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Adapting Starburst for Elliptical Iris Segmentation
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Abstract— Fitting an ellipse to the iris boundaries accounts
for the projective distortions present in off-axis images of the
eye and provides the contour fitting necessary for the dimen-
sionless mapping used in leading iris recognition algorithms.
Previous iris segmentation efforts have either focused on fitting
circles to pupillary and limbic boundaries or assigning labels
to image pixels. This paper approaches the iris segmentation
problem by adapting the Starburst algorithm to locate pupillary
and limbic feature pixels used to fit a pair of ellipses. The
approach is evaluated by comparing the fits to ground truth.
Two metrics are used in the evaluation, the first based on
the algebraic distance between ellipses, the second based on
ellipse chamfer images. Results are compared to segmentations _ o . ) )
produced by ND_IRIS over randomly selected images from the Fig. 1. Modeling iris segmentation (patterned on actual image Fig. 13).
Iris Challenge Evaluation database. Statistical evidence shows
significant improvement of Starburst's elliptical fits over the
circular fits on which ND_IRIS relies. recognition as well as eye tracking applications. Suchaant

fitting is an essential component of iris recognition [8].
We also present a technique for eyelid detection. It has
I. INTRODUCTION been shown that localization of the eyelid improves acgurac
reliability, and efficiency by reducing the search area fathb
Except for several relatively unique approaches, e.g,, [3pupillary and limbic features and by eliminating distragti
[16], common iris segmentation methods model the iris asfaatures like eyelashes [22]. We utilize active contours to
pair of circles [5]. Although the inner and outer boundadés detect the eyelids and demonstrate improved accuracysof iri
the iris may be roughly approximated by circles, they rarelgegmentation.
appear as true circles in images [9]. The iris image is stibjec The third contribution of this paper is the introduction of
to perspective projection. It is approximately planar. Anywo comparisons to ground truth for evaluating the contour
circle that lies in a plane not fronto-parallel to the cameréitting algorithm: the first based on the root sum squared
will appear elliptical in the image plane. The segmentatiometric of algebraic distance between fit ellipses, the s&con
model must account for such distortions. A general ellipsBased on comparison of ellipse chamfer images. We use these
model is therefore more appropriate than a restricted leircu metrics to compare our algorithm’s elliptical segmentagio
model to compensate for this type of distortion. to those of NDIRIS, a readily available iris segmentation
The Starburstalgorithm was introduced by Li, Babcock, algorithm [17]. We test images randomly selected from the
and Parkhurst for the purpose of eye tracking [14]. Fopublicly available Iris Challenge Evaluation (ICE) databa
such an application, Starburst’s main objective is to idgnt We present strong statistical evidence showing improved
feature points on the limbus for subsequent localizatiathef elliptical fit accuracy of our approach over NIRIS. Com-
pupil center. Starburst then fits an ellipse to the limbiefix putation time requirements of the two algorithms are royghl
operating under the implicit assumption that the center afquivalent.
Fhat ellipse c0|nC|de_s Wlt.h the pupl! center. The pupil eent Il BACKGROUND
is then used for estimating the point of gaze, or POG, of a
viewer wearing the eye tracking apparatus. Daugman [7] models the iris as an elastic sheet stretched
In this paper we adapt the Starburst algorithm for th@etween the pupil and limbus contours, assigning a pair
purpose of iris segmentation. The novelty behind our adapt@f dimensionless coordinates, ¢) to each pixel afz,y),
tion is the simultaneous identification of both pupillarydan @ Shown in Fig. 1. This mapping can be represented as
limbic boundaries, fitting ellipses to both contours, thgre {(,y) — I(r,0) where x(r,0) and y(r,0) are linear
producing an iris segmentation suitable for subsequest iffombinations between the pupillary boundary and the limbus
I(r,0) = (1 — r)I,(0) + rI,(9), with I, and I, denoting
W. J. Ryan, D. L. Woodard, and A. T. Duchowski are with thePiX€lS along the pupil and limbus contours, respectively.
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graph cuts level sets and watershed We consider fitting Image
. . . . Image Image Pre-
algorithms to be those that fit a parametrized model to image processing
pixels. Examples include thdough transformsnakes and Fitied
Starburst ) : Ellipse
s . . Start Point Feature Ellipse
Daugman’s elastic sheet model necessitates the use of Riection | s@rr | Detection|  Feature Fitting

curve fitting algorithm [8], e.g., snakes [9]. NIRIS uses Point ~ Points
the Hough transform for segmentation [17]. We present the
applicability of Starburst.

