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Abstract

Recently proposed algorithmsfor nonlinear dimensionality reductionfall
broadly into two categories which have different advantages and disad-
vantages: globa (Isomap [1,2]), and loca (Localy Linear Embedding
[3], Laplacian Eigenmaps [4]). In this paper we describe variants of the
Isomap a gorithm which overcome two of the apparent disadvantages of
the global approach.

1 Introduction

In this paper we discuss the problem of non-linear dimensionality reduction (NLDR): the
task of recovering meaningful low-dimensional structures hidden in high-dimensional data.
An example might be a set of pixel images of an individual’sface observed under different
pose and lighting conditions; the task is to identify the underlying variables (pose angles,
direction of light, distance from camera, etc.) given only the high-dimensiona pixel image
data. In many cases of interest, the observed dataare found to lie on an embedded subman-
ifold of the high-dimensiona space. The degrees of freedom aong this submanifold corre-
spond to the underlying variables. In thisform, the NLDR problem is known as “manifold
learning”.

Classical techniquesfor manifoldlearning, such as principa componentsanaysis(PCA) or
multidimensional scaling (MDS), are designed to operate when the submanifold is embed-
ded linearly, or aimost linearly, in the observation space. More generaly thereis awider
class of techniques, involving iterative optimization procedures, by which unsatisfactory
linear representations obtained by PCA or MDS may be"improved” towards more success-
ful non-linear representations of the data. These techniquesinclude GTM [9], self organis-
ing maps [10] and others.

However, Tenenbaum [1] observed that such agorithms often fail when non-linear struc-
ture cannot simply be regarded as a perturbation from alinear approximation. Theiterative
approach has atendency to get stuck at locally optimal solutionsthat grossly misrepresent
the true geometry of the situation. Thisis not just a theoretical issue; asimple dataset like
the Swissroll (Figure 2) will typically defeat these methods.

Recently, severa entirely new approaches have been devised to addressthisproblem. These
methods combine the advantages of PCA and MDS—computational efficiency; few free



parameters; non-iterative global optimisation of anatura cost function—withthe ability to
disentanglethe Swiss roll and other classes of nonlinear data manifold.

These dgorithmscomeintwo flavors. loca and global. Local approaches (LLE [3], Lapla
cian Eigenmaps [4]) essentially seek to map nearby pointson the manifold to nearby points
in low-dimensional space. Globa approaches (such as Isomap [2]) may similarly seek
to map nearby points on the manifold to nearby pointsin low-dimensiona space, but at
the same time faraway points on the manifold must be mapped to faraway pointsin low-
dimensiona space.

The principa advantages of theglobal approach arethat it tendsto give amore faithful rep-
resentation of the data’ sglobal structure, and that its metric-preserving properties are better
understood theoretically. Thelocal approaches have two principal advantages. (1) compu-
tational efficiency: they involveonly sparse matrix computationswhichmay yield apolyno-
mial speedup; (2) representational capacity: they may give useful resultson abroader range
of manifolds, whose local geometry is close to Euclidean, but whose globa geometry may
not be.

In this paper we show how the global geometric approach, asimplemented in somap, can
be extended in both of these directions. The results are computationa efficiency and rep-
resentational capacity equal to or in excess of existing local approaches (LLE, Laplacian
Eigenmaps), but withthe greater stability and theoretical tractability of the global approach.
Conformal Isomap (or C-1somap) isan extension of 1somap whichiscapable of learning the
structureof certain curved manifolds. Thisextension comesat the cost of making auniform
sampling assumption about the data. Landmark Isomap (or L-Isomap) is a technique for
approximating alarge globa computation in Isomap by amuch smaller set of calculations.
The bulk of the work is confined to a small subset of the data, called landmark points.

The remainder of the paper isin two sections. In Section 2, we describe a perspective on
manifold learning in which C-lsomap appears as the natural generalisation of Isomap. In
Section 3 we derive L-Isomap from alandmark verion of classical MDS.

2 lsomap for conformal embeddings

2.1 Manifold learning and geometric invariants

We can view the problem of manifoldlearning asan attempt to invert agenerative model for
a set of observations. Let Y be a d-dimensional domain contained in the Euclidean space
R?, andlet f : Y — R beasmooth embedding, for some D > d. The object of mani-
fold learningisto recover Y and f based on agiven set {x;} of observed datain R”. The
observed dataarise asfollows. Hidden data {y; } are generated randomly inY", and are then
mapped by f to become the observed data, so {z; = f(y;)}.

