
An Implementation of Camera Calibration Algorithms

Meredith Drennan

Department of Electrical and Computer Engineering

Clemson University

Abstract

Camera calibration is an important

preprocessing step in computer vision

applications. This paper seeks to provide an

introduction to camera calibration procedures.

It also discusses an implementation of

automating point correspondences in known

planar objects. Finally, results of a new

implementation of Zhang’s calibration

procedure are compared to other open source

implementation results.

1. Introduction

Computer vision is inherently plagued by the

loss of dimensionality incurred when capturing a

3D photo in a 2D image. Camera calibration is

an important step towards recovering three-

dimensional information from a planar image.

Over the past twenty years several algorithms

have proposed solutions to the problem of

calibration. Among the most popular are Roger

Tsai’s algorithm [5], Direct Linear

Transformation (DLT), and Zhang’s

algorithm[6]. The focus of this paper is on

Zhang’s algorithm because it is the basis behind

popular open source implementations of camera

calibration i.e. Intel’s Open CV and Matlab’s

calibration toolkit [1].

2. Methods

Calibration relates known points in the world to

points in an image, in order to do so one must

first acquire a series of known world points. The

most common method is to use known planar

objects at different orientations with respect to

the camera to develop an independent series of

data points. The calibration object chosen in this

implementation is a 6x6 checkerboard with the

corner points as the known world points. Most

corner detector algorithms for camera calibration

use edge detection to find the structure of the

checkerboard, fit lines to the data points and

compute the intersection of the lines in order to

find the corners. This technique can be very

accurate, providing in some cases accuracy of

better than one tenth of a pixel but requires

complicated line fitting algorithms. The

implementation used here is based on feature

detection by pinpointing windows with high

variances in the X and Y directions. The points

corresponding to the 36 highest variances (6x6

checkerboard implies 36 corners) are then

chosen as the corner points. A simple image

masking technique is used to ensure that no

corner is detected twice. This is a much simpler

implementation but experimental results show

that accuracy is lost (see results section).

The corners may be transformed into world

points by assuming an origin at the top left

corner of the checkerboard and then imposing

the constant distance of each square between

neighboring corners.

Once a series of world points have been

developed the homography matrix must be

computed. This matrix becomes essentially a

3x3 matrix relating world points to image points.

The homography (H) can then be processed into

intrinsic parameter (A), rotation, and translation

matrices. We may assume that Z = 0 without

loss of generality because a planar object is used

to perform the calibration [6].

The steps to compute the homography and

intrinsic parameter matrices are as follows:

sm = HM (1)

Where m = [u, v, 1]
T
 in the image plane

coordinates and M = [x, y, 1]
T
 in the model

plane coordinates. From equation 1, the

homography may be determined to within a

scale factor (s).

Computing the homography matrix takes the

following form (from [2]):

 [x1, y1, 1, 0, 0, 0, -u1x1, -u1y1, -u1,

 0, 0, 0, x1, y1, 1, -v1x1, -v1y1, -v1

 (2)

 xn, yn, 1, 0, 0, 0, -unxn, -unyn, -un,

 0, 0, 0, xn, yn, 1, -vnxn, -vnyn, -vn]h’ = 0

Where h’ is a 9x1 column vector to be reshaped

into the 3x3 homography H. By stacking this

equation for n points in an image, the over-

determined system can be solved using the eigen

vector associated with the second smallest eigen

value found via the SVD.

Note that equation 2 introduced a matrix whose

elements have various units, some of pixels,

some meters, and some pixels*meters. It is

important to normalize this matrix in order to

achieve more stable results in the output.

The following normalization matrix is used [4]

 (3)

where w and h are the image width and height

respectively.

Once H has been calculated the value of matrix

B is estimated

B = (4)

B is a symmetric 3x3 matrix

Let b = [B11 B12 B22 B13 B23 B33] (5)

and

 Vij = [hihji, hi1hj2+hi2hj1, hi2hj2, hi3hj1+hi1hj3,

 hi3hj2+hi2hj3, hi3hj3] (6)

G = (7)

then

Gb = 0 (8)

By using the homography elements hij to form

the rows of G we can begin to solve for the

elements of B. Note that by using several (3 or

greater) different views of the planar object we

will have an over-determined system and the

same method as mentioned previously using the

SVD can be utilized to solve this system of

equations.

Once the elements of B are known, they can be

related to the intrinsic matrix elements via the

following equations

v0 = (B12B13 – B11B23)/(B11B22-B12
2
) (9)

λ = B33-[B13
2
+v0(B12B13-B11B23)]/B11 (10)

α =sqrt(λ/B11) (11)

β = sqrt(λ/B11) (12)

γ = -B12 α
2
 β/ λ (13)

u0 = γv0/ β-B13α
2
/ λ (14)

γ represents the skew of the pixels and is almost

always 0, therefore this parameter is set equal to

zero by assuming B12 = 0 [6].

A’ = (15)

The intrinsic matrix, A can then be found by

denormalizing A’

A = N
-1

A’ (16)

For more information on the preceding

algorithms see [3], [4], [6]. Further calculations

can be done to find the rotation and translation

matrices corresponding to each image and the

first and second order distortion coefficients as

described in [6].