In [13] the ideas of ray casting, locating two feature points
per ray, and filtering by distance were introduced. In [20
Starburst was augmented with luminance delineation. & th

. ; : . . PG LA
paper we combine these notions into a single algorithm thi o ’WN Q
is capable of accurately fitting ellipses to both the pupilla , \

Fig. 2. Algorithm flow.

and limbic boundaries.
A simple ray-based algorithm resembling Starburst wa
used as a post processing step in a graph cuts approact
iris segmentation, presumably to bolster results whentgrap
cuts failed [19]. As a labeling algorithm, graph cuts does ndig. 3. Eye image after thresholding (left) and chamfer ojemat(right).
support the elastic sheet model. Its utility is limited te th
creation of a mask as is currently done by statistical infer- .
ence [9]. No comparison between graph cuts and statistic-ghe_se elllpses. are evaluated and the best are selected as the
inference was made in [19], however. Sufficient detail of th@UPillary and limbic contours.

ellipse fitting algorithm was also lacking. B. Detailed Description

. ELLIPTICAL IRIS SEGMENTATION 1) Image Pe-processing:We preprocess the image by

Starburst is a randomized local search algorithm used fpnvolution with Gaussian filters. We first use a simple
eye tracking. Starburst was developed byetial. [15] to smoothing filter then a gradient detection filter. We use the
compensate for the high degree of noise present in low cogsulting gradient vectors for both feature detection ard e
off-the-shelf cameras. The original algorithm proved toabe lipse fitting. Starburst requires an initial location fronmish
stable way to track the eye under NIR illumination yet theré0 begin searching. The ICE database does not provide such
were three main sources of error: the algorithm had diffinitial points. We therefore begin with a simple threshold
culty distinguishing between the pupillary boundary anel thalgorithm that locates a seed point.
limbus, specular reflections caused erroneous featurgspoin 2) Start Point Detection:We find the start point in two
and eyelashes and eyelids introduced noise and occlusiorgteps. First, the darkest 5% of pixels are set to black; all

By incorporating luminance information Starburst wagthers are set to white. This is done to isolate the pupil as it
better able to distinguish between the pupillary and limbiés a dark part of the image and covers slightly less than 5%
boundaries [20]. Independently in [13], the start point oPf the image (see Fig. 3, left). We find that eyelashes and
the rays was constrained to any location on the pupil arether hair are often as dark as the pupil, but cover verglittl
each ray generated two feature points. The point closest &€a.
the origin of the ray would be assigned rank of one and Second, we calculate the chamfer image using 3, 4 weight-
the farther point a rank of two. This rank assignment helpg [4] so that the darkest pixel is the pixel farthest frony an
distinguish between pupillary and limbic boundaries. white pixel (see Fig. 3, right). Since eyelashes and othir ha

Luminance and rank based delineation of feature poing&ye long and thin while the pupil is round the location of the
may be combined to discard many feature points that reslarkest pixel is most likely within the pupillary boundary
from specular reflections. In this paper we implement &nd a good start point for the remainder of our algorithm.
snakes algorithm to find upper and lower eyelid boundaries. This simple thresholding algorithm will fail when the
These boundaries mask out the feature search neighborha@y#lashes are accentuated by heavy mascara and the pupil

beyond the eyelids and eyelashes. is simultaneously occluded by bright specular reflections.
o Nevertheless it is effective on a majority of the ICE databas
A. General Description 3) Feature Detection:We use dot products to calculate

Our adaptation of Starburst, outlined in Fig. 2, requirethe component of the gradient collinear with rays pointing
an image of an eye and coordinates of an initial point neaadially away from the start point (see Fig. 4, left). Theembj
the pupil center. Rays are cast away from the initial pointive is to mark feature points at the locations where the rays
in a star-like pattern. The gradient is calculated alonghea@xit dark regions. Each ray marks feature points at the two
ray and used to identify feature points on the pupillaryargest gradient peaks within an experimentally deterthine
and limbic boundaries. These feature points are used épsilon distance. The term rank is used to indicate which of
randomly compute a (potentially large) number of ellipseghe two points is closer to the origin of the ray. A rank 1