Theproblemas statedisalittleunfair (if notill-posed). Somerestrictionisneededon f if we
areto relate the observed geometry of the data to the structure of the hidden variables {y; }
and Y itsdlf. Inthispaper we will discusstwo possibilities. Thefirst isthat we assume f to
be an isometric embedding in the Riemannian sense. This means that f preserves lengths
and angles at an infinitesimal scale. The other possibility we entertainisthat f isa confor-
mal embedding; soit preserves angles (but not lengths) at an infinitesimal scale. Thismeans
that a any given point y thereisascale factor s(y) > 0 sothat very closeto y, the effect of
f isto magnify distances by afactor of s(y). The class of conforma embeddings includes
all isometric embeddings as well as many other classes of maps, including stereographic
projectionslike the Mercator projection.

One approach to solving a manifold learning problem is to identify which aspects of the
geometry of Y are invariant under themapping f. For example, if f isan isometric embed-



ding then by definition infinitesimal distances are preserved. But moreistrue. The length
of apathinY isdefined by integrating theinfinitesimal distance metric aong the path. The
sameistruein f(Y'), so f preserves path lengths. It followsthat if y, z aretwo pointsinY’,
then the shortest path between y and z lyinginside Y isthe samelength as the shortest path
between f(y) and f(z) adong f(Y"). Thus geodesic distances are preserved.

The conclusionisthat Y, regarded as a metric space under geodesic distance, isisometric
with f(Y"), regarded similarly. 1somap expl oitsthisideaby constructingthe geodesic metric
for f(Y), at least approximately as a matrix, using the observed data alone.

To solve the conforma embedding problem, we need to identify an observable geometric
invariant of conformal maps. Since conforma maps are locally isometric up to ascale fac-
tor s(y), one approach is to attempt to identify or estimate s(y) at each point f(y) inthe
observed data. Then, by rescaling, we can identify the original metric structure of the data
amd proceed as in Isomap. A side effect of local scaling is that the local volume of Y is
scaled by afactor of s(y)?. If dataare generated randomly in Y, this will manifest itself
by a change in the density of data points before and after applying f. In particular, if the
hidden data are sampled uniformly on Y, then thelocal density of the observed datawill be
enough to identify the factor s(y).

C-Isomap doesexactly that. Under auniform sampling assumption, if f isaconformal em-
bedding then C-1somap estimates the factor s(y) and hence the original geometric structure
of thedata. In the next section, we describe the a gorithms more specifically.

2.2 lsomap and C-lsomap
Thisisthe standard | somap procedure[2]:

1. Determine aneighbourhood graph G of the observed data {«; } in a suitable way.
For example, G might contain z;z; iff ; isoneof the & nearest neighbours of x;
(and vice versa). Alternatively, GG might contain the edge «;x; iff |2; — 2;| < €,
for somee.

2. Compute shortest pathsin the graph for al pairs of data points. Each edge «;z; in
the graph is weighted by its Euclidean length |«; — x;|, or by some other useful
metric.

3. Apply MDSto the resulting shortest-path distance matrix D to find anew embed-
ding of the datain Euclidean space, approximating Y.

Thepremiseisthat local metricinformation (inthiscase, lengthsof edges «;; inthe neigh-
bourhood graph) is regarded as atrustworthy guideto thelocal metric structureinthe origi-
nal (latent) space. The shortest-paths computation then gives an estimate of the globa met-
ric structure, which can be fed into MDS to produce the required embedding.

It is known that Isomap converges asymptotically to the true underlying structure, given
sufficient data. More precisaly, atheorem of thefollowing formis proved in[5]:

Theorem. Let Y be sampled froma bounded convex regionin R.¢, with respect to a density
functiona = a(y). Let f bea C?-smoothisometric embedding of that regionin R*. Given
A, > 0, for a suitable choice of neighborhood size parameter ¢ or &, we have
| _a< recgyered@stanceg 14 A
original distance
with probability at least 1 — y, provided that the sample size is sufficiently large.  [The
formulaistaken to hold for dl pairs of pointssimultaneously.]

C-lsomap isasimplevariation on |somap. Specifically, we usethe k-neighboursmethod in
Step 1, and replace Step 2 with the following:



2a. Compute shortest pathsin the graph for all pairs of data points. Each edge z;x; in
thegraphisweighted by |z; — z; |/+/M (i) M (). Here M (i) isthemean distance
of z; toitsk nearest neighbours.

Using similar arguments to those in [5], it is possible to prove convergence result for C-
Isomap. The exact formulafor the weightsis not critical in the asymptotic analysis. The
pointisthat the rescaling factor /M (¢) M (j) isan asymptotically accurate approximation
to the conformal scaling factor near x; and ;.

