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ABSTRACT

We present an approach to visual tracking based on dividing a
target into multiple regions, or fragments. The target is repre-
sented by a Gaussian mixture model in a joint feature-spatial
space, with each ellipsoid corresponding to a different frag-
ment. The fragments are automatically adapted to the image
data, being selected by an efficient region-growing procedure
and updated according to a weighted average of the past and
present image statistics. Modeling of target and background
are performed in a Chan-Vese manner, using the framework
of level sets to preserve accurate boundaries of the target.
The extracted target boundaries are used to learn the dynamic
shape of the target over time, enabling tracking to continue
under partial and total occlusion. Experimental results ona
number of challenging sequences demonstrate the effective-
ness of the technique.

1. INTRODUCTION

Recent interest in visual tracking has centered around on-line
learning of multiple cues to adaptively select the most dis-
criminative ones. With this focus, significant progress has
been achieved by algorithms such as those of Avidan [2], and
Collins et al [6]. In these approaches, tracking is formulated
as a classification problem in which the probability of each
pixel belonging to the target is computed. While the results
have been impressive, several limitations remain:

• Although the tracker locks onto the most discriminative
cue, it ignores important but secondary cues. This is be-
cause the distribution is modeled as unimodal. For ex-
ample, the model may capture the skin of a person’s face,
but not the hair.

• These algorithms produce a strength image indicating
the probability of each pixel belonging to the object be-
ing tracked, but they provide no mechanism for deter-
mining the shape of the object. And without a multi-
modal distribution, the strength image does not make
this possible.

• Occlusion of the target can cause the learner to adapt to
occluding surfaces, thus causing the model to drift from
the target. If the occlusion is long enough, this can lead

to tracking failure. An explicit representation of the con-
tour would enable such errors to be prevented.

• Spatial information that captures the joint probability of
pixels is often ignored. This leads to an impoverished
tracker that is not able to take advantage of the wealth of
information available in the spatial arrangement of the
pixels in the target.

In this paper we present a technique that overcomes these
limitations. Like Adam et al [1], we split the target into a
number of fragments to preserve the spatial relationships of
the pixels. Unlike their work, however, our fragments are
adaptively chosen according to the image data, by cluster-
ing pixels with similar appearance, rather than using a fixed
arrangement of rectangles. This adaptive fragmentation cap-
tures all the secondary cues and also ensures that each frag-
ment captures a single mode of the distribution. We classify
individual pixels, as in [2, 6], but by incorporating multiple
fragments we are better able to preserve the shape of multi-
modal targets. The boundary is represented by a level set
using a Chan-Vese [5] model that enables level set tracking
to be formulated in a Bayesian manner and leads to more
stable convergence of the algorithm. To address the prob-
lem of drastically moving targets with untextured regions,the
recently proposed approach of [3] is employed to impose a
global smoothness term in order to produce accurate sparse
motion flow vectors for each fragment. The fragment mod-
els are updated automatically using the estimated contour and
the image data, and the previous shapes are used to track the
object through partial and total occlusion.

2. APPROACH

To represent the target being tracked, we use the formulation
of level sets due to their numerical stability and their ability
to accurately represent a generic contour [9, 4]. Let Γ(s) =
[x(s) y(s) ]T , s ∈ [0, 1], be a closed curve inR2, and define
an implicit functionφ(x, y) such that the zeroth level set ofφ
is Γ, i.e.,φ(x, y) = 0 if and only if Γ(s) = [x, y]T for some
s ∈ [0, 1]. Let R− be the region inside the curve (where
φ > 0) andR+ the region outside the curve (whereφ < 0).

Our goal is to estimate the contour from a sequence of im-
ages. LetIt : x → R

m be the image at timet that maps a



pixel x = [x y ]
T

∈ R
2 to a value, where the value is a

scalar in the case of a grayscale image (m = 1) or a three-
element vector for an RGB image (m = 3). The value could
also be a larger vector resulting from applying a bank of tex-
ture filters to the neighborhood surrounding the pixel, or some
combination of these raw and/or preprocessed quantities. We
use Bayes’ rule and an assumption that the measurements are
independent of each other and of the dynamical process to
model the probability of the contourΓ at timet given the pre-
vious contoursΓ0:t−1 and all the measurementsI0:t of the
causal system as

p(Γt|I0:t,Γ0:t−1) ∝ p(I+
t |Γt)

︸ ︷︷ ︸

target

p(I−t |Γt)
︸ ︷︷ ︸

background

p(Γt|Γ0:t−1)
︸ ︷︷ ︸

shape

,

(1)
whereI+

t = {ξI(x) : x ∈ R+} captures the pixels inside
Γt, I−t = {ξI(x) : x ∈ R−} captures the pixels outsideΓt,
andξI(x) = [ xT I(x)T ]

T is a vector containing the pixel
coordinates coupled with their image measurements.

