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Abstract

The problem of estimating optical flow fields corresponding to mul-
tiple moving objects in a spatiotemporal image sequence is addressed.
A modified version of the Neural Gas (NG) unsupervised learning al-
gorithm is used to implement a non-linear interpolation strategy to
overcome the aperture problem encountered during local motion esti-
mation. Local motion constraints are formulated and the best infor-
mation over 4 point pairs is used to produce a single motion estimate.
Wherever the aperture problem is encountered, the minimum norm
estimate is produced. These local estimates are then refined using
modified NG. NG provides a framework for the fusion of local and
incomplete motion information into complete and global estimates.
Due to the self-organizing nature of NG, the number of motion classes
need not be specified apriori. The technique leads to generation of an
optical flow field without the ’smearing’ of flow fields encountered in
regularization-based techniques. Motion estimation results obtained
on synthetic and natural image sequences are shown.
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1 Introduction

Optical flow computation is an important component of early vision. Op-
tical low has applications in fields such as surveillance, object-based video
compression and recovery of 3D shape of objects.

We describe a new optical flow field estimation technique that is applica-
ble to image sequences containing multiple and possibly occluding objects.
It is well-known that the determination of motion parameters for a single
motion class using an optical flow formulation poses several well-known chal-
lenges, including an inherently locally ill-posed estimation problem with the
possibility of the aperture problem. An apriori unknown number of motion
classes further compounds the problem complexity.

Numerous computational models for estimating optical flow exist. They
can be classified into following main groups [BB95]: (1) intensity-based dif-
ferential methods; (2) frequency-based filtering methods; and (3) correlation-
based methods. Optical flow computation based on differential methods can
further be classified into global methods such as the Horn-Schunck [HS81]
approach and into local methods such as the Lucas-Kanade [LK81] tech-
nique. Black and Anandan [BA96] have developed a framework for robust
estimation which can be applied to both local and global methods. Bruhn et.
al. [BWS05] introduced combined local-global (CLG) method which holds
promise of real-time performance.

In this paper, a modified unsupervised learning approach (Neural Gas)
is used to identify motion parameters for each of the motion classes. Our
overall approach consists of two parts:

1. Local estimation of image motion parameters (flow field) using the
spatiotemporal constraints (Section 2); and

2. A global pass for determination of complete motion estimates using an
unsupervised learning technique, specifically, a modified form of Neural
Gas (NG) (Section 4.2).

2 Optical Flow Constraints and Algebraic Prop-
erties

The 3D motion of multiple objects and (possibly) the image sensor induce
2D motion on the image plane. This 2D motion, also called apparent motion
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or optical flow, needs to be recovered from the image sequence. Suppose an
image point x = (x,y) at time ¢ is moved to (z + d,,y + d,) at time (¢ + d).
Under a constant intensity assumption, the images of the same object point
at different times have the same luminance value. Therefore

V(x +dy,y +dy, t+dy) = Y(z,y,1).

A Taylor series expansion yields
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This equation can be written in terms of the flow vectors by dividing both
sides by dt, yielding:
N (z,1)

Vip(z,t) v = —— (1)

where v = [v, v,]" represents the velocity vector (also called the flow vector)
at z and Vi(z, )T = [% g—f] is the spatial gradient vector of ¥ (z,y,t).
Equation 1 is the motion constraint equation or the optical flow constraint

equation.

or
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2.1 Adding Local Constraints

Optical flow, using spatiotemporal information at a single pixel location, is
under-constrained. Typically, other nearby points are used, with the as-
sumption of locally constant [LK81] or slowly varying velocities [HS81]. This
implies spatial coherence of flow vectors. With another spatially close point,
the optical flow constraint may be augmented as:
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We refer to this augmentation as the spatiotemporal constraint. The spatial
coherence assumption is not valid when these neighboring points z; and z,
correspond to two different motion classes. Moreover, even with a valid
spatial coherence assumption, we may still face the aperture problem.



2.2 The Aperture Problem: Two Viewpoints

Geometric Visualization. Consider the region on the edge (Aperture
2) shown in Figure 1. As shown in Figure 2, given V(7)) and %—f, the
projection of the velocity vector along the normal direction is fixed, with
v, = —(0Y/0t)/]|V1]||, whereas the projection onto the tangent direction,
vy, is undetermined [HK87]. Any value of v; would satisfy the equation. That
means any point on the tangent line will satisfy the equation. This ambiguity

in estimating the motion vector is known as the aperture problem.

