf(stderr, "Cannot open in file.\n");

 return 1;

}
fputc(‘A’, f_out);
fputc(‘:’, f_out);
fprintf(fout, “%d %f %s\n”, i, f, str);

fclose(f_out);
Direct (Random or Relative) Access – This method allows for reading (or writing) to a specific location (block/record) in the file.

Example
 FILE *stream;

 char msg[] = "this is a test";

 char buf[20];

 if ((stream = fopen("DUMMY.FIL", "w+"))== NULL)

 { fprintf(stderr, "Cannot open output file.\n");

 return 1;

 }

 fwrite(msg, strlen(msg)+1, 1, stream);

 fseek(stream, SEEK_SET, 0);

 fread(buf, strlen(msg)+1, 1, stream);
 printf("%s\n", buf);

 fclose(stream);
 return 0;
Directory Structure

[image: image1.emf]
Protection

The following operations may be permitted or denied depending upon access control settings:

· Reading – A pointer unique to each process denoting the current position in the file.
· Writing – Writing or rewriting the file.

· Executing – Loading and executing the file.

· Appending – Writing new information to the file.

· Deleting – Deleting file and freeing space.

· Listing – Listing the name and attributes of the file.

Since listing who can and cannot access file can be cumbersome, classifications are generally used for access control:
· Owner – User who created the file.

· Group – A set of users sharing the file and needing similiar access.

· Universe – All users of the system.

UNIX defines access control by three fields of three bits each (rwx), where r controls who can read, w controls who can write, and x controls who can execute.

For example, 111 110 100 (0764) or 1 1111 0010 (0x1F2) would mean that all users could read the file, the owner and group can write to the file, and only the owner can execute the file.

_1111409787.unknown

