ECE 329 Operating Systems
Chapter 7
45 of 45

The Bounded Buffer Producer/Consumer Problem

Consider multiple processes being divided into two types: those that “produce” things (data) and those that “consume” them. These processes “trade” (communicate) through a middleman (a buffer of finite size.)

[image: image1.emf]
Producers can only produce something when the buffer is not full. Consumers can only consume something when the buffer is not empty.
The producer and consumer code might look like the following:

	int ProductBuffer[BUFFER_SIZE];
int In = 0; Out = 0;

	Producers

	while(TRUE)

{ while(((In+1)%BUFFER_SIZE) == Out);

 // Do Nothing

 ProductBuffer[In] = Produce();

 In = (In + 1) % BUFFER_SIZE;
}

	Consumers

	while(TRUE)

{ while(In == Out);

 // Do Nothing

 Consume(ProductBuffer[Out]);

 Out = (Out + 1) % BUFFER_SIZE;

}

Are there any problems with the code above?

	Producer
	In
	Out
	Buffer
	Consumer

	
	0
	0
	- - - -
	

	while((In+1)==Out)
Produce(In)

In++
	1
	
	i
X - - -
o
	

	while((In+1)==Out)
Produce(In)

In++
	2
	
	 i
X X - -
o
	

	
	
	1
	 i
- X - –

 o
	while(In==Out)

Consume(Out)

Out++

	while((In+1)==Out)

Produce(In)

In++
	3
	
	 i
- X X –

 o
	

	
	
	2
	 i
- - X –

 o
	while(In==Out)

Consume(Out)

Out++

	
	
	
	 i
- - X –

 o
	while(In==Out)

while(In==Out)

while(In==Out)

	while((In+1)==Out)

Produce(In)

In++
	0
	
	i
- - X X
 o
	

	
	
	3
	i
- - - X
 o
	while(In==Out)

Consume(Out)

Out++

	while((In+1)==Out)

Produce(In)

In++
	1
	
	 i
X - - X
 o
	

	while((In+1)==Out)

Produce(In)

In++
	2
	
	 i
X X - X
 o
	

	while((In+1)==Out)

while((In+1)==Out)

while((In+1)==Out)
	
	
	 i
X X - X
 o
	

The above code only allows for (BUFFER_SIZE – 1) products in the buffer at any given time. Consider the following:

	int ProductBuffer[BUFFER_SIZE];
int In = 0; Out = 0;

int Inventory = 0;

	Producers

	while(TRUE)

{ while(Inventory == BUFFER_SIZE);

 // Do Nothing

 ProductBuffer[In] = Produce();

 In = (In + 1) % BUFFER_SIZE;

 Inventory++;

}

	Consumers

	while(TRUE)

{ while(Inventory == 0);

 // Do Nothing

 Consume(ProductBuffer[Out]);

 Out = (Out + 1) % BUFFER_SIZE;

 Inventory--;

}

What happens when the above code is not atomic?
Producer-Consumer Problem with Semaphores

Now consider using semaphores to address synchronization of producer and consumer processes.

[image: image2.emf]
Multiple bins holding one item, with one producer and consumer:
	Semaphore NoNuggets, Nuggets;

	Producer, PhD CPE
(Chicken Parts Engineer)

	
	Consumer, BNE
(Bachelor of Nugget Eating)

	while(TRUE)
{

 CookNuggets();

 Wait(NoNuggets);

 FillNuggetBin();

 Signal(Nuggets);

 CryAboutGame();

}

	
	while(TRUE)
{

 Wait(Nuggets);

 GetNuggets();

 Signal(Nuggets);

 Ask(“Want Fries With That?”);

}

What happens when there is more than one consumer?

	Semaphore NoNuggets, Nuggets, Mutex;

	Producer

	
	Consumer

	while(TRUE)

{

 CookNuggets();

 Wait(NoNuggets);

 Wait(Mutex);

 FillNuggetBin();

 Signal(Mutex);

 Signal(Nuggets);

}

	
	while(TRUE)

{

 Wait(Nuggets);

 Wait(Mutex);

 GetNuggets();

 Signal(Mutex);

 SignalNuggets();

 Ask(“Want Fries With That?”);
}

	Producer
	
	Consumer i
	
	Consumer j

	
	
	
	
	

	
	
	Wait(Nuggets)
	
	

	Wait(NoNuggets)
	
	
	
	

	
	
	Wait(Nuggets)
	
	

