ECE 329 Operating Systems
Chapter 8
14 of 15

Deadlocks
Just as communication engineers are concerned with error detection, error correction, and error avoidance, operating system programmers must be concerned with deadlock detection, correction, and avoidance. Although certain deadlock conditions may even be a rare, they can be disastrous to a computer system.
A deadlock situation is likely (or at least possible) if the following conditions happen simultaneously:

· Mutual Exclusion: At least one resource is non-sharable. Serially Reusable Resource.

· Hold and Wait: Processes will not relinquish any resources being held until all resources needed are obtained and the task completed.
· No Pre-emption: Resources must be released voluntarily.

· Circular Wait: For n given processes,

P0 is waiting for resource held by P1,

P1 is waiting for resource held by P2,

...

Pn-1 is waiting for resource held by Pn

 and
Pn is waiting for resource held by P0.
We saw an example of this before as below:
	P0
	
	P1
	
	P2

	Wait(Resource_0);

Wait(Resource_1);

Wait(Resource_2);

	
	Wait(Resource_1);

Wait(Resource_2);

Wait(Resource_0);

	
	Wait(Resource_2);

Wait(Resource_0);

Wait(Resource_1);

	DoCriticalStuff();

	
	DoCriticalStuff();

	
	DoCriticalStuff();

	Signal(Resource2);

Signal(Resource1);
Signal(Resource0);

	
	Signal(Resource0);

Signal(Resource2);
Signal(Resource1);

	
	Signal(Resource1);

Signal(Resource0);
Signal(Resource2);

[image: image1.emf]

[image: image2.emf]

Remember the Dining Philosopher problem?

[image: image3.emf]
Deadlock Prevention

Ideally, we would like to prevent deadlocks. To have deadlock prevention, we must “simply” eliminate one of the requirements for deadlocking.

Don’t Share Resources: Not practical because some resources must not be shared (and processes that don’t share end up with no friends.)
Allow for Pre-emption of Resources: Works for processors, but not for other resources like disks. The pre-emption process must be transparent. Pre-emption is practical for hardware which can easily save their state. Disk or printer pre-emption is unpractical.
Prevent Processes from “Grabbing Resources” Piecemeal: Resources must be allocated all at once. May result in inefficient use of resources. Starvation is also very possible.
Prioritize the Resources: Prevent processes from allocating resources with higher priority then it already has. Assigning appropriate priorities may be difficult or inefficient in some cases.
Deadlock Avoidance
Since preventing deadlocks may be impractical or inefficient, we may wish to try to avoid them altogether.
 To do this, we will require each process to name (claim) what resources it needs and then use this information to make certain that a circular waiting condition never occurs.
Deadlock avoidance algorithms store the process and resource information in various matrices.

· The Available Resource Vector contains the number of each type of resource available.

· The Max/Claims Matrix contains the maximum number of each type of resource needed.

· The Allocation/Allocated Matrix contains the number of each type of resource that has actually been allocated.

· The Need/Request Matrix contains the number of each type of resource needed at present. Need = Max – Allocation.
Consider the following example, with the given matrices:
	
	R1
	R2
	R3
	R4

	Available Resource Vector
	3
	1
	1
	2

	
	
	R1
	R2
	R3
	R4

	Max Matrix
	P1
	3
	0
	1
	2

	
	P2
	2
	1
	0
	0

	
	P3
	0
	1
	1
	0

	
	P4
	0
	0
	1
	2

Now say we have the following requests:

Available Resource Vector
	
	R1
	R2
	R3
	R4
	

	
	3
	1
	1
	2
	

	
	
	
	
	
	

	P1: Allocate(3,R1)
	0
	1
	1
	2
	

	
	
	
	
	
	

	P2: Allocate(1,R2)
	0
	0
	1
	2
	

	
	
	
	
	
	

	P3: Allocate(1,R3)
	0
	0
	0
	2
	

	
	
	
	
	
	

	P4: Allocate(2,R4)
	0
	0
	0
	0
	

	
	
	
	
	
	

	P1: Allocate(2,R4)
	0
	0
	0
	-2
	Not enough R4

	
	
	
	
	
	

	P2: Allocate(2,R1)
	-2
	0
	0
	-2
	Not enough R1

	
	
	
	
	
	

	P3: Allocate(1,R2)
	-2
	-1
	0
	-2
	Not enough R2

	
	
	
	
	
	

	P4: Allocate(1,R3)
	-2
	-1
	-1
	-2
	Not enough R3

We now have a deadlock situation where no process can continue because they need resources that have been allocated to other processes.

We need an algorithm which looks ahead to predict the deadlock and avoid it!