Theorem. Let Y besampled uniformlyfromabounded convex regionin R4, Let f bea C?-
smooth conformal embedding of that region in R™. Given A, . > 0, for a suitable choice
of neighborhood size parameter &, we have

recovered distance
1-x< — . <1+ A
original distance

with probability at least 1 — y, provided that the sample size is sufficiently large.

Explicit lower bounds for the sample size are much more difficult to formulate here; cer-
tainly we expect to require alarger sample than in regular |somap to obtain good approxi-
mations. Insituationswhere both Isomap and C-1somap are applicable, it may bepreferable
to use lsomap, sinceitisless susceptibleto local fluctuationsin the sample density.

2.3 Examples

We ran C-1somap, Isomap, MDS and LLE on two toy “fishbowl” data sets and one more
realistic simulated data set. Output plotsare shown in Figure 3.

Conformal fishbowl: 2000 points were generated uniformly in a circular disk and stereo-
graphically projected (thus, conformally mapped) onto a sphere. Both MDS and |somap
fail, unsurprisingly, to recognize the original disk structure of the data. C-1somap behaves
exactly as predicted, flattening the disk convincingly. LLE isjust as successful.

Asymmetric fishbowl: Thistime, 2000 pointswere generated somewhat asymmetrically on
adisk (using a center-offset Gaussian distribution); The purpose being to test the stahility
of C-lsomap and LLE in situationswhen the data sampling density isnot perfectly uniform.
MDS and Isomap behave much as with the conformal fishbowl!. C-1somap still flattens the
disk, but the edges are not quitefully flattened. LLE lays out most of the disk successfully,
but one sector fails to resolve correctly.

Faceimages. Artificial images of aface were rendered using a software package (“ Poser”,
by CuriousLabs), varying two parameters independently. In this case the parameters were
left-right pose angle and distance from the camera. 128 x 128 color pixe images were con-
verted into grayscal e and treated as vectorsin 16384-dimensional space. |gnoring perspec-
tivedistortionsfor the closest images, thereisanatural family of conformal transformations
inthisdataset. If z isthedistancevariable, then transformationsof theform z — Az areall
approximately conformal, since the effect isto shrink or magnify the apparent size of each
image by a constant factor. Sampling uniformly in the pose variable and logarithmically in
the distance variable therfore gives a conformally uniform probability density. We gener-
ated 2000 face images in thisway, spanning the rangeindicated by Figure 1. All four algo-
rithms returned a two-dimensional embedding of the data. As expected, C-Isomap returns
the cleanest embedding, separating the two degrees of freedom reliably along the horizontal
and vertical axes. 1somap returns an embedding which narrows predictably as the face gets
further away. In contrast, LLE gives an extremely distorted embedding.



Figure 1: A set of 2000 face images were randomly generated, varying independently in
two parameters: distance and left-right pose. The four extreme cases are shown.

3 Isomap with landmark points

The standard 1somap agorithm tends to have bottlenecks in two places. First, one has to
caculatethe N x N shortest-path distance matrix Dy . The simplest dgorithmisFloyd's,
with complexity O(N3). Thiscan beimproved to O(N?log N') by implementing aversion
of Dijkstra's algorithm with Fibonacci heaps. After computing Dy, the subsequent MDS
caculaioninvolvesan N x N symmetric eigenvalue problem. The matrix involvedisfull
(as opposed to sparse), so thisisan O(N?) problem. Thisiswhere Isomap suffersin com-
parison with LLE or Laplacian Eigenmaps, which reduce to asparse symmetric elgenvalue
problem.

The purpose of L-Isomap isto kill two birds with one stone. We designate » of the data
pointsaslandmark points, wheren < N. Instead of computing Dy, we computethen x N
matrix D,, n of distancesof each data point to thelandmark pointsonly. Then we somehow
use D, n (instead of D) to find a Euclidean embedding of the whole data set. We refer
to this last step as Landmark MDS (or L-MDS). The calculation of D,, » by Dijsktrais
O(nN log N) and our proposed algorithm for L-MDSrunsin O(n?N).

Why is it reasonable to expect L-MDS to be feasible? We can begin by applying classi-
ca MDStothen x n landmarks-only distance matrix D,,. This provides afaithful low-
dimensional embedding of the landmark points, say in R*. We now wish to embed the re-
maining pointsin R*. For each point z if we know the distances |« — ¢| to each landmark
point ¢, we get n constraints on the embedding of =. If n > k and the landmarks are in
genera position, then we have enough constraints to determine the location uniquely (if it
exists).