2.1. Fragment modeling

Assuming conditional independence among the pixels, the
joint probability of the pixels in a region is given by

p(I?
t |Γt) =

∏

x∈R?

p?(ξI(x)|Γt), (2)

where? ∈ {−,+}. One way to represent the probability of
a pixelξI(x) is to measure its signed distance to a separating
hyperplane inRn, wheren = m + 2, as in [2, 6], or using a
single covariance matrix, as in [10]. A slightly more general
approach would be to measure its Mahalanobis distance to a
pair of Gaussian ellipsoids representing the target and back-
ground. None of these approaches, however, is able to capture
the subtle complexities of multi-modal regions. As a result,
we instead represent both the target and background appear-
ance using a set offragments in the joint feature-spatial space,
where each fragment is a separate Gaussian ellipsoid. Letting
y = ξI(x) for brevity, the likelihood of an individual pixel is
then given by a Gaussian mixture model (GMM):

p?(y|Γt) =

k?∑

j=1

πjp?(y|Γt, j), (3)

where πj = p(j|Γt) is the probability that the pixel was
drawn from thejth fragment,k? is the number of fragments
in the target or background,

∑k?

j=1 πj = 1, and

p?(y|Γt, j) = η exp

{

−
1

2
(y − µ?

j )
T

(
Σ?

j

)−1
(y − µ?

j )

}

,

(4)
whereµ?

j ∈ R
n is the mean andΣ?

j the n × n covariance
matrix of thejth fragment in the target or background model
(depending upon?), andη is the Gaussian normalization con-
stant.

· · ·
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Fig. 1. (a) Probabilities determined by individual fragments
are combined to compute (b) our strength image. For compar-
ison, the strength image computed using (c) a single Gaussian
[10] and (d) a linear separation over a linear combination of
multiple color spaces [6] are also shown. Our fragment-based
GMM representation more effectively represents the multi-
colored target.

2.2. Computing the strength image

We follow the recent approach of formulating the object
tracking problem as one of binary classification between tar-
get and background pixels [2]. In this approach, a strength
image is produced indicating the probability of each pixel be-
longing to the target being tracked. The strength image is
computed using the log ratio of the probabilities:

S(x) = log

(
p+(x)

p−(x)

)

= Ψ−(x) − Ψ+(x), (5)

whereΨ?(x) = − log p?(x). Positive values in the strength
image indicate pixels that are more likely to belong to the tar-
get than to the background, and vice versa for negative values.
An example strength image is shown in Figure1, illustrating
the improvement compared with [10] and [6]. The strength
image is used to update the implicit function, which enables
the level set machinery to enforce smoothness on the resulting
object shape.

2.3. Segmentation

Our fragment-based representation of the target is sim-
ilar to that of Adam et al [1] but with two signif-
icant differences. First, we use fragments to model
the background as well as the target, and secondly,
our fragments are automatically determined and adapted
by the image data rather than being fixed and hard-
coded. The challenge is to compute the model parame-
ters µ+

1 , . . . , µ+
k+

,Σ+
1 , . . . ,Σ+

k+
, µ−

1 , . . . , µ−

k
−

,Σ−

1 , . . . ,Σ−

k
−

from the current contourΓt. This is essentially a problem
of segmentation. We tried the graph-based algorithm of [8]
but found it to unacceptably merge regions with distinct col-
ors. We also experimented with mean-shift segmentation [7],
but it was not only too slow for a tracking application but it
also tended to oversegment the image.