Fig. 4. Rays used to detect feature points (left), with painting due to hardcoded priori constraint on ray direction when eyelid detection is not
used (middle), and classified feature points (right; withipgpeen, limbus blue, junk black).

feature point is closer to the origin and expected to be o
the pupillary boundary. A rank 2 feature point is furthemfro
the origin and expected to be on the limbus.

Feature detection without lid detection (see below) ad
sumesa priori that eyelids exist above and below the starj
point and that eyelids occlude the top and bottom portiong\
of the limbus. This assumption leads to (hardcoded) cullin
of the top 1/3 and bottom 1/4 of candidate feature points,
following sorting by theiry-values (see Fig. 4, middle). As Fig. 5. Edge image (left) and ellipse fit to pupil (right).

a result, these top and bottom feature points are not used for
subsequent ellipse fitting.

Surviving feature points are classified into three categori gradient. Next, we blur the edge detected image slightly to
pupil, limbus, and junk. We begin by sorting the points byfind pixels near a peak. For each pixel we compute the dot
their corresponding luminance. We expect 50% of them tproduct of the unit vector pointing from that pixel toward
be on the pupil. The luminance of pixels on the pupil is lesthe center of the ellipse and the gradient at that pixel. This
than those on the limbus. Any feature point of rank 1 witis multiplied by the corresponding pixel in our edge image
low luminance is labeled as a pupil point. Those that are dgee Fig. 5).
rank 2 with high luminance are labeled as limbus points. All The following expression describes our ellipse evaluation
others are labeled as junk (see Fig. 4, right). whereV(z,y) is the gradientE(x, y) is the edge value, the

4) Ellipse Fitting: Once we have detected and classifiedinit vectorv(z,y) points toward the ellipse center at pixel
our feature points we fit ellipses to the feature set. Bjocation(z,y), and the ellipse passes througtpixels:
selecting five pupil points at random we can create>a5

system of equations from the general quadratic expression Z Ex,y) (V(z,y) - v(z,y))
for an ellipse: V(z,y) on ellipse "
ax? +by? +cx +dy +exy + f = 0. (1)

Note that the solution of thé x 5 system of equations
We set the f coefficient to an arbitrary value and useand the subsequent evaluation of the generated ellipse may

Gaussian elimination to compute the remaining coefficient@® computationally prohibitive if the number of systems
Once an ellipse is generated it must be evaluated. Vo Ived and ellipses evaluated is very high. We improve the

generate many such ellipses, evaluate them all, and take M&bab"“y of generating a good ellipse by selecting featu

mean value of the best few to be our final contour. It maPOlnts In-an mte!hgent way: ) L .
seem strange to average several rather than simply regainin V& have noticed that inferior combinations of points
the single best. Yet the average yields better results dtreto "clude points that are spatially clustered. We have imple-

randomized nature of the algorithm. There is some degré”gented a heuristic algorithm that encourages selection of

of independence between the results and each is affected NS that are spatially distant (see pseudo-code in Alg. 1
random noise in the input. The resulting random error ma& . . .
be minimized by averaging the result of multiple trials. - Eyelid Detection Algorithm

The evaluation of the ellipse is equal to the mean evalua- We use the snake algorithm to detect eyelids. Snakes, first
tion of all the pixels through which it passes. A good pixel igntroduced by Kasst al. [12], can be used to extract contours
one that is on or near the peak of a strong gradient pointirfgpm images, or track objects in video. The location of the
toward the center of the ellipse. First, we detect edgesen tltontour is determined by an ordered set of control points. Th
image with the Canny edge detector to find pixels on a peakake algorithm minimizes an energy function that depends



Feat ureSel ect (feature point set S)
limt = 10
while |S| <5
sel ect a point P’ at random
for all points PeS
if 4P —/P<m/linmt
di scard P’ and pick a new one
limt += 0.5
else add P’ to set S

Alg. 1. Algorithm for selecting feature points, with denoting the angle Fig. 6. Detection of upper (left) and lower eyelid (right).
of the ray that detects poir®.