	Wait(Mutex)
	
	
	
	

	FillNuggetsBin()
	
	
	
	

	
	
	Wait(Nuggets)
	
	

	Signal(Mutex)
	
	
	
	

	Signal(Nuggets)
	
	
	
	

	
	
	Wait(Nuggets)
	
	

	
	
	
	
	Wait(Nuggets)

	
	
	Wait(Mutex)
	
	

	
	
	GetNuggets()
	
	

	
	
	Signal(Mutex)
	
	

	Wait(NoNuggets)
	
	
	
	

	
	
	
	
	Wait(Nuggets)

	Wait(Mutex)
	
	
	
	

	FillNuggetsBin()
	
	
	
	

	Signal(Mutex)
	
	
	
	

	Signal(Nuggets)
	
	
	
	

	
	
	
	
	Wait(Nuggets)

	
	
	Wait(Nuggets)
	
	

	
	
	
	
	...

What does Mutex above do for us? Or how about multi-slot bins?

	#define SLOTS 10

Semaphore Nuggets = 0, Nuggets = 0, Mutex = 1;

	Producer i

	
	Consumer j

	int InSlot = 0;

while(TRUE)

{

 CookNuggets();

 Wait(FreeSlot);

 Wait(Mutex);

 Buffer[InSlot] =
 Nuggets();

 InSlot =
 (InSlot+1)%SLOTS;

 Signal(Mutex);

 Signal(Nuggets);

}

	
	int OutSlot = 0;

while(TRUE)

{

 Wait(Nuggets);

 Wait(Mutex);

 GetNuggets
 (Buffer[OutSlot]);

 OutSlot=

 (OutSlot+1)%SLOTS;

 Signal(Mutex);

 Signal(FreeSlot);

 CryAboutTheBallgame();
}

What do the initial values mean?

The Readers-Writers Problem

Consider the diagram below in which we have a shared resource being read from and written to asynchronously by multiple processes. Those which only read from the resource are called Readers, and those which may either read or write to the resource are called Writers.

[image: image3.emf]Shared Resource

W

W

R

R

R

R

W

	Semaphore Mutex;

	Writer i

	
	Reader j

	while(TRUE)

{

 Wait(Mutex);

 WriteStuff(&SharedR);

 Signal(Mutex);

}

	
	while(TRUE)

{

 Wait(Mutex);

 ReadStuff(SharedR);

 Signal(Mutex);

}

Any problems with the above solution?
	Writer
	
	Reader i
	
	Reader j

	
	
	
	
	

	Wait()
	
	
	
	

	
	
	Wait()
	
	

	
	
	
	
	Wait()

	Write()
	
	
	
	

	
	
	Wait()
	
	

	
	
	
	
	Wait()

	Signal()
	
	
	
	

	
	
	Wait()
	
	

	
	
	
	
	Wait()

	Wait()
	
	
	
	

	
	
	Read()
	
	

	
	
	
	
	Wait()

	Wait()
	
	
	
	

	
	
	Signal()
	
	

	
	
	
	
	Wait()

	Wait()
	
	
	
	

	
	
	Wait()
	
	

	
	
	
	
	Read()

	Wait()
	
	
	
	

	
	
	Wait()
	
	

	
	
	
	
	Signal()

	Wait()
	
	
	
	

Notice that only one Reader can read at any given time. In fact, Readers might as well be Writers.
To allow for multiple Readers at a time, we could add another semaphore and a counter to permit Readers into the Resource as long as reads are being performed.
	Semaphore Write, Mutex;
int ReadCount = 0;

	Writers

	
	Readers

	while(TRUE)

{

 Wait(Write);

 WriteStuff(&SharedR);

 Signal(Write);

}

	
	while(TRUE)

{

 Wait(Mutex);

 if (++ReadCount == 1)

 Wait(Write);

 Signal(Mutex);

 ReadStuff(SharedR);

 Wait(Mutex);

 if (--ReadCount == 0)

 Signal(Write);

 Signal(Mutex);

}

How does ReadCount function above?

What are problems with the above solution?

