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Abstract

Recently proposed algorithms for nonlinear dimensionality reduction fall
broadly into two categories which have different advantages and disad-
vantages: global (Isomap [1,2]), and local (Locally Linear Embedding
[3], Laplacian Eigenmaps [4]). In this paper we describe variants of the
Isomap algorithm which overcome two of the apparent disadvantages of
the global approach.

1 Introduction

In this paper we discuss the problem of non-linear dimensionality reduction (NLDR): the
task of recovering meaningful low-dimensional structures hidden in high-dimensional data.
An example might be a set of pixel images of an individual’s face observed under different
pose and lighting conditions; the task is to identify the underlying variables (pose angles,
direction of light, distance from camera, etc.) given only the high-dimensional pixel image
data. In many cases of interest, the observed data are found to lie on an embedded subman-
ifold of the high-dimensional space. The degrees of freedom along this submanifold corre-
spond to the underlying variables. In this form, the NLDR problem is known as “manifold
learning”.

Classical techniques for manifold learning, such as principal components analysis (PCA) or
multidimensional scaling (MDS), are designed to operate when the submanifold is embed-
ded linearly, or almost linearly, in the observation space. More generally there is a wider
class of techniques, involving iterative optimization procedures, by which unsatisfactory
linear representations obtained by PCA or MDS may be “improved” towards more success-
ful non-linear representations of the data. These techniques include GTM [9], self organis-
ing maps [10] and others.

However, Tenenbaum [1] observed that such algorithms often fail when non-linear struc-
ture cannot simply be regarded as a perturbation from a linear approximation. The iterative
approach has a tendency to get stuck at locally optimal solutions that grossly misrepresent
the true geometry of the situation. This is not just a theoretical issue; a simple dataset like
the Swiss roll (Figure 2) will typically defeat these methods.

Recently, several entirely new approaches have been devised to address this problem. These
methods combine the advantages of PCA and MDS—computational efficiency; few free



parameters; non-iterative global optimisation of a natural cost function—with the ability to
disentangle the Swiss roll and other classes of nonlinear data manifold.

These algorithms come in two flavors: local and global. Local approaches (LLE [3], Lapla-
cian Eigenmaps [4]) essentially seek to map nearby points on the manifold to nearby points
in low-dimensional space. Global approaches (such as Isomap [2]) may similarly seek
to map nearby points on the manifold to nearby points in low-dimensional space, but at
the same time faraway points on the manifold must be mapped to faraway points in low-
dimensional space.

The principal advantages of the global approach are that it tends to give a more faithful rep-
resentation of the data’s global structure, and that its metric-preserving properties are better
understood theoretically. The local approaches have two principal advantages: (1) compu-
tational efficiency: they involve only sparse matrix computations which may yield a polyno-
mial speedup; (2) representational capacity: they may give useful results on a broader range
of manifolds, whose local geometry is close to Euclidean, but whose global geometry may
not be.

In this paper we show how the global geometric approach, as implemented in Isomap, can
be extended in both of these directions. The results are computational efficiency and rep-
resentational capacity equal to or in excess of existing local approaches (LLE, Laplacian
Eigenmaps), but with the greater stability and theoretical tractability of the global approach.
Conformal Isomap (or C-Isomap) is an extension of Isomap which is capable of learning the
structure of certain curved manifolds. This extension comes at the cost of making a uniform
sampling assumption about the data. Landmark Isomap (or L-Isomap) is a technique for
approximating a large global computation in Isomap by a much smaller set of calculations.
The bulk of the work is confined to a small subset of the data, called landmark points.

The remainder of the paper is in two sections. In Section 2, we describe a perspective on
manifold learning in which C-Isomap appears as the natural generalisation of Isomap. In
Section 3 we derive L-Isomap from a landmark verion of classical MDS.

2 Isomap for conformal embeddings

2.1 Manifold learning and geometric invariants

We can view the problem of manifold learning as an attempt to invert a generative model for
a set of observations. Let Y be a d-dimensional domain contained in the Euclidean spaceRd, and let f : Y ! RD be a smooth embedding, for some D > d. The object of mani-
fold learning is to recover Y and f based on a given set fxig of observed data inRD. The
observed data arise as follows. Hidden data fyig are generated randomly in Y , and are then
mapped by f to become the observed data, so fxi = f(yi)g.