Aperture 1

True Motion

Aperture 2

Figure 1: Aperture Problem.

Algebraic Viewpoint of the Aperture Problem. An alternative view-
point of the aperture problem can be obtained considering the properties of
matrix D in Equation 2. There are 3 cases:

1. rank(D) = 0. This case corresponds to a location with no spatial
texture or where motion is not discernible.

2. rank(D) = 1. This image location suffers from the aperture problem.
Let v = Upgpst + U Where v, py 18 the observable component of
motion and where v, is the component that cannot be determined due
to the aperture problem. v, satisfies Dv, = 0 or v, € nullspace(D).
The Moore-Penrose inverse of D is used to find minimum norm solution
for this rank deficient case.

3. rank(D) = 2. This case leads to a complete and acceptable motion
estimate if the condition number of D is reasonable.
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Figure 2: Decomposition of flow vector.

We use the algebraic viewpoint in our work. It provides a formal, systematic
technique for the recovery of local motion component v, using a modified
version of the Neural Gas (NG) algorithm.

3 Motion Recovery using Neural Gas

We propose a method to identify partial or complete local motion information
and then to recover missing motion information. The general idea is as
follows:

1. Use the spatiotemporal constraint (Equation 2) to produce local motion
estimates. Pixel locations that suffer from the aperture problem yield
a partial, or incomplete, flow vector estimate.

2. Refine the motion estimates using a modified form of NG. Pixel loca-
tions where one of the motion components is missing due to the aper-
ture problem get that component restored as a part of the nonlinear
(NL) interpolation implemented by the modified NG procedure.

A significant issue in our application is that the number of motion classes is
not known apriori. NG is able to accommodate this constraint.



Unsupervised Learning Approaches Considered. Unsupervised learn-
ing techniques are used in a number of problem domains [XW05]. Some
measure of pattern associativity or similarity is used to guide the learn-
ing process, which usually leads to some form of correlation, clustering, or
competitive behavior [Sch97]. Using competitive learning, these algorithms
identify the clusters in data. Techniques that exhibit such cluster discovery
capability in absence of prior cluster information are termed self-organizing.
This soft-computing paradigm is especially useful when we are dealing with
imprecision, uncertainty and partial truth. This is certainly the case for
motion estimation.

Unsupervised learning approaches have been applied to motion estima-
tion. Detailed discussion of merits and demerits of unsupervised algorithms
for their use in motion estimation can be found in [Shi04].

Duc, et al. [DSB95] used fuzzy C-Means for motion estimation and seg-
mentation. The technique requires an upper threshold for the expected num-
ber of motion classes. C-Means gives good results when the number of motion
classes are known before hand. This is usually not the case and the choice
of ¢ is a challenging issue.

SOFM employs a soft-max adaptation [Koh90], and can be applied to
motion estimation without knowing the number of motion classes apriori.
Kothari and Bellando [KB97] used SOFM to estimate optical flow. The
technique works on edges, but does not lead to dense optical flow.

Neural Gas (NG) [MBS93, AS98| also uses a soft-max adaptation rule.
Neural Gas vector adaptation is determined by the relative distances within
the neural weight space and not determined by relative distances between
neural units within any topologically pre-structured lattice. In addition, the
number of motion classes need not be specified apriori. It provides a relatively
simple and highly effective algorithm for clustering [CHHV06, XW05]. NG
implements stochastic gradient descent on a cost function and is less subject
to getting trapped in local minima (Section 4.3). We use NG to achieve non-
linear interpolation of flow estimates. Unlike regularization-based approaches
[HS81], our modified-NG based approach will not put nonzero flow vectors
in image regions whose spatiotemporal constraints do not support them and
where visually no flow is discernible.

Growing Neural Gas (GNG) [Fri95] also uses a soft-max adaptation rule.
It differs from Neural Gas with respect to the evolution of parameters over
time. GNG grows as it learns, adding units and connections until some
criteria is met. In our experience with GNG, motion cluster formation is



inferior to Neural Gas.

4 The Overall Motion Estimation Algorithm

Our technique uses NG-based refinement of preliminary, and perhaps incom-
plete, motion estimates to get the final (refined) motion flow field. Another
unique feature is the opportunistic initialization of NG weights and the as-
sociated training of those weights.