	Writer
	
	Reader i
	
	Reader j

	
	
	
	
	

	
	
	Wait()
	
	

	
	
	Read()
	
	

	Wait()
	
	
	
	

	
	
	
	
	Wait()

	
	
	Signal()
	
	

	
	
	
	
	Wait()

	
	
	
	
	Read()

	Wait()
	
	
	
	

	
	
	Wait()
	
	

	
	
	
	
	Signal()

	
	
	Wait()
	
	Wait()

	
	
	Read()
	
	

	Wait()
	
	
	
	

	
	
	
	
	Wait()

	
	
	Signal()
	
	

	
	
	
	
	Wait()

	
	
	
	
	Read()

	Wait()
	
	
	
	

	
	
	Wait()
	
	

	
	
	
	
	Signal()

	
	
	Wait()
	
	

	
	
	Read()
	
	

	Wait()
	
	
	
	

What is Going On?

Consider the problem of men and women sharing a common bathroom. We can let as many men in a time, but no women and vice versa. But to prevent one sex from “having an accident” i.e. “starve,” we need three semaphores (Mutex, Men, and Women) and variables which state that a certain sex is waiting outside.

[image: image4.emf]W

W

W

W W W

M M

M

M M

M

Shared Bathroom

The following code works by making the last Man/Woman exiting the bathroom allow the next Woman/Man to enter the bathroom.

	Man()

{ Wait(Mutex); // Block everyone else

	// If Women are in bathroom or waiting, Activate Men
if (ActiveWomen + WaitingWomen == 0)

{ ActiveMen++; // Man goes in
 Signal(Men);

}

else WaitingMen++; // else Man waits outside

	Signal(Mutex); // Unblock everyone else.
Wait(Men);

	ManUsesBathroom();

	Wait(Mutex); // Block everyone else

	ActiveMen--; // Leave Bathroom
// If Last Man and a Woman is Waiting
if ((ActiveMen == 0) && (WaitingWomen > 0))
{ while (WaitingWomen > 0) // Allow all Women in
 { Signal(Women); // Let a Writer go
 ActiveWomen++; // One more Woman in
 WaitingWomen--; // One less Women waiting
 }

}

	Signal(Mutex); // Unblock everyone else
}

If ActiveMen > 0, then ActiveWomen == 0.
If ActiveWomen > 0, then ActiveMen == 0.
If ActiveMen > 0 && WaitingMen > 0, then WaitingWomen > 0.

If ActiveWomen > 0 && WaitingWomen > 0, then WaitingMen > 0.

The Woman’s code would be the same, substituting Women for Men.
Now consider the problem of letting only one Writer in at a time, but as many Readers as possible, as long as they don’t jump ahead of a waiting Writer so that Writers don’t “starve.”

[image: image5.emf]W W W W R R

R R

R

Shared Resource

	Reader()

{ Wait(WriterWaiting); // Block if Writer Waiting

 Wait(BlockReader); // Block if Writer Writing or

 // Waiting
 Wait(MutexR); // Block for Update

	 if (++ReadCount == 1)

 Wait(BlockWriters); // First Reader so Block Writers

	 Signal(MutexR);
 Signal(BlockReader);
 Signal(WriterWaiting);

 ReadStuff(); // Read Shared Resource
 Wait(MutexR); // Block for update

	 if (--ReadCount == 0)

 Signal(BlockWriter); // Writer Starts if Last Reader

	 Signal(MutexR);

}

	Writer()

{ Wait(MutexW); // Block for Update

	 if (++WriteCount == 1)

 Wait(BlockWriters); // First Writer, Block Readers

	 Signal(MutexW);
 Wait(BlockWriter); // Wait if Reading, or Writing

	 WriteStuff(); // Write to Shared Resource

	 Signal(BlockWriter);
 Wait(MutexW); // Block for update

	 if (--WriteCount == 0)

 Signal(BlockReader); // Readers Can start

	 Signal(MutexW);

}

// Initializations:

ReadCount = 0; // Number of Readers

WriteCount = 0; // Number of Writers

BlockReader = 1; // First Writer Blocks New Readers
BlockWriter = 1; // First Reader Blocks New Writers
WriterWaiting = 1; // Can Only Read if No Writer Waiting
MutexR = 1; // Mutex for Readers Modifying Variables
MutexW = 1; // Mutex for Writers Modifying Variables
The “Dining Philosophers Problem”
Consider a group of “philosophers” who sit around all day thinking and talking and eating.

[image: image6.emf]
There is a single bowl of rice in the middle of the table and five chopsticks distributed around the table. To eat, a philosopher must first grab one chopstick and then a second to eat rice from the bowl. When finished eating for a while, the philosopher then puts down his chopsticks and thinks and talks for a while.

[image: image7.emf]
Examine the following code using semaphores to “save” a chopstick.