3. Results

Code has been written in C++ in order to test the

accuracy of the algorithms for feature detection

and Zhang’s method discussed previously. As a

baseline, the same camera (Dynex DX-WEB1C

webcam) was also calibrated using two common

open source implementations of Zhang’s

calibration; Matlab’s toolkit available on the

web [2], and Intel’s Open CV implementation.

The number of input images to all three

calibration tools has been kept constant at three.

Using Blepo’s demo implementation of the

Open CV code requires a nine square by six

checkerboard input while both Matlab and the

author’s version received the same 6x6

checkerboard images, therefore roughly the

same data was fed to all three versions.

A. Corner Detection

Using a standard feature detection algorithm

which searches for areas of high variances in X

and Y directions, accuracy can be obtained at an

average of within 2.2 pixels with a standard

deviation of 1.4. While this is clearly not as

accurate as calibration tools which use line

fitting techniques, the prime advantage of this

method of corner detection is simplicity.

Figure 1 Checkerboard Variances and Corners

Figure 1 shows an output of the feature detection

on a standard checkerboard. Lines in gray mark

areas of high variance in the X direction, and

lines in white indicate areas of high variance in

the Y direction. The points in blue mark the

possible corners.

 A standard sort algorithm finds the areas of

highest variance. Two techniques are used to

ensure that a corner is not detected twice, first

the image is fed to a Canny edge detector in

order to reduce the number of possible corners.

Then an image mask ensures that no other point

within 15 pixels is marked as a corner.

Figure 2 Corners Found

B. Calibration Algorithm

Once the corners have been detected, the

calibration algorithm performs a series of steps

as indicated in the methods section. The output

of the calibration is an intrinsic parameter matrix

(A) whose elements are described below and

compared to Matlab and Open CV results.

Figure 1 Principle Point

Figure 1 shows the observed principle point

according to each implementation. All shown

estimations are reasonable as the expected

principle point would be at the center. For

reference purposes a pink square is drawn at the

center of the image.

The matrix A also contains values of α and β,

where α/ β is the ratio of pixel width to height

and is equal to 1 for most standard cameras. For

the given camera this ratio averages at .9998 in

Open CV, and .9919 in Matlab, whereas the

mean ratio of the author’s implementation

equals 1.53. While this parameter provides a

large drawback to the use of this software as a

calibration tool, it is important to note that both

Matlab and Open CV perform optimization after

the initial calculations based on Zhang’s method

which use apriori knowledge of typical camera

values such as α/ β ~1, [1] therefore future work

can provide much better results.

Implementation α/β

Open CV 0.9998

Matlab 0.9919

Author’s Version 1.536

Figure 2 Aspect Ratio Comparison

One advantage to the use of the software

developed by the author and described

throughout this paper over other open source

calibration tools is the capability of displaying

not only the intrinsic matrix A, but also rotation,

translation, and homography matrices for each

image as well as focal length. This may not be

important to a casual user, but it has the

potential to help guide those who are developing

their own calibration software.

Disclaimer: the focal length, rotation, and

translation matrices are not calculated using

Zhang’s method but are the result of an

incomplete implementation of Tsai’s algorithm

the author developed prior to implementing

Zhang’s algorithm. See [5] for more detail.

4. Conclusions

This paper describes a novel implementation of

Zhengyou Zhang’s calibration algorithm with

automatic feature detection to find the corners of

the calibration object. The accuracy of which is

reasonable although not as impressive as the

currently available open source software. Future

work can be done to improve this by

implementing optimization algorithms such as

gradient descent or Levenberg-Marquardt. One

advantage to the author’s calibration

implementation as described throughout this

paper is its ability to display intermediate

matrices for guidance to those users who are

developing their own calibration software.

5. References

[1] Bouguet, Jean-Yves, (2008) Camera Calibration

Toolbox for Matlab
http://www.vision.caltech.edu/bouguetj/calib_doc/

[2] Boyle, Roger, Vaclav Hlavac, and Milan Sonka (1999)

 Image Processing, Analysis, and Machine Vision Second

Edition. PWS Publishing.

[3] Hanning, Tobais and Rene Schone (2007) Additional

Constraints for Zhang's Closed Form Solution of the

Camera Calibration Problem. University of Passau

Technical Report.

http://www.fim.uni-

passau.de/fileadmin/files/forschung/mip-berichte/MIP-

0709.pdf

[4] Teixeira,Lucas Marcello Gattass, and Manuel

Fernandez. Zhang's Calibration: Step by Step

http://www.tecgraf.puc-

rio.br/~mgattass/calibration/zhang_latex/zhang.pdf

[5] Tsai, Roger Y (1987) A Versatile Camera Calibration

Technique for High Accuracy 3D Machine Vision

Metrology Using Off the Shelf Cameras and Lenses

IEEE Journal of Robotics and Automation Vol. RA-3 No 4

pp.323-346

http://www.vision.caltech.edu/bouguetj/calib_doc/papers/T

sai.pdf

[6] Zhang,Zhengyou. (1999) A Flexible New Technique for

Camera Calibration. Microsoft Research Technical Report

