Reading Barcodes Etched on Shiny Surfaces Using Basic Image Processing

by Timothy Ensminger and Paul Poppe
In partial fulfillment of ECE 847

Dr. Stan Birchfield

Clemson University
Abstract
A basic method for approaching the problem of reading barcodes that are printed or etched onto shiny surfaces is proposed. Also, the question of how to arrange environmental variables (such as light) in order to facilitate reading is addressed. Digital photographs of a representative stainless steel container whose surface has barcodes etched onto it are analyzed in an attempt to success-fully read the barcodes. Of the nine pictures used in this project, four were read successfully, and further develop-ment will likely lead to better success rates.
Introduction

The use of barcodes in modern retailing has become almost universal. Nearly every product sold around the world has a barcode label on it, and industry has sought better ways of reading these barcodes for inventory and process control.
One notable application for barcodes has been in industries that require the ability to track containers that hold materials like radioactive waste, caustic chemicals, and other hazardous wastes. In many cases, the barcode is etched onto a stainless steel container, using either a pulsed laser or some sort of acid etching process. A problem arises due to the fundamentally reflective nature of these containers. Normal laser-based scanners do not function well, since their beam scatters on the shiny surface. Thus, solutions based on cameras and image processing are being sought.

There are many commercially available software packages for reading barcode printed on labels such as those found on packages or in documents.¹ However, at present, we were unable to find any that were capable of reading barcodes etched onto shiny surfaces, such as the stainless steel cans provided by the Department of Energy (DOE) for this research experiment.

The main difficulty arises due to the fact that environmental lighting reflects off the polished surface of the can, and interferes with the camera’s ability to see the barcodes. This research project seeks to establish a framework (both physically and in software) for automating the process of reading the etched barcodes from the surface of the stainless steel cans.

Motivation

The DOE has specified its desire for a process whereby they can reliably read the barcodes present on stainless steel cans of various sizes and shapes (this larger project is the scope the graduate research of Paul Poppe). Present in this task is the need to design a workspace that facilitates barcode reading, using a digital video camera. Thus, it is necessary both to develop a software algorithm that can locate barcodes in an image and decode them, and to test that algorithm in a variety of environmental conditions to see which conditions are most favorable to success-ful barcode reading.

This project focused on developing a simple algorithm capable of locating and decoding the barcodes, given images of sufficient resolution from a digital camera.
Approach

Our basic approach was two-fold. First, we developed a Matlab script that could decode Code 39 barcode, which is the type of code found on the containers provided. We then augmented this code by segmenting the images and performing a very simple PCA routine to establish the location of the barcodes.
Then, we applied this script to photographs taken in a variety of lighting conditions, with different depths of field, and adapted the code to work on as many of the images as possible.

The most difficult portion of this project was thresholding the images. After trying a variety of approaches (including histogram analysis like that found in the work of Bonnet, Cutrona, and Herbin²), we settled on a results-based approach. That is, we determined through experimentation that the “best” threshold value for our images (which vary greatly in light exposure, and container reflectivity), was one that would identify approximately 25% of the pixels as foreground. Thus, faced with an arbitrary image, our algorithm uses this heuristic to pick a threshold value that will yield “good” results. This approach produced fairly consistent images (8 of the 9 images gave usable results with this algorithm), and may form a basis for faster analysis of images obtained in future environments which have less variation in lighting conditions.
Once the image was thresholded, it became necessary to identify the region of the image that contained the barcode. We decided to do a PCA on the regions of the image. However, we quickly realized that we could save compu-tational time by merely looking for a rectangle (which is the approximate shape of the barcode). So, we convolved the thresholded image with a kernel big enough to fill in the gaps between the bars and spaces in the barcode (at the resolution of these pictures, we used a 25x5 kernel). Following are some example images.
[image: image1.jpg]LT T

\Il\\l\ \I\IHNI (] U\IIJJ\I\MW
—




Original picture

[image: image2.png]L

400
500 ’
600
700

1




Thresholded image
[image: image3.png]]




Convolved image

Then, rather than doing a full PCA, we simply compared the height/width ratios of the regions big enough to be candidate barcode locations, and picked the one whose ratio was closest to that of the actual barcode (approximately .18).

We took a window around the best candidate region, and focused on analyzing the barcode. Our basic methodology for decoding the symbols was to project a line through the middle of the barcode, so that it intersected all of the bars and spaces. Then, we matched the pattern of bars and spaces to a database of code values. If our work up to this point had been correct, we were able to successfully match the string of bars and spaces from the image to the database. We then output this value to the Matlab command window, for verification against the human readable code also printed on the containers. 
Results
We began testing with the 9 pictures shown. The first and third images produced the best results, leading to the conclusion that, given a lighting environ-ment which contains mostly ambient light - that is, no harsh point sources that reflect off the container - and assuming the camera is zoomed in far enough to give us the resolution necessary to interpret the bars and spaces, we can reliably read the barcodes. Following are the pictures we worked on, and a statement of how well our code works on each image. Successful reading means our algorithm output the proper string, and fails means it never made it to the decoding step. We did not have any false readings.
[image: image4.jpg]A




#1: Read successfully.
[image: image5.jpg]



#2: Does not threshold well; also not zoomed in far enough for reliable reading.
[image: image6.jpg]= W

—= TUTTneR e o





#3. Fails



[image: image7.jpg]



#4. Yields best results in test.
[image: image8.jpg]



#5. Read successfully.

[image: image9.jpg]R





#6. Also read successfully.



[image: image10.jpg]WO T





#7. Fails, due both to “tilt” relative to camera, and to harsh lighting conditions.

[image: image11.jpg]



#8. Fails, again due to poor lighting.

[image: image12.jpg]



#9. Fails.



Conclusion
Given our goal - to produce a soft-ware framework that would allow us to test the performance of a simple program in a variety of environmental conditions - we feel that our results are reasonable and significant. Given further develop-ment, we are confident that we could write code robust enough to successfully read several of the images which we could not read with this implementation. Namely, we would try to implement better PCA which would allow us to recognize barcodes that are oriented at an angle to the horizontal scan lines. Recog-nizing these skew angles would greatly improve the robustness of the code, since several of the reading attempts failed because the barcode was not quite oriented horizontally. Also, another useful feature to add would be back-ground subtraction, which would help to eliminate the regions around the can, and make the jobs of thresholding and segm-entation easier. However, we believe the approach we have demonstrated will serve as adequate preliminary research, hopefully leading to better solutions of this problem in the future.

Sources consulted:

L. Smith. A tutorial on Principal Component Analysis. On the web at www.cs.otago.ac.nz/cosc453/ student_tutorials/principal_components.pdf.
T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham. Active Shape Models – Their Training and Application. In Computer Vision and Image Understanding, Vol. 61, No. 1, January, pp. 38-59, 1995.
References:

¹ See the following sites for examples:

http://www.bardecode.com/
http://www.inliteresearch.com/homepage/products/barcode_pro.html
http://www.leadtools.com/SDK/Document/Document-Addon-Barcode.htm
² N. Bonnet, J. Cutrona, and M. Herbin. A ‘no-threshold’ histogram-based image segmentation method. In Pattern Recognition, Vol. 35 (2002), Pages 2319 to 2322. On the web at: http://www.univ-reims.fr/Labos/INSERM514/download_equ3/PR_2002b.pdf 

