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Abstract— We revisit the question of state space in the
context of performing loop closure. Although a relative
state space has been previously discounted, we show that
such a state space is actually extremely powerful, able
to achieve recognizable results after just one iteration.
The power behind the technique (called POReSS) is the
coupling between parameters that causes the orientation
of one node to affect the position and orientation of other
nodes. At the same time, the approach is fast because, like
the more popular incremental state space, the Jacobian
never needs to be explicitly computed. Furthermore, we
show that while POReSS is able to quickly compute a
solution near the global optimum, it is not precise enough
to perform the fine adjustments necessary to reach the
global minimum. As a result, we augment POReSS with
a fast variant of Gauss-Seidel (called Graph-Seidel) on a
global state space to allow the solution to settle closer to
the global minimum. We show that this combination of
POReSS and Graph-Seidel converges more quickly and
scales to very large graphs better than other techniques
while at the same time computing a competitive residual.

I. INTRODUCTION

PoseSLAM is the problem of simultaneous local-
ization and mapping (SLAM) using only constraints
between robot poses, in which only the robot poses (as
opposed to landmark positions) are estimated. To a large
extent, once the robot poses have been determined, a
map of the environment can be created by overlaying
the sensor data obtained at the poses. Assuming a graph-
based approach, the primary problem in PoseSLAM is
to optimize the graph in the presence of loop closure.

The choice of state space has an enormous impact
on the ability of an algorithm to solve for loop closure.
In their influential work on PoseSLAM, Olson et al.
[17] proposed the use of an incremental state space
(ISS) with a variant of stochastic gradient descent. The
advantage of this choice is that the Jacobian has a simple
formulation and therefore does not need to be explicitly
constructed. However, the coupling between the different
parameters is lost, so that a change in orientation for one
node does not directly affect the positions of the other
nodes. Curiously, in the same paper the idea of using a
relative state space (RSS) is dismissed with the argument
that the resulting Jacobian is highly nonlinear and non-

sparse, yielding a computationally expensive algorithm.
The first two reasons are no doubt true, and as a result
no one (to our knowledge) has attempted to use an RSS
for loop closure.

In this paper we revisit the claim that using an RSS
is computationally expensive. In fact we arrive at a
surprising result, namely that the opposite conclusion is
true. By formulating the loop closure problem using an
RSS, we show that the same variation of stochastic gra-
dient descent — which we call non-stochastic gradient
descent (NGD) for clarity — is able to converge quickly,
typically producing meaningful results in just one iter-
ation. The key insight is that in an RSS the parameters
are coupled so that changing the orientation of one
node affects the global poses of all other downstream
nodes. Like the ISS, the RSS leads to a formulation
that is straightforward, leading to an implementation that
requires less than 100 lines of C++ code, with no linear
algebra required. We call this algorithm POReSS (Pose
Optimization by a Relative State Space).

While POReSS is able to achieve recognizable results
(meaning that the basic shape of the map is present) in
just one iteration, the coarse movements of the algorithm
prevent it from ever reaching the global minimum.
Therefore, we use POReSS as a starting point for a fast
variant of Gauss-Seidel, which we call Graph-Seidel,
operating on a global state space (GSS) to make fine
adjustments to the poses, thus enabling it to settle into
a good solution. While Graph-Seidel requires many
iterations, each iteration is extremely fast. We demon-
strate that our combination of POReSS and Graph-Seidel
is able to achieve competitive results compared with
state-of-the-art, in less time and with fewer iterations.
Moreover, the approach scales well, able to operate on
graphs with tens of millions of nodes.

II. RELATED WORK

Our approach falls within the framework of graph-
based SLAM, which was pioneered by Lu and Milios
[14]. Duckett et al. [3] optimize the map via relaxation,
but this early work assumed knowledge of global ori-
entation, which makes the problem linear. Frese et al.



[4] propose multi-level relaxation (MLR), a variant of
Gauss-Seidel, to find the non-linear maximum likelihood
solution. Howard et al. [8] showed that the general
relaxation framework of Lu and Milios can be applied to
a broad range of problems, including not only SLAM but
also multi-robot SLAM and sensor network calibration.

To overcome the tendency of Gauss-Seidel to get
trapped in local minima, Olson et al. [17] proposed two
contributions: an alternative state space representation
(incremental state space) so that a single iteration up-
dates many poses, and a variant of stochastic gradient
descent that is robust to local minima and converges
more quickly than Gauss-Seidel. An extension of this
work to incremental optimization of pose graphs was
presented in [18]. Another extension is TORO (Tree-
based netwORk Optimizer) [7], which uses a tree-
based parameterization for describing the configuration
of nodes in the graph, as well as slerp functions for
handling 3D rotations [5].