	Semaphore Chopstick[5]={1,1,1,1,1};

	Philosopher i

	while(TRUE)

{ Wait(Chopstick[i]);

 Wait(Chopstick[(i+1)%5];

	 EatSomeRice();

	 Signal(Chopstick[(i+1)%5];

 Signal(Chopstick[i]);

 DiscussWhetherOrNotTheRiceReallyExists();

}

When and why could the Philosophers cease to be “thinkers” and become “fighters”!?

[image: image8.emf]
What if each philosopher picks up one chopstick before any philosopher picks up their second one? They are hopeless deadlocked and will all starve to death!
Or, what if the first philosopher picks up his right chopstick and the third philosopher picks up his left chopstick, and they eat whenever they can get the other one. The second philosopher starves to death while one and three get fat!
One solution is to allow a philosopher to pick up her chopsticks only if both chopsticks are available. What does this solve? What does this not solve?

Another solution is to require odd philosophers to pick up left chopstick first, and even philosophers to pick up right chopstick first.

[image: image9.emf]0

1

2

3 4

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

0

1

2

3 4

!

!

0

1

2

3

4

What does this solve? What does this not solve?

Conditional Critical Regions and Monitors
Since we have Semaphores, why do we need another programming structure to handle concurrency?

· Omitting a wait or signal can be baaaaaaad. One problem with semaphores (though not as great a problem as with the earlier examples) is that “terrible” things can happen if they are not implemented correctly. Consider

	Wait(Mutex); DoCriticalStuff(); Wait(Mutex);

or

	Signal(Mutex); DoCriticalStuff(); Wait(Mutex);

What happens in the above code!

· Because Semaphore code is distributed throughout a program, maintenance of that code can be problematic.

· The higher the level of the abstraction, the better for the programmer.

The Conditional Critial Region construct looks like the following,

R: shared SharedType;

where it can then only be accessed using a region statement as

region R when (BooleanExpression) Statement;

This says that SharedType can only be accessed while Statement is being executed when BooleanExpression is TRUE.

If BooleanExpression is TRUE, Statement is executed. If BooleanExpression is FALSE, Statement waits till BooleanExpression becomes TRUE.

Here’s an elegant CCR solution to the bounded buffer problem:

	CONST BUFF_SIZE = 20;

VAR CCR SHARED RECORD

 Buffer: ARRAY[0.. BUFF_SIZE - 1] OF item;

 Inventory, InSlot, OutSlot: integer;

END;

	producer:

 REGION CCR WHEN (Inventory < BUFF_SIZE) DO BEGIN

 Buffer[InSlot] := Produce();

 InSlot := (InSlot + 1) MOD BUFF_SIZE;

 Inventory := Inventory + 1

END;

	consumer:

 REGION CCR WHEN (Inventory > 0) DO BEGIN

 Consume(Buffer[OutSlot]);

 OutSlot := (OutSlot + 1) MOD BUFF_SIZE;

 Inventory := Inventory - 1

END;

A CCR really just puts a level of abstraction (and safety) between a semaphore and the user, resulting (hopefully) in fewer mistakes by the programmer.
Monitors have the same goals as the CCR. They use the type condition to define a variable which can then use (and only use) the functions signal and wait. For example, consider a solution to the “Dining Philosophers” problem.

monitor DiningPhilosopher
{ enum {THINKING, HUNGRY, EATING} State[5];

 condition Self[5];
 void PickUpChopsticks(int i)

 { State[i] = HUNGRY;

 TestState(i);

 if (State[i] != eating) Self[i].wait();
 }
 void PutDownChopsticks(int i)

 { State[i] = THINKING;

 TestState((i+4)%5);

 TestState((i+1)%5);

 }
 void TestState(int i)

 { if ((State[(i+4)%5] != EATING) &&

 (State[i]==HUNGRY)&&(State[(i+1)%5]!=EATING))

 { State[i] = EATING;

 Self[i].signal();

 }

 }

 void InitializeStates()

 { for (int i=0; i<5; i++) State[i] = THINKING;

 }

}

Then we could run the following code:

DiningPhilosopher.PickUpChopsticks(i);

EatSomeRice();

DiningPhilosopher.PutDownChopsticks(i);

_1108449824.unknown

_1183988569.unknown

_1183989474.unknown

_1161157407.unknown

_1183986859.unknown

_1108450640.unknown

_1108368293.unknown

_1108448923.unknown

_1107257642.unknown