Banker’s Algorithm
In the Banker’s Algorithm, we use the preceding data structures to predict whether the resource request is safe or not. The algorithm has two parts: a Resource-Request phase which in turn uses a Safety algorithm. They are as follows:
Resource-Request Algorithm

Let Requestp be the request vector for process p. If Requestp[r] = k, then process p wants k instances of resource r. When a request for resources is made by process p, the following actions are taken:
	Step 1: If Requestp ≤ Needp, goto Step 2,else raise and error condition.
Why? What does this mean?

	Step 2: If Requestp ≤ Available, go to Step 3, else suspend process p since resources are not available.

	Step 3: Have the system simulate allocating the requested resources to process p, by modifying copies of the Available, Allocation, and Need matrices and then perform the following operations:

Available = Available – Requestp
Allocationp = Allocationp + Requestp
Needp = Needp – Requestp
What does the Need vector represent?

If the resulting resource allocation is in a safe state, then allocate the requested resources to p, update the matrices with their copies, and perform the request. If the allocation produces an unsafe state, the suspend process p until it can produce a safe state.

Safety (Safe State) Algorithm

To decide whether or not a system is in a safe state, perform the following steps.

	Step 1:
Create a Work vector and set it equal to the Available vector.

Create a Finish vector whose size is the number of processes, and set each element equal to FALSE.

	Step 2:
Find a process p such that

Finish[p] == FALSE and

Needp ≤ Work.

If no such p exists, go to Step 4.

Note: Needp ≤ Work means that Need[p][i] ≤ Work[i] for all i.

	Step 3:
Process allocation:

Work = Work + Allocationp
Finish[p] = TRUE.

go to Step 2.

	Step 4:
If Finish[p] == TRUE for all p,then the system is safe from deadlock.
If not, it is unsafe, and a deadlock is possible.

Safety Algorithm Example
Let’s use the Safety Algorithm to consider whether the state of a system defined by the given parameters is safe or not.

	
	R0
	R1
	R2
	R3

	Available Resource Vector
	1
	5
	2
	0

	
	
	R0
	R1
	R2
	R3

	Allocation Matrix
	P0
	0
	0
	1
	2

	
	P1
	1
	0
	0
	0

	
	P2
	1
	3
	5
	4

	
	P3
	0
	6
	3
	2

	
	P4
	0
	0
	1
	4

	
	
	R0
	R1
	R2
	R3

	Max Matrix
	P0
	3
	0
	4
	2

	
	P1
	1
	7
	5
	0

	
	P2
	3
	3
	5
	6

	
	P3
	0
	6
	5
	2

	
	P4
	0
	6
	5
	8

The Need Matrix is Max – Allocation, and therefore equals:
	
	
	R0
	R1
	R2
	R3

	Need Matrix
	P0
	3
	0
	3
	0

	
	P1
	0
	7
	5
	0

	
	P2
	2
	0
	0
	2

	
	P3
	0
	0
	2
	0

	
	P4
	0
	6
	4
	4

Now create a Work and Finish Vector giving:

	
	R0
	R1
	R2
	R3
	
	P0
	P1
	P2
	P3
	P4

	Work Vector
	1
	5
	2
	0
	Finish Vector
	F
	F
	F
	F
	F

We will use these vectors to decide whether or not the state is safe.
The Initial Work and Finish vectors are:

	
	R0
	R1
	R2
	R3
	
	P0
	P1
	P2
	P3
	P4

	Work Vector
	1
	5
	2
	0
	Finish Vector
	F
	F
	F
	F
	F

Now try to “mark” some process in the Finish vector. That is, find a row in the Need which is less than or equal to the work vector. Again, the Allocation and Need matrices are:
	
	
	R0
	R1
	R2
	R3
	
	
	R0
	R1
	R2
	R3

	Allocation
	P0
	0
	0
	1
	2
	Need
	P0
	3
	0
	3
	0

	
	P1
	1
	0
	0
	0
	
	P1
	0
	7
	5
	0

	
	P2
	1
	3
	5
	4
	
	P2
	2
	0
	0
	2

	
	P3
	0
	6
	3
	2
	
	P3
	0
	0
	2
	0

	
	P4
	0
	0
	1
	4
	
	P4
	0
	6
	4
	4

Notice that the row for P3 is less than the Work Vector
Need[3] = [0 0 2 0] ≤ [1 5 2 0] = Work
so “mark” it by setting Finish[3] to TRUE and letting
Work = Work + Allocation[3], or
[1 5 2 0] + [0 6 3 2] = [1 11 5 2]
	
	R0
	R1
	R2
	R3
	
	P0
	P1
	P2
	P3
	P4

	Work Vector
	1
	11
	5
	2
	Finish Vector
	F
	F
	F
	T
	F

Now find another process,
Need[1] =[0 7 5 0] ≤ [1 11 5 2] = Work

so mark P1.
	Work Vector
	2
	11
	5
	2
	Finish Vector
	F
	T
	F
	T
	F

And another,

Need[2] =[2 0 0 2] ≤ [2 11 5 2] = Work

so mark P2.
	Work Vector
	3
	14
	10
	6
	Finish Vector
	F
	T
	T
	T
	F

We continue until (hopefully) all processes in Finish are marked TRUE. For this example, we end up with the following sequence.
	