The problem as stated is a little unfair (if not ill-posed). Some restriction is needed on f if we
are to relate the observed geometry of the data to the structure of the hidden variables fyig
and Y itself. In this paper we will discuss two possibilities. The first is that we assume f to
be an isometric embedding in the Riemannian sense. This means that f preserves lengths
and angles at an infinitesimal scale. The other possibility we entertain is that f is a confor-
mal embedding; so it preserves angles (but not lengths) at an infinitesimal scale. This means
that at any given point y there is a scale factor s(y) > 0 so that very close to y, the effect off is to magnify distances by a factor of s(y). The class of conformal embeddings includes
all isometric embeddings as well as many other classes of maps, including stereographic
projections like the Mercator projection.

One approach to solving a manifold learning problem is to identify which aspects of the
geometry of Y are invariant under the mapping f . For example, if f is an isometric embed-



ding then by definition infinitesimal distances are preserved. But more is true. The length
of a path in Y is defined by integrating the infinitesimal distance metric along the path. The
same is true in f(Y ), so f preserves path lengths. It follows that if y; z are two points in Y ,
then the shortest path between y and z lying inside Y is the same length as the shortest path
between f(y) and f(z) along f(Y ). Thus geodesic distances are preserved.

The conclusion is that Y , regarded as a metric space under geodesic distance, is isometric
with f(Y ), regarded similarly. Isomap exploits this idea by constructing the geodesic metric
for f(Y ), at least approximately as a matrix, using the observed data alone.

To solve the conformal embedding problem, we need to identify an observable geometric
invariant of conformal maps. Since conformal maps are locally isometric up to a scale fac-
tor s(y), one approach is to attempt to identify or estimate s(y) at each point f(y) in the
observed data. Then, by rescaling, we can identify the original metric structure of the data
amd proceed as in Isomap. A side effect of local scaling is that the local volume of Y is
scaled by a factor of s(y)d . If data are generated randomly in Y , this will manifest itself
by a change in the density of data points before and after applying f . In particular, if the
hidden data are sampled uniformly on Y , then the local density of the observed data will be
enough to identify the factor s(y).
C-Isomap does exactly that. Under a uniform sampling assumption, if f is a conformal em-
bedding then C-Isomap estimates the factor s(y) and hence the original geometric structure
of the data. In the next section, we describe the algorithms more specifically.

2.2 Isomap and C-Isomap

This is the standard Isomap procedure [2]:

1. Determine a neighbourhood graph G of the observed data fxig in a suitable way.
For example, G might contain xixj iff xj is one of the k nearest neighbours of xi
(and vice versa). Alternatively, G might contain the edge xixj iff jxi � xjj < �,
for some �.

2. Compute shortest paths in the graph for all pairs of data points. Each edge xixj in
the graph is weighted by its Euclidean length jxi � xjj, or by some other useful
metric.

3. Apply MDS to the resulting shortest-path distance matrix D to find a new embed-
ding of the data in Euclidean space, approximating Y .

The premise is that local metric information (in this case, lengths of edges xixj in the neigh-
bourhood graph) is regarded as a trustworthy guide to the local metric structure in the origi-
nal (latent) space. The shortest-paths computation then gives an estimate of the global met-
ric structure, which can be fed into MDS to produce the required embedding.

It is known that Isomap converges asymptotically to the true underlying structure, given
sufficient data. More precisely, a theorem of the following form is proved in [5]:

Theorem. Let Y be sampled from a bounded convex region inRd, with respect to a density
function� = �(y). Let f be aC2-smooth isometric embedding of that region inRk. Given�; � > 0, for a suitable choice of neighborhood size parameter � or k, we have1� � � recovered distance

original distance
� 1 + �

with probability at least 1 � �, provided that the sample size is sufficiently large. [The
formula is taken to hold for all pairs of points simultaneously.]

C-Isomap is a simple variation on Isomap. Specifically, we use the k-neighbours method in
Step 1, and replace Step 2 with the following:



2a. Compute shortest paths in the graph for all pairs of data points. Each edge xixj in
the graph is weighted by jxi�xj j=pM (i)M (j). Here M (i) is the mean distance
of xi to its k nearest neighbours.

Using similar arguments to those in [5], it is possible to prove convergence result for C-
Isomap. The exact formula for the weights is not critical in the asymptotic analysis. The
point is that the rescaling factor

pM (i)M (j) is an asymptotically accurate approximation
to the conformal scaling factor near xi and xj.
Theorem. Let Y be sampled uniformly from a bounded convex region inRd. Let f be aC2-
smooth conformal embedding of that region in RN . Given �; � > 0, for a suitable choice
of neighborhood size parameter k, we have1� � � recovered distance

original distance
� 1 + �

with probability at least 1� �, provided that the sample size is sufficiently large.