Find Start | | Rough Pupil | _| Mask Specular
on the snake’s position: Point Detection Reflection T
enerqgy = Z data + elasticity + stiffness.
all edges Fine Pupil | | Eye Lid | .| Limbus

Detection Detection Localization

We considerdata to be large where the image gradient
magnitude is small. For each control point we define an
initial and terminal location. Theelasticity term of our
function is large when the control points are far from their
respective terminal positions. The final term enforces our
assumptions about the shape of the contour. We defichamfer distance. Although this start point is nearly alsvay
stiffness to be large when the curvature deviates from whatn the pupil, specular reflections usually push it away from
we would expect of an eyelid. We allow control points tocenter.

move only in the vertical direction. As the pupil is more salient in the image than the limbus
The algorithm is implemented through the use of dynamige |ocate its boundary first. The off-center nature of ourtsta
programming [1]. A9 x n table of (prev, energy) pairs is  point introduces a bias in our pupil localization. This first
populated. Each column in the table corresponds to a pa#yocation of the Starburst algorithm is sufficient for two
of control points (v;, vi4+1), and each row corresponds topyrposes. First, the center of the resulting ellipse is much
possible movemerii(a, b), (¢, d)) for the points. A particular cjoser to the pupil center than our initial start point. Seto
entry in columni row j contains the best totalnergy for  \ve are able to scale our ellipse down slightly and mask out
all points 1 through: if points v;, v;y1 move as indicated the specular reflection. Scaling is easily accomplished by

by row j. Note that only three rows of the— 1 column  gjightly increasing the constant term of our coefficients.
are consistent with any particular entry of columnThis

is because both columns contain These three consistent
rows correspond to the three possible movements; of.
We compute the energy of entiyj as

Fig. 7. Combined algorithm flow.

Masking is accomplished by setting values of all gradient
vectors located within the ellipse to zero. We then run
a second iteration of Starburst with the new start point,
and with the masked image as input. This second iteration

energy; ; = IV (03 C)| 4+ o D — fin(v,)]|? + produces a better fit because the feature points are more
) at (c.d) at(@b)  athki2 evenly distributed around the appropriate boundary rather
i <5||”i+1 = 2vy 7 ol 4 @(k)) , than clustering mostly to one side.

wherea and3 are experimentally determined constants( Ngxt we use snakes to' find.the eyelids. The snakes do not
3= 0.25 in the current implementatiorg)(k) is the energy precisely locate the eyelids, mstead_they are _useq to mask
entry from consistent rows of the previous coluning j ouF areas where we are unable to find good Ilmblc_ feat_ure
meansk is consistent withj, fin(v;) is a terminal location points. After the eyelids are detected we run a final iteratio
of v;, and||V(vft(“’b))|| is the gradient magnitude. The first of S_tarburst tc_> locate the limbus. Feature points beyond t_he
term is thedata term, the second is théasticity, and the eyelids are d_|scard_ed and onl)_/ pixels between the eyghds
third is the stiffness. An example of the resultant eyelid 8¢ used during ellipse evaluation. An example of the final
detection is shown in Fig. 6. segmentation is shown in Fig. 8.
_ _ It should be noted that our implementation of snakes often

D. Combined Algorithm fails to properly mask the eyelids and eyelashes and that in

Now that we have described all the major componentsost cases hardcoded constraints relating the eyelidigosit
of our iris segmentation algorithm we explain how they ar¢o the pupil location work just as well. Nevertheless, the fa
assembled into a complete iris segmentation system. Thieat the automatic snake algorithm performs as well as our
refined algorithm flow is shown in Fig. 7. hardcodeda priori constraint on ray direction (as seen in

The first step of the algorithm is to find a start point on theéhe experimental results below) demonstrates the potentia
pupil. This is done using luminance threshold combined witbf this approach.
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Fig. 9. Ellipse distance metric examples. In each case, thearate ellipse
Fig. 8. Masked feature search region resulting from autameyelid s situated at the origin with = 0.3 ands = 0.7 rotated by = 40°
detection (left) and final segmentation (right). while a test ellipse (center indicated by a black dot) isteatand/or shifted.
Bounding boxes are drawn around each ellipse.