4.1 The Motion Estimation Sequence (2 Frames)

The steps of the motion estimation technique are exemplified by processing
the two images of a synthetic image sequence as shown in Figure 3. For
illustration, the images have eight square objects moving in eight different
directions, therefore we have eight motion classes to be detected. The true
motion (v,,v,) for each object is shown in Figure 4. The origin of the coor-
dinate system is at the top left corner of the image. The temporal difference
image is given in Figure 4.

Image O Image 1

Figure 3: Binary Image Sequence.

Step 1: Pre-processing of Image Sequence. For binary input images,
spatial smoothing using a Gaussian kernel is done. Smoothing of binary
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Figure 4: True Motion and Temporal Difference Image.

images is required as the gradient estimation step assumes that the
input images are differentiable. Gray level images are assumed to be
differentiable, so no smoothing is applied.

Step 2: Gradient Estimation. The second step in motion estimation is
the computation of gradients. We must estimate these partial deriva-
tives from the discrete set of image intensity measurements available. It
is important that the estimates of 1,, 1, and 9y be consistent. That is,
they should refer to the same point in the image at the same time. We
use the approximate differentiation as given in [HS81]. Figure 5 shows
the spatial and temporal gradients computed for the image sequence.
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Step 3: Local Motion Estimation. At each pixel location we generate
four independent motion constraints, one for each of the four orienta-
tions, as seen in Figure 6. Only the best spatiotemporal constraint is
retained as defined by Equation 4. This scheme provides fine-grained
control over choice of training vectors for use in Neural Gas.

D; = min{ cond(D, )}

Figure 6: Neighbors used in production of motion estimates

More succinctly, at pixel location z, using neighbor set (direction) i,
the constraint set becomes:

Digv=—f, i=1234 (3)

where D is defined in Equation 2.

The best local motion estimate is then obtained using:

Dy = min {cond(D; )} (4)

1

where cond() is the matrix condition number, and

vy = —(D"LS, (5)

where 1 denotes the Moore-Penrose inverse.



The condition number is used to determine which one of the four spec-
ulative pixel pairs is the best choice for production of the local motion
estimate. As indicated by Equation 4, the motion estimate correspond-
ing to the orientation with the smallest condition number is generated.
If rank(D}) = 1 then v} from Equation 5 is the minimum norm solu-
tion. This corresponds to the aperture problem case and vy is the part
of motion that could be estimated. This flow estimate is put into set
H, (p denotes 'partial’). If rank(D}) = 2, a unique flow vector estimate
results. If the condition number is very small then the flow estimate

*

vy is put into set H. (c denotes 'complete’). Thus, set H), holds all
the partial motion estimates and set H. holds all the complete motion

estimates.

The weight or feature vectors in sets H. and H), are of the form:

v = (2,9, 05,0,)" (6)
where v, and v, are motion estimates at pixel location (z, y).

Step 4: Initialization of Neural Gas. If we initialize the weights of the
NG array using a Gaussian distribution, typical flow field results for
the example case are shown in Figure 7. However, a more opportunistic
scheme for weight initialization exists. We use the set W, which is the
union of set H,. (vectors with ’complete’ motion estimates) and set H,
(vectors with partial’ motion estimates), to initialize the weights. This
yields the initial set of weights for NG processing as shown in Figure
8(a).

Step 5: Motion Clustering and NL Interpolation of Flow Using
Modified NG. This is the final step in our motion estimation tech-
nique. The objective is to put the complete and partial motion esti-
mates that belong to a single motion class into a single cluster. We
train the initialized weights W using the set H.. The modified NG
correction of Section 4.2, Equation 7, is used. During the training, the
training input vector is compared with the weights of NG. Since each
training vector exists in the NG weights set (recall W = H. U H,),
the training vector finds an exact match in one of the unit’s weights.
As the local soft-max update takes place, the neighbors selected for
update are the ones closer to the winning unit in the weight vector
space. For the example case, the training vectors in set H. correspond

10



(a) Initial Weights (b) Weights after 10 iterations

Figure 7: Evolution of Weights During Neural Gas Clustering (Gaussian
Initialization).

to the motion vectors for the corners of the squares. H, consists of
motion vectors for the edges of the squares where only one motion
component could be estimated. As we have initialized the NG weights
using W = H. U H,, vectors associated with both the complete and
partial motion estimates are available as NG weights. For example,
when a corner (training) vector ! is used in NG weight adaptation, the
weights (neighborhood) that get corrected most are the vectors that
are spatially close to the corner. The edges of the squares fall in this
neighborhood and their motion gets corrected. The result can be seen
in Figure 8(b).

The overall flow of the processing of image sequences to obtain the motion
estimates is shown in Figure 10.

