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Abstract

Accurate tracking of an object in a video sequence undergoing dynamic motion can be a challenging task from a non-moving platform.  When the object to be tracked and the tracking platform are moving it becomes more difficult to successfully track the object.   Background clutter, lighting variations and human operation of the camera can increase the tracking problem difficulty to the point where little usable video may be obtained.  The objective of this project is to examine the use of an intensity gradient tracker in combination with a particle filter to achieve accurate tracking of an aerial target from a moving platform in an existing video sequence.  A secondary goal of this project is to evaluate possibility of using this technique in a real-time system to control a camera to autonomously track the object without human interaction.   The results of the application of an intensity gradient and particle filter tracking approach are presented and analyzed.
1. Introduction
It is desirable to track aerial targets with video cameras in order to evaluate their aerodynamic qualities.  Accurate tracking can be difficult to achieve when the target being tracked and platform tracking the object are experiencing dynamic motion.  Other factors that complicate the tracking problem are background clutter in the scene, lighting variations and human camera operators.  It is not always possible to track the object from a second aircraft with a human camera operator due to safety or other concerns.  The objective of this project is to examine the possibility of using an image gradient tracker in conjunction with a particle filter to achieve accurate tracking of an aerial target in a video sequence.  The video sequence being examined here was taken from a second aircraft by a human operator.  The results of the proposed tracking technique will be used to draw some conclusions as to the feasibility of using the technique in a real-time tracking system. 
The object to be tracked is modeled as a rigid two dimensional making it possible to use an intensity gradient tracker.  Tracking objects modeled as rigid two dimensional objects has been successfully demonstrated in real-time systems [2].  An algorithm using the intensity gradient and modeling the head as an ellipse has been used to track people through a video sequence [2].    The simple model, straightforward implementation and real-time results achieved with the gradient tracker were the reasons it was selected for the aerial tracking problem posed in this paper.  The intensity gradient tracker does have some drawbacks.  In order for it to execute quickly enough for real-time applications a local search of the intensity gradient is performed.  Dynamic motion can cause the tracker to lose track of the object if it moves out of the search area.  As a result a constant velocity motion model has been used to provide a more reliable tracking [2].  Rather than use the motion model described in [2] a particle filter approach is proposed to predict the state of the object being tracked.  The particle filter is able to track dynamic or agile motion because it applies dynamic models with observations to propagate a random set through time [5].  The particle filtering or Condensation algorithm has demonstrated the ability to track objects experiencing dynamic motion in cluttered environments in near real-time [5].  The video sequence examined in this project the object being tracked experiences dynamic motion due to the object itself and movement of the camera platform. There is very little clutter in the video to confuse the tracker.   
2. Method
The first image of the video sequence is searched globally for the location that maximizes the intensity gradient for the model of the object to be tracked.  The initial location and size of the object in the first image is used to initialize a local intensity gradient search of the second image.  A particle filter algorithm is implemented to estimate the state of the tracked object based on the measurement of the intensity gradient.  The state estimated by the particle filter is used to update the local gradient search in the next image. Subsequent frames of the video are searched by the intensity gradient tracker based on the probabilistic model estimated by the particle filter until all of the frames of the video sequence have been tracked [3].   
2.1 Intensity Gradient
The intensity gradient tracker uses a 2D rectangle with a fixed aspect ratio to model the object to be tracked [2]. The rectangle’s state is characterized by three parameters s = (x, y, k), where (x,y) represent the center of the rectangle and k the length of the rectangle.  A fixed ratio is used to determine the size of the rectangle [2].  The tracker performs a search of the image that maximizes the normalized sum of the gradient magnitude around the rectangle:

[image: image1.wmf]þ

ý

ü

î

í

ì

=

å

=

Î

N

i

i

S

s

g

N

s

1

1

max

arg

 

(1)
gi is the gradient at pixel i in the perimeter and N is the total number of pixels in the rectangle [2].  Both the global and local search intensity gradient calculations use the summation of equation (1) to construct a gradient map of the image and locate the (x,y) track point.  
The global intensity gradient searches for the initial position and for the k value that maximizes the normalized sum of the intensity gradient over the image.  The implementation used here assumes that the border region will not contain the object to be tracked.  The assumption was made to simplify the code for testing but would not be made in a practical system.
The local intensity gradient search is based on the state estimated by the particle filter.  A window of the image around the estimated (x,y) position is searched for the sum that maximizes the normalized sum of the gradient.  The k value estimated by the particle filter is used to determine the size of the rectangle the search will use to model the object.  Searching a window of the image based on the state estimated by the particle filter reduces the computation time of the local intensity gradient from that of the global search.  