	R0
	R1
	R2
	R3
	
	P0
	P1
	P2
	P3
	P4

	Initial Work
	1
	5
	2
	0
	Initial Finish
	F
	F
	F
	F
	F

	
	1
	11
	5
	2
	
	F
	F
	F
	T
	F

	
	2
	11
	5
	2
	
	F
	T
	F
	T
	F

	
	3
	14
	10
	6
	
	F
	T
	T
	T
	F

	
	3
	14
	11
	10
	
	F
	T
	T
	T
	T

	Final Work
	3
	14
	12
	12
	
	T
	T
	T
	T
	T

Therefore, a valid sequence of process allocation would be
P3 (P1 (P2 (P4 (P0.
To perform a sequence of allocations for processes, we simply simulate the allocation in copies of the matrices, and then check the state of the system for safety. If the system is safe, we perform the actual allocation and move on. If not, we suspend process and move on. If processes are suspended, we should check each time a resource is freed to see if a suspended process can resume.
What is involved for an operating system to implement such an algorithm?

Resource-Request and Safety Algorithms Example
Consider a system with the following matrices.

	
	R0
	R1
	R2

	Available Resource Vector
	3
	3
	2

	
	
	R0
	R1
	R2
	
	
	R0
	R1
	R2

	Allocation Matrix
	P0
	0
	1
	0
	Max Matrix
	P0
	7
	5
	3

	
	P1
	2
	0
	0
	
	P1
	3
	2
	2

	
	P2
	3
	0
	2
	
	P2
	9
	0
	2

	
	P3
	2
	1
	1
	
	P3
	2
	2
	2

	
	P4
	0
	0
	2
	
	P4
	4
	3
	3

The Need Matrix is equal to Max – Allocation and is:

	
	
	R0
	R1
	R2

	Need Matrix
	P0
	7
	4
	3

	
	P1
	1
	2
	2

	
	P2
	6
	0
	0

	
	P3
	0
	1
	1

	
	P4
	4
	3
	1

Is the system safe at this point?

	
	R0
	R1
	R2
	
	P0
	P1
	P2
	P3
	P4

	Initial Work
	3
	3
	2
	Initial Finish
	F
	F
	F
	F
	F

	
	5
	3
	2
	
	F
	T
	F
	F
	F

	
	7
	4
	3
	
	F
	T
	F
	T
	F

	
	7
	4
	5
	
	F
	T
	F
	T
	T

	
	10
	4
	7
	
	F
	T
	T
	T
	T

	
	10
	5
	7
	
	T
	T
	T
	T
	T

Yes, the sequence of process allocations could be

P1 (P3 (P4 (P2 (P0
for the system to safely allocate resources.

Now what if P1 made a request for one R0 and two R2?

Step 1: Is Requestp ≤ Needp?
Request1 = [1 0 2] ≤ [1 2 2] = Need2, YES!
Step 2: Is Requestp ≤ Available?
Request1 = [1 0 2] ≤ [3 3 2] = Available, YES!
Step 3: Update matrices:

Available = Available – Requestp
	
	R0
	R1
	R2

	Available Resource Vector
	2
	3
	0

Allocationp = Allocationp + Requestp

Needp = Needp – Requestp
	
	
	R0
	R1
	R2
	
	
	R0
	R1
	R2

	Allocation Matrix
	P0
	0
	1
	0
	Need Matrix
	P0
	7
	4
	3

	
	P1
	3
	0
	2
	
	P1
	0
	2
	0

	
	P2
	3
	0
	2
	
	P2
	6
	0
	0

	
	P3
	2
	1
	1
	
	P3
	0
	1
	1

	
	P4
	0
	0
	2
	
	P4
	4
	3
	1

Is the system now safe at this point?

	
	R0
	R1
	R2
	
	P0
	P1
	P2
	P3
	P4

	Initial Work
	2
	3
	0
	Initial Finish
	F
	F
	F
	F
	F

	
	5
	3
	2
	
	F
	T
	F
	F
	F

	
	7
	4
	3
	
	F
	T
	F
	T
	F

	
	7
	4
	5
	
	F
	T
	F
	T
	T

	
	7
	5
	5
	
	T
	T
	F
	T
	T

	
	7
	5
	7
	
	T
	T
	T
	T
	T

Yes, a sequence of process allocations could be P1(P3(P4(P0(P2.