IV. EVALUATION OF THE ALGORITHM

We have manually segmented 245 images from the jcgoes not fully describe the misalignment between ellipses
database with closed contours modeled by ellipses, to sefde€ 0 composite homographic transformation (including
as ground truth for comparison of Starburst to NBIS. rotation, translation, and scaling of the ellipse axes)e Th
Low contrast between pupil and iris might pose a potenti&P0ve error metric takes into account the homographic
problem. Images poorly suited to either approach were ng@nsformation by virtue of evaluation of the second or-
excludded from the random sample, e.g., see Fig. 11. der quadratic, as the quadratic coefficients embody the

Although other experimental efforts report overall bio-€lliPse’s rotation by about its center(h, k), safisfying
metric accuracy measures such as equal-error or rank-o 2(x —h)+N(y—Fk)” + (M(y—k) = N(z—-h))" =
recognition rates [5], some of which are subjective in rgtur” 5" -

_ 2952 2 AT2 - _ _
e.g., [18], here we concentrate specifically on objective ¢ = S2M2 + 7; N2 ¢ = —2ha—ke
elliptical goodness of fit of automatically segmented sekig b = s*N°+r'M d = —2kb—he
to ground truth. To do so, we introduce two distance metrics. ¢ = 2MN(s? —r?)

The first is based on a closed form evaluation of the algebraic , _ M2(s2h? + r2k2) + N2(r2h2 + s2k2) +

distance, the second is based on chamfer image segmentation
of both fitted and ground truth images.

A. Evaluation Metric Based on Algebraic Distance where(r, s) are the lengths of the ellipse axes and= cos 6

The quadratic equation (1) represents a generic conic QEdN ~ in 6. _The RSS. metric e\{aluates (for exactly
the zero set of a second order polynomial: overlapping ellipses while producing non-zero values for
rotated and translated ellipses, as shown in examples in

H(ajx)=a-x=az’ +by* +cx +dy +exy+ f =0, Fig. 9.

2M Nhk(s? —r?) — r?s?

. T T
with a = [abcde f|' andx = [_x2 y?ry my_l] - B. Evaluation Metric Based on Chamfer Images
H(a;x;) = D is called thealgebraic distanceof a pointx; ) o
to the conicH (a; x) = 0 [10]. Our ellipse distance metricis AN analog of the above metric performed in image space

defined as the root sum squared (RSS) of algebraic distan&@¥! Pe obtained by creating a chamfer image for each
of the sampled points of the tested ellipse w.r.t. the refeze segmentation such that each pixel indicates the distanoe fr
ellipse, i.e. ground truth at that location. To evaluate the goodness of fit

of a particular segmentation contour we introduceNi2GT

Tmax (Mean Distance from Ground Truth). Let MDGT be defined
\// H(a;x;)?dx ~ as the mean value in the chamfer image of all pixels through

Fmin which the contour passes.
In practice, " H(a; x;)? can be evaluated either directly, Note that MDGT is somewhat similar to mean RSS error
e.g., iterating OVer: € [min, Tmax] for some smallAz, or butoperates in image space. Mean RSS is evaluated in ellipse
following an approach similar to that of Bresenham [6]_arpoord|nates ra_lther than in |mage_coord|nate_s. We shoukl not
efficient, discretized scanline sampling of ellipse pois- that & normalized form of RSS is also available, known as
ally employed for rendering. Our implementation evaluate¥'€ Sampson error, which is a form of algebraic distance
H(a;x;) in a manner similar to Bresenham’s ensuring ngubject to Mahalanobis normalization [11].
gaps between sampled points on the tested ellipse.

This algebraic distance is a more robust metric of elg' Results

liptical goodness of fit than simple average error of el- We have automatically segmented 245 images using each
lipse center and radii. Simple (Euclidean) distance meaf three segmentation algorithms: Starburst without eyeli
sures of center displacement merely indicate translatiatetection, Starburst with eyelid detection, and INBDS.
error whereas the difference in radii reflects the ellipticaBRSS and MDGT were computed for each automatically
orientation error. Reporting these separately (e.g., §9)) segmented image.