Explicit lower bounds for the sample size are much more difficult to formulate here; cer-
tainly we expect to require a larger sample than in regular Isomap to obtain good approxi-
mations. In situations where both Isomap and C-Isomap are applicable, it may be preferable
to use Isomap, since it is less susceptible to local fluctuations in the sample density.

2.3 Examples

We ran C-Isomap, Isomap, MDS and LLE on two toy “fishbowl” data sets and one more
realistic simulated data set. Output plots are shown in Figure 3.

Conformal fishbowl: 2000 points were generated uniformly in a circular disk and stereo-
graphically projected (thus, conformally mapped) onto a sphere. Both MDS and Isomap
fail, unsurprisingly, to recognize the original disk structure of the data. C-Isomap behaves
exactly as predicted, flattening the disk convincingly. LLE is just as successful.

Asymmetric fishbowl: This time, 2000 points were generated somewhat asymmetrically on
a disk (using a center-offset Gaussian distribution); The purpose being to test the stability
of C-Isomap and LLE in situations when the data sampling density is not perfectly uniform.
MDS and Isomap behave much as with the conformal fishbowl. C-Isomap still flattens the
disk, but the edges are not quite fully flattened. LLE lays out most of the disk successfully,
but one sector fails to resolve correctly.

Face images: Artificial images of a face were rendered using a software package (“Poser”,
by Curious Labs), varying two parameters independently. In this case the parameters were
left-right pose angle and distance from the camera. 128�128 color pixel images were con-
verted into grayscale and treated as vectors in 16384-dimensional space. Ignoring perspec-
tive distortions for the closest images, there is a natural family of conformal transformations
in this data set. If z is the distance variable, then transformations of the form z 7! �z are all
approximately conformal, since the effect is to shrink or magnify the apparent size of each
image by a constant factor. Sampling uniformly in the pose variable and logarithmically in
the distance variable therfore gives a conformally uniform probability density. We gener-
ated 2000 face images in this way, spanning the range indicated by Figure 1. All four algo-
rithms returned a two-dimensional embedding of the data. As expected, C-Isomap returns
the cleanest embedding, separating the two degrees of freedom reliably along the horizontal
and vertical axes. Isomap returns an embedding which narrows predictably as the face gets
further away. In contrast, LLE gives an extremely distorted embedding.



Figure 1: A set of 2000 face images were randomly generated, varying independently in
two parameters: distance and left-right pose. The four extreme cases are shown.

3 Isomap with landmark points

The standard Isomap algorithm tends to have bottlenecks in two places. First, one has to
calculate theN �N shortest-path distance matrix DN . The simplest algorithm is Floyd’s,
with complexityO(N3). This can be improved toO(N2 logN ) by implementing a version
of Dijkstra’s algorithm with Fibonacci heaps. After computing DN , the subsequent MDS
calculation involves an N �N symmetric eigenvalue problem. The matrix involved is full
(as opposed to sparse), so this is an O(N3) problem. This is where Isomap suffers in com-
parison with LLE or Laplacian Eigenmaps, which reduce to a sparse symmetric eigenvalue
problem.

The purpose of L-Isomap is to kill two birds with one stone. We designate n of the data
points as landmark points, where n� N . Instead of computingDN , we compute then�N
matrixDn;N of distances of each data point to the landmark points only. Then we somehow
use Dn;N (instead of DN ) to find a Euclidean embedding of the whole data set. We refer
to this last step as Landmark MDS (or L-MDS). The calculation of Dn;N by Dijsktra isO(nN logN ) and our proposed algorithm for L-MDS runs in O(n2N ).
Why is it reasonable to expect L-MDS to be feasible? We can begin by applying classi-
cal MDS to the n � n landmarks-only distance matrix Dn. This provides a faithful low-
dimensional embedding of the landmark points, say inRk. We now wish to embed the re-
maining points inRk. For each point x if we know the distances jx� `j to each landmark
point `, we get n constraints on the embedding of x. If n > k and the landmarks are in
general position, then we have enough constraints to determine the location uniquely (if it
exists).

This last step is exactly analogous to triangulating a position from exact knowledge of the
distances from a small number of global positioning satellites. We will give an explicit for-
mula and state some of its properties. For stability one generally selects a larger number of
landmark points than the bare minimum (n = k + 1) required for a k-dimensional embed-
ding.

