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An algorithm to detect depth discontinuities from a
stereo pair of images is presented. The algorithm matches
individual pixels in corresponding scanline pairs while al-
lowing occluded pixels to remain unmatched, then prop-
agates the information between scanlines by means of a
fast postprocessor. The algorithm handles large untextured
regions, uses a measure of pixel dissimilarity that is insen-
sitive to image sampling, and prunes bad search nodes to
increase the speed of dynamic programming. The compu-
tation is relatively fast, taking about 1.5 microseconds per
pixel per disparityon a workstation. Approximate disparity
maps and precise depth discontinuities (along both horizon-
tal and vertical boundaries) are shown for five stereo im-
ages containing textured, untextured, fronto-parallel, and
slanted objects.

1 Introduction
Cartoon artists have known the perceptual importance

of depth discontinuities for a long time. To create the
illusion of depth, they paint the character and background
on different layers of acetate, being careful to ensure a
crisp delineation of the character. Similarly, in human
stereo vision, depth discontinuities are vividly perceived
and help to carve out distinct objects as well as to elucidate
the distance relations between them.

In this paper we present a method for detecting depth
discontinuities from a stereo pair of images. Our approach
inverts the traditional role of a stereo algorithm because,
instead of using the knowledge of depth discontinuities
to compute disparity more accurately, we compute a rough
disparity map in order to get crisp discontinuities. Like sev-
eral previous algorithms [2, 5, 7, 8], our algorithm uses a
form of dynamic programming to match epipolar scanlines
independently, detecting occlusions and depth discontinu-
ities simultaneously with a disparity map. Then a postpro-
cessing step propagates information between the scanlines

�Work supported by grants NSF IRI-9506064,ARO-MURI DAAH04-
96-1-0007 and ARO STTR F49620-95-C-0078, by an NSF Graduate Stu-
dent Fellowship, and by a gift from the Charles Lee Powell Foundation.

to refine the disparity map and the depth discontinuities.
Throughout the process, we use neither windows nor pre-
processing of the intensities, thus matching the individual
pixels in one image with the pixels in the other image.

As a stereo algorithm, our approach contains three nov-
elties. First, the image sampling problem is overcome by
using a measure of pixel dissimilarity that is insensitive to
sampling. Secondly, the algorithm handles large untextured
regions which present a challenge to many existing stereo
algorithms. Finally, unlikely search nodes are pruned to
reduce dramatically the running time of dynamic program-
ming. The combination of avoiding subpixel resolution,
pruning bad nodes, and fast postprocessing results in an
efficient algorithm that takes 1:5 microseconds per pixel
per disparity on a workstation, making it a candidate for
real-time implementation.

2 Stereo Formulation
In this section, we formulate the stereo problem and de-

scribe our cost function. Pixels in one image are explicitly
matched with pixels in the other image, while occluded
pixels remain unmatched. Correspondence is encoded in a
match sequence, where each match is an ordered pair (x; y)
of pixels signifying that the intensities IL(x) and IR(y) are
images of the same scene point. (Throughout this paper, x
denotes a pixel in the left scanline, while y denotes a pixel
in the right scanline.) Unmatched pixels are occluded, and
a subsequence of adjacent occluded pixels that is bordered
by two non-occluded pixels (or by a non-occluded pixel
and the image boundary) is called an occlusion.1 An ex-
ample of a match sequence on an extremely short scanline
is shown in Figure 1.

The disparity �(x) of a pixel x in the left scanline that
matches some pixel y in the right scanline is defined in the
usual way as x� y, while the disparities of all the pixels in
an occlusion are assigned the disparity of the farther of the
two neighboring objects. The depth-discontinuity pixels
are labelled as those pixels that border a change of at least

1Our occlusions correspond roughly to Belhumeur’s half-occluded
regions [2].
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Figure 1: The match sequence M = h(1; 0); (2,1), (6,2),
(7,3), (8,4), (9,5), (10,6), (11,9), (12; 10)i. The five middle
matches correspond to a near object.

two levels of disparity and that lie on the far object. At
the expense of losing some true depth discontinuities, this
threshold of two allows us to handle slanted objects without
explicitly detecting the slant.