Mean RSS per Algorithm |
0.4 ———
limbus —8—
pupil —=—
@ 03°f
%)
£
g
» 02}
)
[osg
S ot1f @77777777%7J7J/,,,,/————/@ 1 MDGT | Pupil [ Limbus MDGT | Pupil | Limbus
Starburst| 9.52 8.16 Starburst | 0.68 8.39
. ‘ ‘ ‘ NDIRIS | 1.40 | 5.90 ND_IRIS | 0.97 | 4.89
Starburst (No Lid) Starburst wiLid ND-lris RSS Pupil | Limbus RSS Pupil | Limbus
Ellipse Fitting Algorithm Starburst| 0.91 1.85 Starburst | 0.05 0.67
Mean MDGT per Algorithm NDIRIS | 0.16 | 0.65 ND_RIS | 0.07 | 0.41
Nl T y——— ‘ Fig. 11. Two worst Starburst segmentations.
pupil —&—
o o30f
Z F-ratio is significantly large enough that the possibilifyito
5 20t . . . -
9 equaling 1.0 is smaller than some pre-assigned probability
5 . — e.g., p = 0.01, or one chance in 100, meaning that i p
= 10 o | 0.01 then the observed difference is 99% certain to be
solely due to experimental effect (the means are suffigientl
*tarburst (No Lid) _ Starburst wiLid ND-Iris far apart that the distributions do not overlap).
Ellipse Fitting Algorithm A critigue of ANOVA for significance testing is the

Fig. 10. Comparison of mean RSS (top) and MDGT (bottom) metrics. 28SSUmption of normality of the parametric data under inspec
tion. The Kruskal-Wallis rank sum test is a nonparametric
test that can be used in place of one-way ANOVA if the

Viewing the experiment as a2 3 factorial design (2 fitted distribution is not normal. It is used in a similar mannertees t
image features: pupil or limbus, and 3 algorithms: Staitbur&Vilcoxon signed-rank test in place of the t-test. It is a tast
with and without lid detection and NIIRIS) and considering the ranks of the original data and so the normality assumptio
the fitted image features and algorithms as fixed factord(wiis not required. Averaging across algorithms, the Kruskal-
images as the random factor [2]), repeated-measures twévallis rank sum test indicates a significant difference imme
way analysis of variance, or ANOVA, indicates a significanRSS (2 = 195.36, df = 2, p< 0.01). Similarly, averaging
main effect of feature on RSS (F(1,244) = 555.13; p.01}  across limbus/pupil features, the Kruskal-Wallis rank sum
as well as a significant main effect of algorithm (F(2,488)est indicates a significant difference in mean RS3 €
= 117.79, p< 0.01), with featurex algorithm interaction 792.97, df = 1, p< 0.01). The agreement between test
significant (F(2,488) = 112.81, ¢ 0.01). significances simply shows that the normality assumption of

Averaging across the three algorithms, pair-wise t-tes&NOVA as used above is not unreasonable.
with pooled SD indicate significantly better performance of Similar significance results were obtained following
Starburst (with or without lid detection) over NIRIS (p <  ANOVA of the MDGT metric, as suggested in Fig. 10,
0.01, with Bonferroni correction). Pair-wise t-tests show put are omitted due to lack of space. Results from the
significant difference between the two variants of Starbursthree segmentations are visualized by displaying grountt! tr

Plotting the mean RSS and MDGT with standard erroih green. Starburst with eyelid detection is displayed in
against algorithm type, as shown in Fig. 10, indicates thahagenta. NDIRIS segmentation is displayed in cyan. Star-
all three algorithms provide a statistically significaneosl  purst without eyelid detection is similar to that with eykeli
better fit to the pupil than to the limbus. Although use ofjetection and is not shown. Image examples were selected
eyelid detection shows no statistically significant adeget by sorting the evaluation results by MDGT and selecting the
in its use by Starburst, on average, Starburst significanthyest and worst few segmentations. From these images it is
outperforms NDIRIS in both pupil and limbus ellipse fitting. clear that high RSS and MDGT values correspond to poorer

For readers unfamiliar with ANOVA, its tests are basedits and, likewise, low RSS and MDGT values correspond to
on the F-ratio: the variation due to an experimental effegietter fits.
divided by the variation due to experimental error [21]. The The jmages in Fig. 11 illustrate the two worst Starburst

null hypothesis assumes F = 1.0, or that the effect is the sa|g  Note that the complete failure in the first image may

as the experimental error, hence no significant differesce pe easily detected and compensated for by post processing.
expected (between means of the sampled responses, assui§thart of the pupil ellipse should ever protrude outside the
to be normally distributed). This hypothesis is rejectethd  |ipys ellipse.