Instead, we implemented a region-growing algorithm. Ini-
tially a pixel in the image is selected at random, and a sin-
gle fragment is created to hold the pixel. Neighboring pix-
els are added to the segment if they are withinτ standard
deviations of the Gaussian model of the fragment, with an
appropriate relaxing of the threshold for small regions that
do not yet have enough pixels for their model to be reliable.
The meanµ?

j and covarianceΣ?
j are updated efficiently us-

ing a running accumulation of first- and second-order statis-
tics. Once the fragment has finished growing, a new pixel is
selected at random, and the procedure is repeated for a new
fragment. This process continues until all pixels have been
added to a fragment, at which point small fragments are dis-
carded and the remaining fragments are labeled as target or
background depending upon whether the majority of pixels
are within or without a manually drawn initial contourΓ0,
respectively. Any fragment for which the pixels are roughly
evenly distributed is split alongΓ0 to form two fragments, one
labeled foreground and the other labeled background. Finally,
we chooseπj based on the size of the fragments.

(a) (b)

Fig. 2. (a) Image of Elmo. (b) Foreground regions. Out-
put of competing algorithms (c) Graph-based segmentation
[8] accidentally merges regions with distinct colors and (d)
Mean-shift segmentation [7], even with a large scale parame-
ter, oversegments the image.

2.4. Level set formulation

Maximizing the probability of (1) is equivalent to minimizing
the following energy functional over the level set function[5]:

E(φ) =

∫

R+

Ψ+(x)dx +

∫

R−

Ψ−(x)dx + µ`(Γ), (6)

whereµ is a scalar that weights the relative importance of the
shape term, which is assumed for the moment to consist only
in measuring̀ (Γ), the length of the curve. At this point we

introduce the regularized Heaviside functionH(z) = 1
1+e−z

as a differentiable threshold operator to rewrite the aboveas

E(φ) =

∫

Ω

H(φ)Ψ+(x)+(1−H(φ))Ψ−(x)+µ|∇H(φ)|dx,

(7)
where`(Γ) =

∫

Ω
|∇H(φ)|dx, andΩ = R+∪R− is the image

domain. WithE =
∫

Ω
F (x, y, φ, φx, φy)dx, the associated

Euler-Lagrange equation is given by

0 =
∂F

∂φ
−

∂

∂x

[
∂E

∂φx

]

−
∂

∂y

[
∂E

∂φy

]

= h(φ)

(

Ψ+(x) − Ψ−(x) − µdiv

(
∇φ

|∇φ|

))

,

whereφx = ∂φ/∂x, φy = ∂φ/∂y, h(φ) = ∂H/∂φ, and
∇φ = [φx φy ]

T is the gradient ofφ. To avoid the difficulty
of solving this PDE explicitly forφ, we instead take the value
on the left-hand side as an indication of the error, and apply
gradient descent iterations [5] with

φ(k+1) = φ(k)+|∇φ|

(

Ψ−(x) − Ψ+(x) + µdiv

(
∇φ

|∇φ|

))

,

(8)
wherek is the iteration number, div is the divergence operator,
and we have used the approximationh(φ) ≈ |∇φ|, which
is accurate as long as the level set function is smooth away
from the boundary. The sign in the equation comes from the
convention thatφ > 0 inside the boundary.

Note that unlike the traditional level set formulation, ours
is not based upon intensity edges. Rather, we have adopted
the Chan-Vese approach [5] of modeling the foreground and
background regions explicitly. This approach results in a
large basin of attraction, so that the iterations above willcon-
verge to the target from a wide variety of initial curves, with-
out being significantly distracted by local noise in the data.
Since the curve evolution is not required to be monotonic, the
initial curve may be inside the target, outside the target, or
some combination of the two.

2.5. Fragment motion

While the minimization above is not extremely sensitive to
the initial contour, nevertheless it is beneficial for the coor-
dinate systems of the target and the model fragments to be
approximately aligned. Such alignment increases the accu-
racy of the strength image, due to the use of spatial informa-
tion in the joint spatial-feature vectors. As a result we seek to
recover,prior to computing the strength image, approximate
motion vectors between the previous and current image frame
for each fragment:u?

i = (u?
i , v

?
i ), i = 1, . . . , k?.

