ECE 329 Operating Systems
Chapter 9
2 of 17

Memory Management
Memory management has three goals:

· Protection – Protect users from each other and Operating System from users.

· Sharing – Share data among co-operating processes

· Efficiency – We always desire efficient use of a computer.

To understand memory management, the difference between a physical (or absolute) address and a logical (or virtual) address must be identified.

Physical Address – An address loaded into the memory address register. That is, the memory placed on the physical address bus to retrieve or store memory.

Logical Address – An address generated by the CPU (before being placed in the memory address register during execution).

[image: image1.emf]

[image: image2.emf]
The MMU (Memory Management Unit) is the hardware which changes logical addresses to physical addresses.

 The actual binding of an address, that is, the translation of a logical address to the physical (absolute) address can take place various stages between a program’s creation and its execution.

[image: image3.emf]
· Compile-Time Binding – To have compile-time binding, a process must know beforehand what address range it will be loaded into. (MS-DOS .com files). If the starting address in physical memory changes, the code must be recompiled.
· Load-Time Binding – Compiler generates relocatable addresses, and binding is done when program is loaded. If the starting address in physical memory changes, reloading (but not recompiling) is necessary.
· Execution-Time Binding – Addresses are not bound to physical addresses until actually used in code. To provide for speed, hardware must be provided.
Unmapped/Unprotected Memory – One method of memory management is to simply have “none” at all. A process gets all user memory and holds it until termination.
Since MS-DOS systems used this method, it was impossible for them to run more than one program at a time. To simulate running more than one program at a time, a TSR (Terminate and Stay Ready) was used. The TSRs would load their functionality into the top of memory at startup, and then exit allowing the main application to loaded. The main program could then call functions from this area in memory. How safe was this?
Fixed Partition Scheme – This method requires an Operating System to have a Partition Table. The table must contain a partition ID, its starting and ending address, and its status (used or free.)
For the Operating System to load another process, a free partition must be found.

[image: image4.emf]
Negatives of Fixed Partitioning:

· Causes internal fragmentation (unused memory within a partition) potentially wasting large chunks of memory within each partition.

· For n partitions, only n processes can be in memory (main memory/RAM) at a given time.

· To run >n processes, processes must be swapped to disk. Disk swapping greatly affects response time.

· In unmapped (“real”) memory systems, a process must be swapped in where it was swapped out because it uses absolute addresses. These programs are not dynamically relocatable and result in a further degradation of system performance.

Variable Partition Scheme – Since all processes are not the same size, the next step would be to let partitions be of various sizes. Memory is allocated by process requirements when loaded.
This system has a partition table also, but the table must be dynamic since the partitions sizes are not fixed.

[image: image5.emf]
The table is implemented with a linked-list of allocated and free partitions. It must also employ and algorithm which manages where a new process goes, and combines contiguous free partitions.

[image: image6.emf]
Where does Process E go now?
The major disadvantage is external fragmentation (unused memory between partitions) with free memory ending up as a bunch of small pieces which cannot be used by the larger processes. Only processes left running are small, long-running jobs.

Three different schemes may be used to choose where (which free block) to put the next process.
· First Fit – Allocates the first free block that is big enough. Search can start at the beginning of memory or the last place searched.

· Best Fit – Allocates the smallest free block that is large enough. Must search all free blocks in list, unless list is kept in order.
· Worst Fit – Allocates the largest free block. Must search all free blocks in list, unless list is kept in order.
First Fit and Best Fit are faster and more efficient with memory, with first fit being faster than best fit.
First Fit and Best Fit produce external fragmentation. Which method is better depends on the system.

In either case, consider the problem of having very small blocks of free memory between every process, each too small for any process but if combined together could possibly be large enough for a process.
Compaction (defragmentation) can be used to aid the problem of fragmentation. This consists of relocating the used memory so that all the free memory is contiguous.
To have compaction, dynamic base and limit registers must be used.

When can compaction not be used?
When must address binding be done for compaction to be used?

What is the drawback to compaction, even if it is used?
How is memory sharing implemented with variable partitions?
Paging

One method of preventing fragmentation is to employ paging. Paging does not require a processes memory to be contiguous. Without the contiguous restriction, a process can use many small blocks of free memory instead of having to find a single one large enough for it to fit in.

[image: image7.emf]
Notice that no additions are necessary, but simply a reading of a page frame from the lookup (page) table.
The size of a page/frame is usually from 512 to 16MB (4 to 8 KB typically), and systems may even have multiple sizes.
Notice that page reference is contained in the upper bits of the logical address and the page offset in the lower bits.

Page Number
Page Offset
	pppp pppp pp
	dd dddd dddd dddd dddd dddd

m-n = 10
n = 22
For the example above, the logical addresses are 32 bits, with a 10-bit page and 22-bit page offset. Notice that there are 2m-n pages with the page/frame size begin 2n Bytes.