1Assuming sphericity as computed by R, the statistical arslyackage The two best _Start_)urst fi_ts are shown in Fig. 12. Note that
used throughout. the magenta ellipse is partially occluded by the grounchtrut
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MDGT Pupil | Limbus MDGT Pupil | Limbus
Starburst| 0.70 0.33 Starburst | 0.62 1.78
ND_IRIS | 1.56 3.30 ND_IRIS | 1.08 1.57
RSS Pupil | Limbus RSS Pupil | Limbus
Starburst| 0.07 0.07 Starburst | 0.05 0.16
ND_IRIS | 0.12 0.37 ND_IRIS | 0.08 0.17
Fig. 12. Two best Starburst segmentations.
B¢ 7 i |
: (1]
[2]
MDGT Pupil | Limbus MDGT Pupil | Limbus (3]
Starburst| 0.99 5.50 Starburst| 3.57 3.69
ND_IRIS | 4.05 6.10 ND_IRIS | 3.48 15.01 [4]
RSS Pupil | Limbus RSS Pupil | Limbus
Starburst| 0.03 0.17 Starburst| 0.20 0.38 [5]
ND_IRIS | 0.10 0.19 ND_IRIS | 0.21 1.22
Fig. 13. Two typical Starburst segmentations. [6]
(71

ellipse. Notice also that the NIRIS segmentation deviates
more at the top and bottom of the contour than at the sidedt]
This is typical of NDIRIS as it assumes circular models of
the contours. Fig. 13 contains two more typical examples. [9]

D. Discussion [10]

The occasional failure of our implementation to properly
segment the pupil can be attributed to failure of the simplgy;
thresholding algorithm to identify a good seed point and
handle interference from specular reflections. The Hough,,
transform used by NDRIS employs a global search and
does not suffer from this problem. On average, howeve[ris]
adapted Starburst’s elliptical fitting accuracy is supet®
that of ND_IRIS. This is not surprising as the cause is likely
due to Starburst's use of an elliptical contour model indted
of a circular one. Since our metrics are a measure of eliiptic
goodness of fit, the circle is at a disadvantage. Thus, our
analysis supports our hypothesis of the ellipse as moneditti
for iris contour modeling than the circle.

Recall that our implementation without eyelid detectio
imposeda priori constraints on ray direction. Feature point
in near vertical directions were not used for ellipse fitting
Consequently, the upper and lower portions of the limbud’
contour were omitted from fit evaluation. Automatic eyelid
detection does not provide a significant accuracy benefit ove
hardcoded constraints, suggesting that both approackes %?]
equally effective. Further refinement of the eyelid detecti

16]

14] D. Li, J. Babcock, and D. J. Parkhurst.

15] D. Li, D. Winfield, and D. J. Parkhurst.

1 X. Liu, K. Bowyer, and P. Flynn.

algorithm should improve limbus segmentation.

V. CONCLUSION

A novel approach to iris segmentation based on the Star-
burst algorithm was given, showing significant improvement
over ND.IRIS in fitting of the iris contours. Two metrics were
introduced, one based on the algebraic distance between el-
lipses, the other on chamfer images. The ability of autarnati
eyelid detection via active contours to achieve resultslarm
to hardcoded results suggests the potential of snakes for
effective masking of feature points used for ellipticalitfigt
The resultant iris segmentation is thus suitable for sulsety
iris recognition as well as eye tracking applications.

REFERENCES

A. A. Amini, T. E. Weymouth, and R. C. Jain. Using dynamic
programming for solving variational problems in visidEEE Trans-
actions on Pattern Analysis and Machine Intelligent2(9):855-867,
September 1990.