To find the motion vectors, we utilize the recent joint fea-
ture tracking approach [3] to track feature points. Once the
feature points have been tracked, the motion vector of each
fragment is computed by averaging the motions of the fea-
tures within the fragment. Note that there is little risk to this



averaging, since outliers are avoided by the smoothness term
incorporated by the joint Lucas-Kanade approach, which en-
ables features to be tracked even in untextured areas, as shown
in [3]. Feature selection is determined by those image loca-
tions for whichmax(emin, ηemax), whereemin andemax are
the two eigenvalues of the2 × 2 gradient covariance matrix,
andη < 1 is a scaling factor.

3. EXPERIMENTAL RESULTS

The algorithm was tested on a number of challenging se-
quences captured by a moving camera viewing complex
scenery. Most of the sequences presented here are chosen so
that the tracker can be evaluated for objects undergoing sig-
nificant scale changes, extreme shape deformation, and un-
predictable motion. Some of these sequences were obtained
from Internet sources, with high compression, to demonstrate
the performance of the algorithm even in poor quality videos.
Figure3 shows the results of the algorithm on a sequence of
a Tickle Me Elmo doll and a monkey sequence. In the mon-
key sequence, as the monkey swings around the tree, it un-
dergoes a drastic shape change in just a few image frames.
Yet the algorithm is able to remain locked onto the target,
as well as compute an accurate outline of the animal. For
comparison, we have also presented the output of FragTrack
[1], which, even with its search range set to the maximum al-
lowable value, loses the target around frame 150 and never
recovers.

Additional results involving occlusion are displayed in Fig-
ure 4. In our approach, the shape of the object contour is
learned over time by retaining the output of the tracker in each
image frame. To detect occlusion, the rate of decrease in the
object size is determined over the previous few frames. Once
the object is determined to be occluded, a search is performed
in the learned database to find the contour that most closely
matches the one just prior to the occlusion using a Hausdorff
distance. Then as long as the target is not visible, the subse-
quent sequence of contours occurring after the match is used
to hallucinate the contour. Once the target reappears, tracking
resumes. This approach prevents tracker failure during com-
plete occlusion and predicts accurate contours when the mo-
tion is periodic. The first row in the figure shows a sequence
where the person is completely occluded by a tree. Our ap-
proach predicts both the shape and the location of the object
and displays the contour accordingly. The second row shows
a more complex scenario where a girl, moving quickly in a
circular path (a complete revolution occurs in just 35 frames),
is occluded frequently by a boy. The third row shows the re-
sults of tracking multiple fish in a tank. The fish are multicol-
ored and swim in front of a complex, textured, multicolored
background. The final row shows one of the applications of
tracking objects with contours - object recognition. Here we
use the shape information obtained from the object contour
to recognize the objects being tracked by matching them with

a database which consists of shape information of different
objects.

4. CONCLUSION

We have presented a tracking algorithm based upon model-
ing the foreground and background regions with a mixture of
Gaussians. The GMMs are used to compute a strength image
indicating the probability of any given pixel belonging to the
foreground. This strength image is embedded into a level set
tracking framework in which the target location is estimated
by updating a level set function. Extensive experimental re-
sults show that the resulting algorithm is able to compute ac-
curate boundaries of multi-colored objects undergoing drastic
shape changes, unpredictable motions, and complete occlu-
sion on complex backgrounds. Future work will involve uti-
lizing the extracted shapes to learn more robust priors, and
automating the initialization.
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frame 000 frame 225 frame 255 frame 295 frame 340

frame 001 frame 094 frame 106 frame 206 frame 213

Fig. 3. Results of our algorithm on Elmo sequence (top) and Monkey sequence (middle). Results of FragTrack [1] (bottom) on
the Monkey sequence.

frame 007 frame 059 frame 123 frame 137 frame 184

frame 084 frame 089 frame 092 frame 095 frame 114

frame 017 frame 045 frame 090 frame 427 frame 505

frame 001 frame 075 frame 165 frame 212 frame 247

Fig. 4. Results of our algorithm on two sequences in which the target is occluded, showing the hallucinated contour in frames
137 (top) and 092 (second row). The third row shows a sequencein which multiple fish swim in a tank and are all tracked by
the algorithm. Note especially the camouflaged small blue fish (magenta outline) at the bottom of frames 017 and 045. The
bottom row shows the objects classified based on shape information obtained from the contour.