2.2 Particle Filter
Particle filters are a simulation method for Bayesian estimation [4].  A simple particle filter consists of three steps, initialization, importance sampling and resampling.  The initialization step provides an estimate of the posterior pdf based on a random sampling of the data.  The posterior pdf is represented by a set of particles and corresponding weights.  The posterior pdf is used to estimate the state xt of the set of particles [4] given by: 
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The state estimation is obtained using minimum mean-square error criteria which is a weighted average of the particles [4]. The importance sampling calculates the weights and normalizes them for each of the particles.  The resampling step generates a new set of particles [4].
The Condensation Algorithm is the implementation of particle filtering applied to the tracking problem examined in this project.  The Condensation algorithm does not require an explicit representation of the density function [6].  Rather a set of samples from the image, p(xt|zt),  is taken for each image [6].  Each sample consists of a value for st , a sample of xt and πt, the sampling probability.  The psudeo code for the algorithm is provided in Figure 1.  The Condensation randomly samples the probability distributions resulting in a better representation of the underlying statistical distributions [6].  Application of the Condensation algorithm requires the establishment of probability densities for the dynamics of the object and the measurement process [6].  The stochastic dynamics of the motion are modeled as:
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The state at t+1 is composed of the last estimated state xt, wt zero-mean Gaussian random noise and at, the average motion over the video sequence.  The measurement model is a stochastic differential equation re -expressed as a temporal Markov chain [6].
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A represents the deterministic component of the model and B a scaling factor [6].  A is used to weight the importance of a specific state parameter [6]. 
3. Experimental Results
The algorithm described above was implemented in MATLAB and applied to 230 frames of a video sequence. The video contained the object to be tracked on an uncluttered background; in some of the frames the aft section of another aircraft can be seen. A sampling of output images generated by the tracker is provided to demonstrate its performance.  The images presented were generated with N = 200 particles, no additional weighting of the model dynamics (A = [1 1 1]) and a scaling factor of 10 (B parameter) as described in equation (4). The effect of the number of particles on the quality of the track was investigated.  The tracking of the object improved as the number of particles was increased but at the cost of computation time. Figure 2 provides a plot of the processing time for each frame to be for N = 200, 400 and 600. The computation time of the initial gradient search took an average of 12.7s and as expected was not effected by the number of particles.
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Figure 2.  Tracking Algorithm Execution Time, N = 200 (Green), 400 (Red) and 600 (Blue) Particles.

The tracker demonstrated the ability to maintain track when the object was tilted and scaled.  The rectangular model assumes horizontal orientation.  Figure 3 shows the tilting the object in the video experiences.  The tracking algorithm is able to scale the size of the tracking rectangle and maintain track of the object.  The video sequence is scaled by approximately 20x.  The camera zoom was changed by the operator and the distances between the tracking platform and object changed as they move.  The particle filter provides the update estimates for the scaling factor k.
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Figure 3.  Track of the object in the presence of tilting.  The red box is a visual representation of the estimate state.  The green ‘+’ is the estimated (x,y) position, the red box represents the estimated k.
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Figure 4. Global Intensity Search used to initialize local gradient search and particle filter. Tracker Initialization point is show in red.

Figure 4 shows the results of the global search of the intensity gradient for the best fit of the object model in the image.  The red point in the image is the maximum of the normalized sum of the intensity gradient model and is used to initialize the local search.   It takes a few frames for the average motion vector that is used by the particle figure to stabilize so initially the track point jumps around but it is not lost.  During some frames the track point lags the actual position of the tracked object but is able to recover.  Figure 5 shows the output of the tracker in image 186 of 230. The result of the local intensity gradient search for image 186 is shown in Figure 6.  The track is maintained until the end of the video sequence.  The tracked path of the object is show in Figure 7. 
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Figure 5. Tracked position of Image 186
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Figure 6. Local Intensity Gradient Measured in image 186.  Used to estimate the state of the next frame.
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Figure 7. Path Object Tracked through Video Sequence.  Arrows represent the motion vectors and dots the estimated position.
4. Future Work

The results obtained in this project indicate that a local intensity gradient search updated with a state estimated by particle filtering is a reasonable technique for tracking an object experiencing dynamic motion.  Before it can be determined if this method can be the basis for an autonomous, real-time tracking system some additional testing and optimization are needed.  
A single sequence of video was used to develop and test the tracking method presented here. Other sequences of video would provide an indication of the widespread applicability of this tracking technique.  Future work should include an evaluation of the trackers ability to maintain track in the presence of a cluttered background and occlusions.  Reacquisition of the tracked object without global re-initialization is a desired characteristic that should be investigated.  The code for this project was implemented in MATLAB.  Achieving real-time performance would likely require that the code be rewritten in a compiled programming language.  The tracking method implemented uses a simple linear interpolation model.  Improving the motion model might improve the estimation of the mean tracking state and lead to overall improved performance.  A fixed window was used by the local gradient search.  Performance may improve if a smaller window could be used without degrading tracking.  The global intensity gradient searched initializes the local search and could be refined so that it can more quickly identify the location of the initial track point.  The current implementation uses a brute force search over a majority of the pixels and a range of ten k values.  The volume of the search could be refined to reduce the initialization time.
5. Conclusions

The objective of this paper has been to present a tracking technique based on intensity gradients and particle filtering.  The preliminary results indicate that this method could potentially be used in a real-time tracking system. The results of the intensity gradient tracker in this application show the same immunity to scaling and tilting that have been show in other applications of the gradient tracker [2]. The computational load does not seem to be a prohibitive factor.  The tracker itself is able to maintain the tracking of an object undergoing dynamic motion.  Further study is needed before a final determination can be made.  This project has been very interesting and challenging. 
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Iterate


At time-step t+1, construct the n���th of N samples as follows:


Generate a random number� EMBED Equation.3  ���, uniformly distributed.


Find, by binary subdivision on m, the smallest m for which � EMBED Equation.3  ���.


Draw a random variate � EMBED Equation.3  ��� from the density � EMBED Equation.3  ���, assumed Gaussian so direct sampling is possible.


Store samples n = 1,…,N as � EMBED Equation.3  ��� where


� EMBED Equation.3  ���





and then normalize by dividing all cumulative probabilities � EMBED Equation.3  ���, i.e. so that � EMBED Equation.3  ���.





If required, mean properties can be estimated at any time t as 


� EMBED Equation.3  ���


For, example, if the mean configuration � EMBED Equation.3  ���, is required for graphical display, the above rule is used with � EMBED Equation.3  ���








.


 	





			








Figure 1.  The Condensation Algorithm
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