[image: image8.emf]
With paging, there is no external fragmentation because any frame can be assigned to any process. Internal fragmentation is possible as shown above for Page 4.
How can internal fragmentation be limited? What effect does this have?

[image: image9.emf]
How does paging affect a program’s operation?
#include <stdio.h>

#include <conio.h>

#include <time.h>

#define ROWS 500

#define COLS 500

void main(void)

{ int a[ROWS][COLS];

 int i, j, k, n;

 time_t start, end;

 for (n=0; n<2; n++)

 { printf("Start\n");

 start = time(NULL);

 for (k=0; k<1000; k++)

 for (i=0; i<ROWS; i++)

 for (j=0; j<COLS; j++) { a[i][j] = i+j; }

 end = time(NULL);

 printf("Start\n");

 printf("Time = %f\n", difftime(end,start));
 printf("Start\n"); fflush(stdout);

 start = time(NULL);

 for (k=0; k<1000; k++)

 for (j=0; j<COLS; j++)

 for (i=0; i<ROWS; i++) { a[i][j] = i+j; }
 }

 end = time(NULL);

 printf("Start\n");

 printf("Time = %f\n", difftime(end,start));

 }

}

Memory Protection for Paging

[image: image10.emf]
When will an invalid memory reference still be deemed valid for the graph above?

How big are page tables and how are they stored?
Two-Level Page-Table

[image: image11.emf]
Address Translation of Two-Level Page-Table

Page Number
Page Offset

	p1p1p1p1 p1p1p1p1 p1p1
	p2p2 p2p2p2p2 p2p2p2p2
	dddd dddd dddd

m-n = 20
n = 12

[image: image12.wmf]p

1

p

1

p

2

p

2

d

d

Logical Address

Physical Memory

The above can be extrapolated to multi-page systems with large address buses.

Segmentation
User view a program’s address space much differently than is actually implemented in physical memory. Users tend to think of their programs as blocks of related objects. The computer, on the other hand, organizes a program’s memory as blocks of physical memory such as we’ve seen with paging.

[image: image13.wmf]PrintStuff

Segment 1

Segment 0

main

GetAvg

Segment 2

Stack

Segment 3

Symbol

Table

Segment 5

malloc

Segment 4

The computer might consider a logical address to be a group of page and offset bits, whereas the user program considers logical addresses to be a group of segment and offset bits.

Segment
Segment Offset

	ssss ssss ssss ssss
	dddd dddd dddd dddd

[image: image14.emf]
Protection and Sharing with Segments
Segmentation allows for the protection memory based on a segment’s function. For example,

· Code segments are generally non-self-modifying, so an entire section/segment can be protected from corruption by marking it as “read-only.”
· Array bounds can be checked by simply storing that array in its own dedicated segment.
Segmentation allows for the sharing of memory locations. Any information to be shared can simply be defined as its own sharable segment.
· Data Segments can be shared by multiple processes.
· Read-only Code Segments can be shared reducing memory consumption.

[image: image15.emf]
Segmentation and Paging
As you have probably already conceived, Segmentation combined with Paging can be used to complement each other.

For example IBM’s OS/2 32-bit operating system has a maximum of 16K 4-GB segments per process with page sizes of 4KB.
The logical address space contains two different partitions each having 8KB segments.

Page Number
Partition/Protection
Offset
	ssss ssss ssss s
	g
	pp
	oooo oooo oooo oooo

13
1
2
16
Since the page sizes are 4 KB (12 bits) the page table can have over a million entries (20 bits). Therefore, the linear address pages the page table and is structured as below.

Page Directory
Page Number
Offset

	dddd dddd dd
	pp pppp pppp
	oooo oooo oooo

10
10
12
The main disadvantage of paging and segmentation is the time it takes to look up the indirect references. Therefore, it is advantageous to have a cache which stores the latest references to tables.

This cache is called the translation look-aside buffer (or TLB). The TLB typically satisfies more than 95% of the translations.
Operating Systems must occasionally interact with TLB’s because of context switching. In general, each time the Operating System switches a process, it must reload the Page Table Base Register and purge the TLB so it can reload it. This is why processes tend to run slower at first, before they have filled up the cache. Context switching should be done infrequently enough to take advantage of a mature process.

[image: image16.emf]

_1110178523.unknown

_1110604502.unknown

_1110699617.unknown

_1110779096.unknown

_1110788664.unknown

_1110891322.unknown

_1110778566.unknown

_1110631272.unknown

_1110697852.unknown

_1110615431.unknown

_1110287835.unknown

_1110603714.unknown

_1110287385.unknown

_1110091003.unknown

_1110172941.unknown

_1110088291.unknown