Thislast step is exactly analogous to triangulating a position from exact knowledge of the
distances from asmall number of global positioning satellites. Wewill give an explicit for-
mulaand state some of itsproperties. For stability one generally selects alarger number of
landmark pointsthan the bare minimum (n = & + 1) required for a k-dimensiona embed-
ding.

3.1 ThelLandmark MDS procedure

Classica MDS proceeds as follows[6,7], starting with the (landmarks-only) distance ma-
trix D,,. Itisconvenient to write A,, for the matrix of squared distances. The first step is
to manufacture an “inner-product” matrix B,, = —H,A, H, /2 where H,, isthe centering
matrix defined by theformula(H,, );; = 6;; — 1/n. Next wefind the el genvaluesand e gen-
vectorsof B, . Write A; for the positiveeigenvalues (labelled sothat Ay > s > ... > Ap),

and v; for the corresponding eigenvectors (written as column vectors); non-positive eigen-
valuesareignored. Then for k£ < p the required optimal %-dimensiona embedding vectors



are given as the columns of the matrix:
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The embedded vectors are automatically mean-centered, and the principal components of
the embedded points are aligned with the axes, most significant first. If B, has no nega-
tive eigenva ues, then the p-dimensional embedding is perfect; otherwise there is no exact
Euclidean embedding.

For L-MDS we must now embed the remaining pointsin R*. Let A, denote the column
vector of sguared distances between adatapoint « and thelandmark points. It turnsout that
the embedding vector for = isrelated linearly to A,. Theformulais:

1 _
¥ = §LT(An —A,)

where A,, isthe mean of the columns of A,,, and L1 is the pseudoinverse transpose of L,
given by an explicit formula
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A full discussion of this construction will appear in[8]. We notetwo results here:

1. If z isactualy alandmark point, then theembedding given by L-MDSisconsi stent
with the original MDS embedding.

2. If thedistance matrix D, n can be represented exactly by a Euclidean configura-
tionin R*, and if thelandmarks are chosen so that their affine span in that config-
uration is k-dimensiond, then L-MDS will recover that configuration exactly (up
to rotation and translation).

If the original distance matrix deviates only slightly from being Euclidean, then one can ar-
gue by perturbation theory that L-MDSwill give an approximately correct answer, provided
that the smallest eigenvalue utilised, A, isnot too small. If itiscloseto zero, then LT will
have large norm and may overly magnify small deviations from the ideal Euclidean case.
In cases where the distance matrix is highly non-Euclidean, amusing examples show that
L-MDS may be a very poor approximation to doing classical MDS on the full dataset.

3.2 Example

In Figure 2, we show some of the results of testing L-1somap on a Swissroll data set. 2000
pointswere generated uniformly in arectangle (top | eft) and mapped into a Swissroll con-
figurationin R2. Ordinary Isomap recoverstherectangular structurecorrectly providedthat
the neighborhood parameter isnot too large (inthiscase ¥ = 8 works). The tests show that
this peformance isnot significantly degraded when L-Isomap isused. For each n, we chose
n landmark pointsat random; even down to 4 landmarks the results are excellent.

In contrast, the output of LLE is quite unstable under changesin its sparseness parameter &
(neighborhood size). Infairness, k isreally atopological parameter and only incidentally a
sparseness parameter. In L-1somap, these two roles are separately fulfilled by £ and n.
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Figure2: L-1somap isstable over awiderange of valuesfor the sparseness parameter n (the
number of landmarks). Resultsfrom LLE are shown for comparision.

4 Conclusion

Local approaches to nonlinear dimensionality reduction such as LLE or Laplacian Eigen-
maps have two principal advantages over aglobal approach such as Isomap: they toleratea
certain amount of curvature and they lead naturally to a sparse eigenvalue problem. How-
ever, neither curvaturetolerance nor computational sparsity are explicitly part of theformu-
lation of the local approaches; these features emerge as byproducts of the goa of trying to
preserve only the data's local geometric structure. Because they are not explicit goas but
only convenient byproducts, they are not in fact reliable features of thelocal approach. The
conformal invariance of LLE can fail in sometimes surprising ways, and the computational
gparsity is not tunable independently of the topological sparsity of the manifold. In con-
trast, we have presented two extensions to Isomap that are explicitly designed to remove a
well-characterized form of curvature and to exploit the computational sparsity intrinsic to
low-dimensional manifolds. We have analyzed the a gorithmics of both extensions, proven
the conditions under which they return accurate results, and demonstrated their success on
challenging data sets.
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