Other researchers have investigated the problem of
nonlinear least squares minimization using sparse linear
algebra. Kummerle et al. [13] have developed g2o, a
flexible open-source framework for 2D or 3D SLAM
and bundle adjustment. Square Root SAM (smoothing
and mapping) [2], and its incremental version iSAM
[10], formulate the problem as a factor graph. SLAM++
[19] is an efficient approach to nonlinear least squares.
Others use the preconditioned conjugate gradient (PCG)
[11], [15] or exploit the sparse structure of the linear
system [12]. Ranganathan et al. [20] show that loopy
belief propagation (LBP) is equivalent to Gauss-Seidel
relaxation but also recover the marginal covariances.
Relative bundle adjustment has been proposed [21] as
a way to avoid computing the solution in a single
Euclidean coordinate system.

III. GRAPH-BASED SLAM

The graph-based approach to SLAM attempts to find
the maximum likelihood configuration given a set of
measurements. In this section we briefly review this
approach, loosely adopting the notation of [7]. The
graph is given by G = (P, E) consisting of a set
of vertices P = {pi}

n
i=0 representing robot poses,

and a set of edges E between pairs of robot poses.
Assuming a ground-based robot rolling on a horizontal
floor plane, the ith pose is given by pi =

[
xi yi θi

]T
,

where
[
xi yi

]T
∈ R

2, and θi ∈ SO(2). Typically
the poses are traversed in a sequential manner, so for
convenience we stack this sequence into the vector p =
[
pT
1 · · · pT

n

]T
. These poses are in a global coordinate

system fixed by convention at p0 ≡
[
0 0 0

]T
.

Let x =
[
xT1 · · · xT

n

]T
be a state vector that is

uniquely related to the sequence of poses through a

bijective function g such that x = g(p) and p = g−1(x).
In the simplest case xi ≡ pi, so that the states are
equivalent to the global poses, but this is not required;
as we shall see, the choice of state space can have
significant impact upon the results.

Each edge (a, b) ∈ E captures a constraint δab be-
tween poses pa and pb obtained by sensor measurements
or by some other means. For ease of presentation we
assume at most one edge between any two given poses,
but the extension to a multigraph is straightforward.
The uncertainty of the measurement is given by the
information matrix Ωab, which is the inverse of the
covariance matrix. If we let fab(x) be the zero-noise
observation between poses pa and pb given the cur-
rent configuration x, then the discrepancy between the
predicted observation and the actual observation is the
residual:

rab(x) ≡ δab − fab(x). (1)

Assuming a Gaussian observation model, the negative
log-likelihood of the observation is given by the squared
Mahalanobis distance

ǫab(x) ∝ rTab(x)Ωabrab(x), (2)

also known as the chi-squared error.
The goal of graph-based SLAM is to find the configu-

ration x that minimizes the energy ǫ(x) ≡
∑

(a,b)∈E ǫab.
This energy is a non-linear expression due to the orien-
tation parameters, thus requiring an iterative approach.
Let x̃ be the current estimate for the state. The linearized
energy about this current estimate is given by

ǫ̃(x) ≡
∑

(a,b)∈E

r̃Tab(x)Ωabr̃ab(x), (3)

where the linearized residual is given by the first-order
Taylor expansion:

r̃ab(x) ≡ rab(x̃)− Jab(x̃) (x− x̃)
︸ ︷︷ ︸

∆x

, (4)

where Jab(x̃) is the Jacobian of the error eab(x) ≡
−rab(x) evaluated at the current state.

Expanding the linear system, rearranging terms, dif-
ferentiating ∂ǫ̃(x)/∂∆x, and setting to zero yields

∑

(a,b)∈E

Ωab (rab(x̃)− Jab(x̃)∆x) = 0. (5)

If we define K as the matrix obtained by concatenat-
ing the Ωab horizontally, r(x̃) as the vector obtained
by stacking rab(x̃) vertically, and J(x̃) as the matrix
obtained by stacking Jab(x̃) vertically, we obtain the
standard least squares system

Kr(x̃) = KJ(x̃)∆x. (6)



Multiplying both sides by (KJ)T yields the so-called
normal equations:

JT (x̃)ΩJ(x̃)∆x = JT (x̃)Ωr(x̃), (7)

where Ω = KTK.
For reference let us consider the dimensions of these

matrices. If we let m be the number of elements in the
state vector, then xi is an m×1 vector; typically for 2D
pose optimization we have m = 3 due to the translation
and orientation parameters. The vectors x, x̃, and ∆x are
all mn × 1. Let m′ be the number of elements in the
observation δab; typically m′ = m. Then δab(x), fab(x),
rab(x), and r̃ab(x) are all m′×1 vectors, Ωab is m′×m′,
and ǫab(x) and ǫ̃ab(x) are scalars. The Jacobian Jab(x)
is m′ ×mn. If we let n′ = |E| be the number of edges
in the graph, then Ω is m′n′ ×m′n′, r(x) is m′n′ × 1,
and J(x) is m′n′ ×mn.

IV. STATE SPACES

As mentioned earlier, the choice of state space can
have a significant impact upon the results. In this section
we describe three different state spaces and outline their
strengths and weaknesses. In all cases, m′ = m = 3.