2.1 Cost function
With each match sequence M we associate a cost (M )

that measures how unlikely it is that M describes the true
correspondence. Instead of deriving a maximum a poste-
riori (MAP) cost function from a Bayesian formulation (as
is done in [2, 7, 11]), we propose a simple cost function
justified solely by empirical evidence.

The cost of a match sequence is defined by a constant
penalty for each occlusion, a constant reward for each
match, and a sum of the dissimilarities between the matched
pixels:

(M ) = Nocc�occ � Nm�r +
NmX

i=1

d(xi; yi); (1)

where �occ is the constant occlusion penalty, �r is the con-
stant match reward, d(xi; yi) is the dissimilarity between
pixels xi and yi, and Nocc and Nm are the number of oc-
clusions (not the number of occluded pixels) and matches,
respectively, in M .

This cost function prefers piecewise-constant disparity
maps. Thus, if possible, each object is assigned a single
disparity, even if that object’s depth varies in actuality (as
in the case of a cylindrical surface). Although this behav-
ior sacrifices accurate scene reconstruction, it facilitates the
precise localization of depth discontinuities because it ac-
centuates the change in disparity at the object’s boundaries
(at least in case of objects, like cylinders, whose depth ta-
pers at the ends). In addition, the simplicity of (1) makes
our cost function easy to understand, implement, and eval-
uate.

2.1.1 Occlusion penalty and match reward

Technically, �occ is interpreted as the amount of evidence
(in terms of mismatched pixel intensities) that is necessary
to declare a change in disparity, while �r is interpreted as

the maximum amount of pixel dissimilarity that is generally
expected between two matching pixels. Together, the two
terms act like an occlusion penalty that is dependent on
the length of the occlusion [2, 7]. Nevertheless, we keep
the terms separate because a constant occlusion penalty
is central to our method of pruning the search space, as
described in Section 3.2. In our implementation,�occ = 25
and �r = 5 (both measured in gray levels).

2.1.2 Pixel dissimilarity

The term d(xi; yi) measures how unlikely it is that IL(xi)
and IR(yi) are images of the same scene point. This dissim-
ilarity cannot be measured by simply taking the difference
between IL(xi) and IR(yi), as is often done, because im-
age sampling can cause this difference to be large in the
vicinity of intensity edges. Typically, the problem is al-
leviated either by working at subpixel resolution [2, 11]
or by adding robustness through window-based matching
[4, 6, 7, 9]. But subpixel resolution is computationally
expensive for algorithms that explicitly search over all pos-
sible disparities, and windows degrade the precision of the
depth discontinuities since depth discontinuities violate the
fundamental assumption behind windows. Therefore, we
propose instead to use the linearly interpolated intensity
functions surrounding two pixels to measure their dissimi-
larity, in a method that is provably insensitive to sampling.

To understand our dissimilarity measure in more detail,
consult Figure 2, which shows the intensity functions IL
and IR incident upon two corresponding scanlines of the
left and right cameras, respectively. The functions are
sampled at discrete points by the image sensor; three such
adjacent points (or pixels) are shown here in each scanline.
In this discussion, xi and yi are chosen as the pixels whose
dissimilarity is to be measured. We define ÎR as the linearly
interpolated function between the sample points of the right
scanline. Then we try to measure how well the intensity at
xi fits into the linearly interpolated region surrounding yi.
That is, we define the following quantity:

�d(xi; yi; IL; IR) = min
yi�

1

2
�y�yi+

1

2

jIL(xi)� ÎR(y)j:

Then, the dissimilarity between the pixels is computed as
the minimum of this quantity and its symmetric counterpart:

d(xi; yi) = minf �d(xi; yi; IL; IR); �d(yi; xi; IR; IL)g:

Thus, the definition of d is symmetrical.
Since the extreme points of a piecewise linear function

must be its breakpoints, the computation of d is rather
straightforward. Again, see Figure 2. First we compute
I�R � ÎR(yi �

1

2
) = 1

2
(IR(yi) + IR(yi � 1)), the linearly

interpolated intensity halfway between yi and its neigh-
boring pixel to the left, and the analogous quantity I+R �



IL(xi)

xi � 1 xi xi + 1
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Imax = IR(yi)

Imin = I�
R
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R

yi � 1 yi yi + 1
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Figure 2: Definition & computation of �d(xi; yi; IL; IR).