What other orders are valid?
Deadlock Detection
The algorithm for deadlock detection is much the same as that of the safety algorithm for deadlock avoidance. The difference being that we are looking for deadlock instead of safety. The algorithm is:

To decide whether or not a system is in a safe state, perform the following steps.

	Step 1:
Create a Work vector and set it equal to the Available vector.

Create a Finish vector whose size is the number of processes, and set each element equal to FALSE.

	Step 2:
Find a process p such that

Finish[p] = FALSE and

Requestp ≤ Work.

If no such p exists, go to Step 4.

	Step 3:
Process allocation:

Work = Work + Allocationp
Finish[p] = TRUE.

go to Step 2.

	Step 4:
If Finish[p] == FALSE for some p,then the system is in deadlock because process p is deadlocked.

Deadlock Detection Example
Let’s use the Safety Algorithm to consider whether the state of a system defined by the given parameters is safe or not.

	
	R0
	R1
	R2
	R3
	R4

	Available Resource Vector
	5
	0
	1
	3
	4

	
	
	R0
	R1
	R2
	R3
	R4

	Allocation Matrix
	P0
	2
	0
	3
	2
	0

	
	P1
	0
	2
	1
	0
	1

	
	P2
	3
	0
	1
	0
	0

	
	
	R0
	R1
	R2
	R3
	R4

	Request Matrix
	P0
	0
	2
	0
	0
	0

	
	P1
	0
	0
	0
	0
	0

	
	P2
	0
	0
	0
	5
	0

Step 1:

	
	R0
	R1
	R2
	R3
	R4
	
	P0
	P1
	P2

	Initial Work
	5
	0
	1
	3
	4
	Initial Finish
	F
	F
	F

Step 2:
Find a process p such that

Request1 = [0 0 0 0 0] ≤ [5 0 1 3 4] = Work.

Step 3:
Process allocation:

	Work
	5
	2
	2
	3
	5
	Finish
	F
	T
	F

Step 2:
Find a process p such that

Request0 = [0 2 0 0 0] ≤ [5 2 2 3 5] = Work.

Step 3:
Process allocation:

	Work
	7
	2
	5
	5
	5
	Finish
	T
	T
	F

Step 2:
Find a process p such that

Request2 = [0 0 0 5 0] ≤ [7 2 5 5 5] = Work.

	Final Work
	10
	2
	6
	5
	5
	Final Finish
	T
	T
	T

Step 4:
No Finish[p] == TRUE for all p,so system is not deadlocked.
Another Deadlock Detection Example
Now consider the following matrices:

	
	R0
	R1
	R2

	Available Resource Vector
	0
	0
	0

	
	
	R0
	R1
	R2
	
	
	R0
	R1
	R2

	Allocation
	P0
	0
	1
	0
	Request
	P0
	0
	0
	0

	
	P1
	2
	0
	0
	
	P1
	2
	0
	2

	
	P2
	3
	0
	3
	
	P2
	0
	0
	0

	
	P3
	2
	1
	1
	
	P3
	1
	0
	0

	
	P4
	0
	0
	2
	
	P4
	0
	0
	2

Is the system now safe at this point?

	
	R0
	R1
	R2
	
	P0
	P1
	P2
	P3
	P4

	Initial Work
	0
	0
	0
	Initial Finish
	F
	F
	F
	F
	F

	
	0
	1
	0
	
	T
	F
	F
	F
	F

	
	3
	1
	3
	
	T
	F
	T
	F
	F

	
	5
	2
	4
	
	T
	F
	T
	T
	F

	
	7
	2
	4
	
	T
	T
	T
	T
	F

	
	7
	2
	6
	
	T
	T
	T
	T
	T

A sequence of process allocations for a deadlock-free system is
P0 (P2 (P3 (P1 (P4.

However, what if P2 made an addition request for R2?

	
	
	R0
	R1
	R2
	
	
	R0
	R1
	R2

	Allocation
	P0
	0
	1
	0
	Request
	P0
	0
	0
	0

	
	P1
	2
	0
	0
	
	P1
	2
	0
	2

	
	P2
	3
	0
	3
	
	P2
	0
	0
	1

	
	P3
	2
	1
	1
	
	P3
	1
	0
	0

	
	P4
	0
	0
	2
	
	P4
	0
	0
	2

	
	R0
	R1
	R2
	
	P0
	P1
	P2
	P3
	P4

	Initial Work
	0
	0
	0
	Initial Finish
	F
	F
	F
	F
	F

	
	0
	1
	0
	
	T
	F
	F
	F
	F

	
	 ?
	 ?
	?
	
	T
	F
	F
	F
	F

_1109135695.unknown

_1109136062.unknown

_1108819448.unknown