Computational Time, Complexity and Related Concerns. The ma-
chine used for this computation was an Intel(R) Core(TM)2 Duo CPU, T7300
@ 2.00GHz. The overall time required for processing the synthetic image se-
quence of Figures 8(a) and 8(b) was 0.85s with the cardinality of H. equal
to 256 elements and the cardinality of W equal to 1328 elements. Note that

L Assuming rank(D) = 2.
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b) Weights after 10 iterations

Figure 8: Evolution of Weights During Modified Neural Gas Clustering;:
Weights Initialized Using W'.

processing time is not directly a function of image resolution, but rather de-
pends upon the cardinality of sets H. and W. This is due to the fact that
the processing time is dominated by the Neural Gas computation. The NG
computation time, in turn, depends upon the cardinality of vector sets H.
and W. This effect is further shown in the examples of Section 5.

4.2 Modifications to NG for Motion Estimation

The unmodified Neural Gas algorithm update [AS98| with training vector i
is defined by:

Aw; = €(t) . by (mi(i, W) . (2 — w;) (7)
where W = {w,,w,,...,wy} is the whole set of neural weights, m;(i, W)
is the implicit orderlng of W defined as m; = M. Apmin s Amaz bE-

dma:t ml'n.

ing the minimum and maximum distance between i and all w;s, hy (m;) =

exp(=mN' (1)), and N () = A(t)/(N —1).

Vector Similarity Measure for Implicit Sorting. The scale of first two
vector components (spatial coordinates) is orders of magnitude larger than
that of the motion components (Refer to Equation 6). We use a weighted
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Figure 9: Training Weights.

distance metric given by

dz,y) = |l = ylln = /(@ -y R (z—y)

where R is the diagonal matrix consisting of estimated inverse variance values
of the vector components.

Modified Vector Correction for Update. We only update the compo-
nents of weight vectors that carry motion information. Our modified NG
corrects the sorted w; as:

t+1 t
wi™ oc M(v — w;)

where

0000
0000
0010
0001

only corrects the last 2 elements of v (i.e., the flow). Pixel locations are
persistent.
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weights using set H,

Figure 10: Summary of motion estimation steps.

4.3 Behavior of Modified NG Motion Estimate Ad-
justments

Martinetz [MBS93] has shown that given a training set of H = [v;], NG will
self-organize and yield a resulting set of vectors W = [w;] such that

B=3Y /H p(0)ha (K (0, W) [ — w; | do (8)

is minimum. In our strategy, NG allows recovery of the aperture component
of flow, v,. Assume training vectors in H correspond to flow estimates from
cases where D has full (2) rank. In these estimates, the aperture problem
cannot exist. Thus, the weight correction given by Equation 8 locally restores
the component of motion that was missing due to the aperture problem.

Remarks on Cluster Formation. One of the factors that heavily in-
fluences the cluster formation is the neighborhood size. In the Neural Gas
algorithm, the neighborhood size is determined by the parameter A in Equa-
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tion 7 [MBS93]. Over iterations, the value of A decreases, thus reducing (or
'shrinking’) the neighborhood size. If we start with a large value of A (a
large neighborhood), a motion estimate at one location may affect motion
estimate at far away locations significantly, corrupting the estimate. In ad-
dition, to avoid corrupting motion estimates we use learning rates that do
not drastically affect the weights at any given step. Thus, there is a trade
off between speed of convergence and the correctness of motion estimates.

Biological Plausibility of NG-based Motion Self-Organization and
Interpolation. The primary visual cortex (V1) is a well-defined process-
ing region for accumulation of low-level spatial information in vision, and
modeling the behavior of cortical networks with self-organizing maps is an
active area of research [BKMO02],[SM94]. The low-level spatiotemporal mo-
tion estimation technique presented herein exhibits structural and functional
similarity with low-level biological visual processes.

Initially, individual V1 neurons have strong tuning to a small set of stimuli
including changes in visual orientations, spatial frequencies and colors. Later
in time (after 100 ms), V1 neurons become sensitive to the more global
organization of the input image, and interact (through recurrent processing)
with other visual cortex areas.

Our computational strategy, in the motion domain, is similar. Prelimi-
nary, and perhaps incomplete local motion stimuli are refined using NL in-
terpolation and global motion information. The clustering of motion classes
we achieve using NG is analogous to perceptual chunking [GLC*01], where
primitive stimuli (in our case estimated motion) is grouped into larger con-
ceptual groups (motion classes).