ÎR(yi+
1

2
) = 1

2
(IR(yi)+IR(yi+1)). Then we let Imin =

min(I�R ; I
+

R ; IR(yi)) and Imax = max(I�R ; I
+

R ; IR(yi)).
With these quantities defined,

�d(xi; yi; IL; IR) = maxf0; IL(xi)�Imax; Imin�IL(xi)g:

This computation takes only a small, constant amount of
time more than the absolute difference in intensities.

The quantityd is insensitive to sampling in the sense that,
without noise or other distortions, d(xi; yi) = 0 whenever
yi is the closest sampling point to the y value corresponding
to xi. The only restriction is that the continuous intensity
function incident upon the sensor be either concave or con-
vex in the vicinity of xi and yi (Interested readers can
find the theorems and proofs in [3]). In practice, inflec-
tion points cause no problem since the regions surrounding
them are approximately linear — and linear functions are
both concave and convex. Therefore, our cost function
works well as long as the intensity function varies slowly
compared to the pixel spacing on the sensor, i.e., as long
as aliasing does not occur. We slightly defocus the lens to
ensure this condition.

Figure 3 contrasts our dissimilarity measure with the ab-
solute difference in intensity. Wherever the intensity func-
tion is nearly constant, or wherever the disparity between
the two scanlines is close to an integral number of pixels,
the two approaches yield similar results, since sampling
effects are negligible. In the remaining areas, however, the
absolute difference can be large, while our measure remains
well-behaved.
2.2 Hard constraints

In addition to measuring the likelihood of a match se-
quence by its cost, we require all match sequences to satisfy
certain constraints. The first set of constraints enables the
algorithm to handle untextured regions, while the second
set facilitates a systematic, efficient search.

2.2.1 Intensity variation accompanies depth disconti-
nuities

Because of the ambiguity in untextured regions, many
stereo algorithms require texture throughout the images.
In fact, it is not uncommon for a scene to be artificially al-
tered by placing a textured background behind the objects
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Figure 3: TOP: A portion of a match sequence. For viewing
clarity, the left scanline is shifted up, while the right scanline
is shifted to the right. MIDDLE: The dissimilarities between
the matched pixels, as computed by our measure. Most of
the values are zero. BOTTOM: The dissimilarities computed
by taking the absolute value of the difference in intensity.

of interest in order to make the scene more amenable to the
particular stereo algorithmbeing tested. As we will demon-
strate, however, untextured, nearly fronto-parallel surfaces
can be handled quite nicely as long as one assumption re-
mains true, namely that intensity variation accompanies
depth discontinuities.2 (Similar assumptions have been
used in [4, 6].) Because our threshold of declaring in-
tensity variation is small, we are not trying to place the
depth discontinuities along strong intensity “edges” but are
merely preventing the cost function from making a poor
decision in a region with no information.

Previous algorithms have not exploited the full potential
of this assumption. Not only does the assumption constrain
a depth discontinuity to lie near intensity variation, but it
also specifies upon which side of the variation the discon-
tinuity must lie. To see this, note that intensity variation
occurring at a depth discontinuity (as the result of an inten-
sity difference between the near object and the far object)
has the same disparity as the near object (see Figure 4). This
fact is not hard to see once one realizes that the physical
origin of the intensity variation is the boundary of the near
object, regardless of the geometry of the far object. There-

2An intensity variation is declared roughly as follows: any set of three
adjacent pixels whose difference between maximum and minimum gray
levels is at least five. Think of it as a weak intensity edge.
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Figure 4: Given the assumption that there is a change in in-
tensity along the boundary between the near and far objects,
intensity variation must lie to the right of an occlusion in
the left scanline. TOP: A physical setup. MIDDLE: A match
sequence that appears feasible but actually violates the as-
sumption. BOTTOM: The match sequence that is consistent
with the assumption.