J. Baron and Y. Li. Notes on the use of R for psychology ekpents
and questionnaires. Online Notes, 09 November 2007. URL:
<http://lwww.psych.upenn.edwubaron/rpsych/rpsych.htmyl (last ac-
cessed December 2007).

B. Bonney, R. Ives, D. Etter, and Y. Du. Iris pattern ektian using bit
planes and standard deviations.Thirty-Eighth Asilomar Conference
on Signals, Systems, and Computpages 582-586, November 2004.
G. Borgefors. Distance transformations in digital imag€omputer
Vision, Graphics, and Image Processjrigf(3):344-371, 1986.

K. W. Bowyer, K. Holingsworth, and P. J. Flynn. Image urgtanding
for iris biometrics: A surveyComputer Vision and Image Understand-
ing, 110(2):281-307, 2008.

J. E. Bresenham. Algorithm for computer control of a dibjtéotter.
IBM Systems Journak(1):25-30, 1965.

J. Daugman. High confidence visual recognition of perdons test
of statistical independencelEEE Transactions on Pattern Analysis
and Machine Intelligencel5(11):1148-1161, November 1993.

J. Daugman. How Iris Recognition WorkslEEE Transactions on
Circuits and Systems for Video Technolpdyt(1):21-30, January
2004.

J. Daugman. New Methods in Iris RecognitiofEEE Transactions
on Systems, Man, and Cybernetics, ParBB(5):1167-1175, October
2007.

A. Fitzgibbon, M. Pilu, and R. B. Fisher. Direct Leastudges Fitting
of Ellipses. IEEE Transactions on Pattern Analysis and Machine
Intelligence 21(5):476-480, 1999.

R. Hartley and A. ZissermanMultiple View Geometry in Computer
Vision Cambridge University Press, Cambridge, UK, 2nd edition,
2003.

M. Kass, A. Witkins, and D. Terzopoulos. Snakes: acthantour
models. International Journal of Computer Visionl(4):321-331,
1988.

D. Li. Low-Cost Eye-Tracking for Human Computer Inteiiaat
Master’s thesis, lowa State University, Ames, IA, 2006. Tepbrt
TAMU-88-010.

openEyes: A LoosC
Head-Mounted Eye-Tracking Solution. ETRA '06: Proceedings of
the 2006 Symposium on Eye Tracking Research & Applicati®as
Diego, CA, 2006. ACM.

Starburst: A highral-
gorithm for video-based eye tracking combining featureebdaand
model-based approaches. Wision for Human-Computer Interaction
Workshop (in conjunction with CVPR2005.

X. Li. Modeling intra-class variation for non-idealsrrecognition. In
Springer LNCS 3832: International Conference on Biomstnages
419-427, January 2006.

Experiments with an impeal
iris segmentation algorithm. |Rourth IEEE Workshop on Automatic
Identification Advanced Technologigsages 118-123, 17-18 October
2005.

H. Proenca and L. A. Alexandre. Iris segmentation methagly for
non-cooperative recognition. IHEEE Proceedings on Vision, Image
and Signal Processing/olume 153, pages 199-205, April 2006.



[19] S. J. Pundlik, D. L. Woodard, and S. T. Birchfield. Noredd Iris
Segmentation Using Graph Cuts. Workshop on Biometrics (in
conjunction with CVPR)2008.

[20] W. J. Ryan, A. T. Duchowski, and S. T. Birchfield. Limbusfjl
switching for wearable eye tracking under variable lightaonditions.
In ETRA '08: Proceedings of the 2008 Symposium on Eye Tracking
Research & Applicationgpages 61-64, New York, NY, 2008. ACM.

[21] J. Tangren. A Field Guide to Experimental Designs. GniNotes, 22
April 2002. URL: <http://www.tfrec.wsu.edu/ANOVA/index.htmi
(last accessed May 2008).

[22] G. Xu, Z. Zhang, and Y. Ma. Improving the performance o iri
recogniton system using eyelids and eyelashes detectidnirén
image enhancement. IEEE International Conference on Cognitive
Informatics (ICCl) pages 871-876, 17-19 July 2006.