5 Additional Motion Estimation Examples

Rotating Sphere Sequence. The rotating sphere sequence was obtained
from database used in [BKDBO01]. The image frames of the sequence are seen
in Figure 11. The flow due to training vectors in set H, is seen in Figure 13.
In the Figure 14 which shows the resultant motion estimate, it can be seen
that NG could overcome the aperture problem which is apparent in Figure
12 as the horizontal and vertical flow vectors.

This example also illustrates the NL nature of the NG-generated flow
vector interpolation. In untextured image regions, where the spatiotempo-
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ral constraint (Equation 2) involves a rank-0 D matrix, motion would not
be discernible. Since our algorithm does not include any flow vector esti-
mates from these regions in the NG weights set, erroneous estimates are not
introduced into these regions. This is in contrast to regularization-based
strategies incorporating a smoothness constraint on the resulting flow field.
The computation time was 2min 14s. In this case, the cardinality of H. was
4658 elements and the cardinality of W was 11580 elements.

(a) First image frame. (b) Second image frame.

Figure 11: Two frames from Rotating Sphere Sequence.

Taxi Sequence. The image frames of a taxi sequence are seen in Figure
15. The dominant motion in this sequence is the motion of the foreground
car. The set H as seen in Figure 16 has motion vectors corresponding to the
background stationary car as well. The training set H. is seen in Figure 17.
The training vectors for the background car are few compared to training
vectors for the moving car. If A used for NG is very large, then the moving
car motion vectors affect the stationary car vectors as well. So in this case
the A value has to be kept small. If the number of training vectors for
two spatially adjacent motion classes vary by large amount, then the motion
class with larger number of training vectors dominates the motion correction.
The motion estimates for the taxi sequence are shown in Figure 18. The
computation time was 4.9s with the cardinality of H. equal to 957 elements
and the cardinality of W equal to 2221 elements.
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Figure 12: Rotating sphere sequence flow vectors from W, initial weights.

Yosemite Sequence. The image frames of the Yosemite sequence are seen
in Figure 19. Flow vectors due to weight initialization set H are seen in
Figure 20. The flow vectors in training set H, as seen in Figure 21 show very
few vectors for the left mountain in the sequence. Consequently, during NG
adaptations, motion vectors in H corresponding to mountain region do not
get corrected. The resultant motion estimate for the fly-through Yosemite
sequence is shown in Figure 22. The computation time was 5min 20s with
the cardinality of H,. equal to 6304 elements and the cardinality of W equal
to 20033 elements.
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Figure 14: Rotating Sphere sequence flow after clustering.

(a) First image frame. (b) Second image frame.

Figure 15: Two frames from Taxi Sequence.
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Figure 18: Taxi sequence flow after clustering.

(a) First image frame.

(b) Second image frame.

Figure 19: Two frames from Yosemite Sequence.
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6 Comparison With Other Techniques

We use the same synthetic image sequence (8 motion classes) shown in Figure
3 for comparison. Input binary images are smoothed using a 3x3 Gaussian
kernel. Our comparison is restricted to techniques that generate dense opti-
cal flow and hence we compare our results with approaches of Horn-Schunck
[HS81] and Black-Anandan [BA96]. The OpenCV implementation of [HS81]
was used while the implementation of [BA96] was provided by Dr. Black.
Figure 23 shows the Horn-Schunck flow results after 30 iterations. Figure
24 shows the Black-Anandan flow after running the code with the default
parameters. In both of these alternative approaches, the resulting motion
estimates are denser than our modified-NG based approach. Conversely, our
neural-gas based approach does not spread the optical flow in areas where
there is no motion, as seen in the Horn-Schunck and Black-Anandan exam-
ples.

Figure 23: 8 motion case results with Horn-Schunck technique. (Compare
with Figure 8)
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Figure 24: 8 motion case results with Black-Anandan technique. (Compare
with Figure 8)

7 Conclusions

The combination of a modified Neural Gas unsupervised learning technique
with the optical flow constraint provides a framework for the fusion of lo-
cal and incomplete motion information into complete and global estimates
for multiple motion classes. The training of partial motion estimates using
complete motion estimates and the modified Neural Gas algorithm causes
the propagation of motion estimates from the locations in the image where
motion is completely known to the locations where motion is only partially
known, due to the aperture problem. It can be seen that the computation
time depends upon the cardinality of H. and W. Current efforts include
autonomous determination of the NG parameters and GPU-based imple-
mentation of the algorithm.
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