fore, as the camera moves laterally, the intensity variation
moves with the projection of the near object. Using Figure
4 as an example, we notice that pixels in the left scanline
are occluded when the far object’s projection is to the left
of the near object’s. Since the occluded pixels come from
the far object, and since the intensity variation is part of
the near object, the occlusion must lie immediately to the
left of the intensity variation. Likewise, occluded pixels
in the right scanline must lie immediately to the right of
intensity variation. Therefore, we require each occlusion
to be accompanied by intensity variation on the appropriate
side.

2.2.2 Constraints related to search

Like most stereo algorithms, we impose a limit on the
amount of disparity allowed: 0 � � � �. Also, to enable
the use of dynamic programming we impose the mono-
tonicity constraint and forbid simultaneous left and right
occlusions, this latter constraint being equivalent to the re-
quirement that, if (x; y) is a match, either x + 1 or y + 1
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Figure 5: (a) The search grid and a match sequence (“�”
cells). (b) The matches (white cells) that can immediately
precede a match (striped cell). (c) The matches that can
immediately follow a match.

must be matched.

3 Searching Along Epipolar Scanlines
Thanks to the structure of the cost function, the tech-

nique of dynamic programming (also used in [1, 2, 5, 7,
8, 12]), can be used to find the optimal match sequence by
conducting an exhaustive search.

Figure 5a illustrates the search grid for two scanlines
having 10 pixels each, using a maximum disparity of three
pixels (i.e., � = 3). Because of the disparity limit,
many of the cells in the grid are disallowed; these are
shown as black cells. The algorithm searches for the
best possible path3 stretching from the left-hand side to
the right-hand side. As an example, the match sequence
h(1; 0); (2; 1); (3; 2); (5;3); (6;4); (7; 5); (8;7); (9;8)i is
shown by the cells marked with �. Notice that any col-
umn or row that does not contain an � corresponds to an
occluded pixel.

3.1 Two dual optimal algorithms
The standard dynamic programming algorithm would

find the best path by iterating through all the cells in the
search grid, computing the best path to each cell. However,
an equivalent algorithm computes the best paths through
each cell. That is, each time a cell is encountered, the
paths through that cell to all its possible following cells are
computed. For example, let c be the cell, and let cf be one
of its following cells. Then, if the path to cf through c is
better than any previously computed path to cf , the path to
cf is updated. Basically, instead of looking backward, as
in Figure 5b, each cell looks forward, as in Figure 5c. This
concept is tricky to explain but not hard to understand.

Why is this algorithm important, since its computation
is identical to that of the standard algorithm? With the
standard algorithm, the worth of a cell is not known until
after the computation has already been performed for that
cell. In contrast, with this alternate algorithm, the best

3Informally, we will use the terms path and match sequence inter-
changeably, as well as the terms cell and match.
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Figure 6: Optimality is retained when p is not rightward
expanded, assuming that 0(q) < 0(p).

path to each cell is computed before the cell is expanded.
Therefore, the search space can be pruned by refusing to
expand cells unlikely to be along the best path.

3.2 A faster algorithm
Consider a match p with a possible following match c

such that there are right-occluded pixels between them, as
shown in Figure 6. Now suppose that there is some match
q to the left of and on the same row as p whose best path
has a lower cost. Then q is also a possible preceding match
of c (as is evident from Figure 5c), and the best path to c

through q is better than the best path to c through p, since
the occlusion penalty is constant. Therefore, there is no
need to expand p to c, or indeed to any of the matches on
c’s row since q is also a possible preceding match of each of
them. By a similar argument, we conclude that it is fruitless
to expand p to any of the matches on its adjacent column if
there is a lower-cost match above it.