3.1 The Landmark MDS procedure

Classical MDS proceeds as follows [6,7], starting with the (landmarks-only) distance ma-
trix Dn. It is convenient to write �n for the matrix of squared distances. The first step is
to manufacture an “inner-product” matrix Bn = �Hn�nHn=2 where Hn is the centering
matrix defined by the formula (Hn)ij = �ij�1=n. Next we find the eigenvalues and eigen-
vectors ofBn. Write �i for the positive eigenvalues (labelled so that �1 � �2 � : : : � �p),
and ~vi for the corresponding eigenvectors (written as column vectors); non-positive eigen-
values are ignored. Then for k � p the required optimal k-dimensional embedding vectors



are given as the columns of the matrix:L = 26664 p�1 � ~vT1p�2 � ~vT2
...p�k � ~vTk 37775

The embedded vectors are automatically mean-centered, and the principal components of
the embedded points are aligned with the axes, most significant first. If Bn has no nega-
tive eigenvalues, then the p-dimensional embedding is perfect; otherwise there is no exact
Euclidean embedding.

For L-MDS we must now embed the remaining points in Rk. Let �x denote the column
vector of squared distances between a data point x and the landmark points. It turns out that
the embedding vector for x is related linearly to �x. The formula is:~x = 12Ly( ��n ��x)
where ��n is the mean of the columns of �n, and Ly is the pseudoinverse transpose of L,
given by an explicit formula: Ly = 26664 ~vT1 =p�1~vT2 =p�2

...~vTk =p�k 37775
A full discussion of this construction will appear in [8]. We note two results here:

1. If x is actually a landmark point, then the embedding given by L-MDS is consistent
with the original MDS embedding.

2. If the distance matrix Dn;N can be represented exactly by a Euclidean configura-
tion inRk, and if the landmarks are chosen so that their affine span in that config-
uration is k-dimensional, then L-MDS will recover that configuration exactly (up
to rotation and translation).

If the original distance matrix deviates only slightly from being Euclidean, then one can ar-
gue by perturbation theory that L-MDS will give an approximately correct answer, provided
that the smallest eigenvalue utilised, �k, is not too small. If it is close to zero, then Ly will
have large norm and may overly magnify small deviations from the ideal Euclidean case.
In cases where the distance matrix is highly non-Euclidean, amusing examples show that
L-MDS may be a very poor approximation to doing classical MDS on the full dataset.

3.2 Example

In Figure 2, we show some of the results of testing L-Isomap on a Swiss roll data set. 2000
points were generated uniformly in a rectangle (top left) and mapped into a Swiss roll con-
figuration inR3. Ordinary Isomap recovers the rectangular structure correctly provided that
the neighborhood parameter is not too large (in this case k = 8 works). The tests show that
this peformance is not significantly degraded when L-Isomap is used. For each n, we chosen landmark points at random; even down to 4 landmarks the results are excellent.

In contrast, the output of LLE is quite unstable under changes in its sparseness parameter k
(neighborhood size). In fairness, k is really a topological parameter and only incidentally a
sparseness parameter. In L-Isomap, these two roles are separately fulfilled by k and n.



Original points

Swiss roll embedding LLE: k=18 LLE: k=14 LLE: k=10 LLE: k=6

L−Isomap: k=8
20 landmarks

L−Isomap: k=8
10 landmarks

L−Isomap: k=8
4 landmarks

L−Isomap: k=8
3 landmarks

Figure 2: L-Isomap is stable over a wide range of values for the sparseness parameter n (the
number of landmarks). Results from LLE are shown for comparision.

4 Conclusion

Local approaches to nonlinear dimensionality reduction such as LLE or Laplacian Eigen-
maps have two principal advantages over a global approach such as Isomap: they tolerate a
certain amount of curvature and they lead naturally to a sparse eigenvalue problem. How-
ever, neither curvature tolerance nor computational sparsity are explicitly part of the formu-
lation of the local approaches; these features emerge as byproducts of the goal of trying to
preserve only the data’s local geometric structure. Because they are not explicit goals but
only convenient byproducts, they are not in fact reliable features of the local approach. The
conformal invariance of LLE can fail in sometimes surprising ways, and the computational
sparsity is not tunable independently of the topological sparsity of the manifold. In con-
trast, we have presented two extensions to Isomap that are explicitly designed to remove a
well-characterized form of curvature and to exploit the computational sparsity intrinsic to
low-dimensional manifolds. We have analyzed the algorithmics of both extensions, proven
the conditions under which they return accurate results, and demonstrated their success on
challenging data sets.
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