In light of these observations the algorithm could, with-
out sacrificing optimality, refuse to rightward expand any
match with a lower-cost match to its left or downward ex-
pand any match with a lower-cost match above it. However,
the running time would not be reduced because of the dif-
ficulty in determining whether there is a lower-cost match
above or to the left of another match. Instead, the algorithm
refuses to rightward expand any match with a lower-cost
match in its row or downward expand any match with a
lower-cost match in its column. This pruning brings the
running time down from O(n�2), where n is the number
of pixels in the scanline, to approximately O(n�log�),
as is evident from Figure 7.

4 Propagating Information Between Scan-
lines

While processing scanlines independently is computa-
tionally attractive and straightforward to formulate, it does
not take advantage of the dependence of the disparities
from one scanline to the next. A common way to incor-
porate this information is to extend the one-dimensional
cost function to a two-dimensional cost function, which is
then minimized. However, minimizing such a function in
a computationally efficient manner is not a straightforward
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Figure 7: Computing time vs. � of our algorithm (solid)
and the standard algorithm (dashed).

task. In the extension from 1D to 2D, it is not uncommon
for the computing time to increase by 800% or more [2, 12].
As a result, some approaches avoid the extension altogether
[7, 8].

We have devised a method for postprocessing the dis-
parity map by propagating reliable disparity values into re-
gions of unreliable disparity values. This postprocessing is
rather global in nature and is quite effective at propagating
the background disparities into regions with little intensity
variation. Moreover, it is fast, increasing our processing
time by only 30%.

Each pixel is assigned a level of reliability, which is de-
termined by the number of contiguous pixels in the column
agreeing on their disparity. The idea is that if the disparities
of pixels on adjacent rows were computed independently
and they agree, then they are likely to be correct (except in
one case to be described shortly). Pixels are quantized into
one of three nondisjoint categories (that is, each category
subsumes the previous ones): slightly reliable, moderately
reliable, or highly reliable. We can think of moderately
reliable pixels as being aggressive, changing the values of
their neighbors, while slightly reliable pixels are defensive,
resisting change.

A moderately reliable pixel propagates along its column,
changing the disparities of the pixels it encounters, until it
reaches either intensity variation or a slightly reliable region
with a lower disparity. Regions with a higher disparity are
overrun no matter what their reliability, because reliability
is not a good indication that the disparities are correct when
the background has little intensity variation. For example,
after the initial processing of Figure 8a, all 55 rows incor-
rectly agree that the lamp’s concavity should be assigned
the disparity of the lamp.

The only distinction between moderately and highly re-
liable pixels is that the former are not allowed to overrun
their neighbors if the change in disparity is just one pixel.



This rule preserves some slanted surfaces, such as the table
and boxes in Figures 8a and 8c.

After the pixels are propagated along their columns, the
same process is repeated along the rows. Reliability is
determined by the number of contiguous pixels in a row
agreeing on their disparity, and disparities are then propa-
gated horizontally. This step has less theoretical justifica-
tion than the previous one, but it helps to fill in some of
the remaining gaps. Before either the vertical or horizontal
propagation step has begun, the disparity map is cleaned
by removing isolated disparity values that are surrounded
by values that agree, and after both propagation steps have
finished, the disparity map is cleaned by mode filtering.

5 Experimental Results
We present the results of the algorithm on five stereo

pairs, shown in Figure 8. The images were taken with a
single Pulnix camera whose lens was slightly defocused
to remove aliasing and which was translated along a base-
line of 10 mm. The results demonstrate the algorithm’s
ability to compute an approximate disparity map and ac-
curate depth discontinuities in a wide variety of situations,
such as textured and untextured objects, textured and un-
textured backgrounds, curved and planar surfaces, specular
and matte surfaces, and fronto-parallel and slanted surfaces.

Particularly striking is the result in Figure 8a, in which
the depth discontinuities are nearly perfect. Notice that
the discontinuities are correctly placed along the edges of
the table support and the lamp cord, even though the only
texture between the two is a little door hinge. Also, the table
is recovered as a series of constant-disparity strips whose
disparity decreases as the table recedes. Figure 8b shows
similar performance, although somewhat more noisy, with
a textured background.

The results of Figure 8c are also worth noting. Even
though the algorithm generally assumes fronto-parallel sur-
faces and has no explicit representation of a slanted surface,
the depth discontinuities are recovered in the presence of
both horizontal and vertical slant.

From these images, it is easy to see both the power and
drawback of ignoring one-level disparity transitions in the
labelling of depth discontinuities. Although many false
transitions are ignored, such as those on the slanted tables
and the right box of Figure 8c, some true transitions are
improperly forgotten, such as the back edge of the table in
Figure 8a. It is important to note that even in principle this
problem can never be eliminated completely, because it is
impossible to determine the discontinuities of a continuous
function from a sampled version.

Probably the main drawback to the algorithm is its brit-
tleness. Because of its emphasis on speed and on preserving
sharp changes in disparity, the algorithm is heavily depen-
dent upon local information. For example, if a boundary

has no accompanying intensity variation for several scan-
lines in a row, then that boundary will not be found (see
for example the triangular wedge and cap of the left Clorox
bottle in Figure 8e). Similarly, moving the lamp of Figure
8b slightly to one side can cause the middle of the lamp
post to be assigned the disparity of the background because
of the lack of intensity variation at the boundaries. Brittle-
ness also becomes evident with subsampled images or an
increased baseline, both of which cause the intensities in
the two images to look different.

On these 630� 480 images, with the maximum dispar-
ity � set to 14, a Silicon Graphics Indy workstation took 8
seconds to match the scanlines independently and 2:5 ad-
ditional seconds for postprocessing. An Indigo 2 Extreme
needed 5:5 and 1:5 sec., respectively.

6 Comparison with Previous Work
It is instructive to imagine how other stereo algorithms

would handle the image in Figure 8a. Intensity-based algo-
rithms such as those by Belhumeur and Mumford [2], Cox
et al. [5], Geiger et al. [7], and Intille and Bobick [8] have
no mechanism for preferring to place depth discontinuities
near intensity variation and would therefore not place the
discontinuities along the contour of the lamp. Moreover,
since the latter two methods do not incorporate information
between scanlines, they would not fill in the concavity of
the lamp or the region between the table support and the
lamp cord (It could be argued that the former two methods
would fare no better in this respect). For a similar reason,
the algorithms of Luo and Burkhardt [11] and Jones and
Malik [9] would not be able to find the lamp’s boundary.

Although the algorithms of Fua [6] and Cochran and
Medioni [4] try to align the depth discontinuities with the
intensity edges, it is not clear how well they would perform
on this image because the initial disparity map would be
so far from the true solution (due to the untextured regions
and the algorithms’ dependence upon local information for
the initial matching).

The methods of Baker and Binford [1] and Ohta and
Kanade [12] would probably match the intensity edges cor-
rectly, yielding a sparse disparity map. However, in interpo-
lating the disparityof the untextured regions neither method
would preserve the sharp depth discontinuities. Moreover,
edge detectors have difficulty in dealing with weak edges,
such as that of the recorder in Figure 8d (column 190).

Some algorithms directly detect depth discontinuities,
without computing dense correspondence. Because the
approaches of Little and Gillett [10] and Toh and Forrest
[13] use only local information, they would find few if
any depth discontinuities in Figure 8a, which contains little
texture. Wixson’s algorithm [14] is similar to that of Toh
and Forrest in that it matches nearly vertical edges in both
images by correlating the two regions on either side of the



edge. Since an edge must have texture on both sides, the
contour along the right side of the lamp would not be found,
nor would the nearly horizontal table edge.

7 Conclusion
Detecting depth discontinuities is an important problem

that is rarely emphasized in stereo matching. We have pre-
sented an algorithm that sacrifices the usual goal of accurate
scene depth for crisp discontinuities. The algorithm is fast
and able to compute disparities and depth discontinuities
in some situations where previous algorithms would fail.
Moreover, its results are largely independent of the amount
of texture in the image. Two significant limitations that
point the way for future research are the algorithm’s brittle-
ness and the somewhat ad hoc nature of the postprocessor,
which should be replaced by a more principled approach
without sacrificing speed.
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Figure 8: The left image, the disparity map, and the depth discontinuities. These figures are also available from the World
Wide Web at http://vision.stanford.edu.