A. Global state space (GSS)

The most natural choice for state space is the global
pose, that is, the pose of the robot in a global coordinate
system:

xi ≡ pi =
[
xi yi θi

]T
. (8)

The use of a global state space (GSS) leads to a
simple formulation of the energy of the system and
subsequently a sparse Jacobian. However, since the GSS
representation directly solves for the global poses, each
node is only affected by the nodes to which it is directly
connected. This causes slow convergence since changes
will be propagated slowly and can easily be trapped in
a local minimum if the initial conditions are poor.

B. Incremental state space (ISS)

Olson et al. [17] propose using the incremental state
space, in which the state is the difference between
consecutive poses:

xi ≡ pi−pi−1 =





xi − xi−1

yi − yi−1

θi − θi−1



 , i = 1, . . . , n, (9)

with x0 ≡
[
0 0 0

]T
.

With an incremental state space, the ith pose is given
by the sum of all states up to and including i:

pi =

i∑

k=0

xk. (10)

This state space allows changes to be propagated through
the system quickly because changing one state affects
the global pose of all nodes past it. However, the
coupling between the different parameters has been lost,
so that a change in orientation for one node does not
directly affect the positions of the other nodes.

C. Relative state space (RSS)

Another alternative is to use a relative state space:

xi ≡
[
x′
i y′i θ′i

]T
, (11)

with x0 ≡
[
0 0 0

]T
. The parameters x′

i, y
′
i, and θ′i

describe the relative Euclidean transformation between
the (i − 1)th and ith poses, specifically the ith pose in
the (i − 1)th coordinate frame. Assuming a righthand
coordinate system with positive angles describing coun-
terclockwise rotation, we have:

pi = pi−1 +





cos θi−1 − sin θi−1 0
sin θi−1 cos θi−1 0

0 0 1





︸ ︷︷ ︸

R(θi−1)





x′
i

y′i
θ′i





︸ ︷︷ ︸

xi

(12)

=

i∑

k=1

R(θk−1)xk, (13)

where

θb =
b∑

k=1

θ′k (14)

is the global orientation, as mentioned earlier. If we
define apb as the relative pose between a and b, a < b,
that is, pose b in coordinate frame a, it is not difficult
to verify that

apb = RT (θa)(pb − pa) =

b∑

k=a+1

R(aθk−1)xk (15)

since 0pb = pb and 0θb = θb, where

aθb = θb − θa =

b∑

k=a+1

θ′k (16)

is the angle of frame b with respect to frame a. Note
that θa = −aθ0, so that RT (θa) = R(aθ0).

V. APPROACH

In general, the solution to (7) is found by repeatedly
computing r(x̃) and J(x̃) for the current estimate, solv-
ing the equation for ∆x, then adding ∆x to the current
estimate to yield the estimate for the next iteration.
The process is repeated until the system converges (i.e.,
‖∆x‖≤ τ , where τ is a threshold).

The standard Gauss-Newton approach is to solve the
equation directly in each iteration, leading to

∆x = M−1JT (x̃)Ωr(x̃) (17)



where M = JT (x̃)ΩJ(x̃) is a 3n× 3n preconditioning
matrix. Instead, we propose a two-step approach that
first uses a variation of stochastic gradient descent
in the relative state space (POReSS), followed by a
variant of Gauss-Seidel in the global state space (Graph-
Seidel). Although either of these is itself a standalone
solution, we show in the results that the two exhibit
complementary characteristics. The former is better at
quickly getting near the global minimum even with poor
initial conditions but can take many iterations to reach
convergence, while the latter is better at performing de-
tailed refinements of the estimate but requires a starting
point near the global minimum.

A. Non-stochastic gradient descent

Stochastic gradient descent (SGD) is a standard itera-
tive method for finding the minimum of a function. SGD
repeatedly updates the state based on a single constraint
between nodes a and b:

∆x = λabM
−1JT

ab(x̃)Ωabrab(x̃), (18)

where λab ≡ λ/|b−a|, and λ is a scalar learning rate that
follows an exponential decay. In contrast to traditional
SGD, in which the order of the constraints is chosen
randomly, we follow the approach of Olson et al. [17] in
which the order is deterministic. For clarity, we refer to
this approach as non-stochastic gradient descent (NGD).
Unlike Olson’s method, our approach selects constraints
in decreasing order of the number of nodes they affect.

Using a relative state space, the residual correspond-
ing to a constraint between nodes a and b is given by

rab(x) = δab −
apb. (19)

The Jacobian is obtained by differentiating the right side
of (15) with respect to the states:

Jab =
[
· · · 0 a

bBa+1
a
bBa+2 · · · a

bBb 0 · · ·
]
,

(20)
where

a
bBi ≡

∂

∂xi

apb =





cos aθi−1 − sin aθi−1
a
bαi

sin aθi−1 cos aθi−1
a
bβi

0 0 1





(21)
[
a
bαi
a
bβi

]

≡

b∑

k=i

[
−x′

k sin
aθk−1 − y′k cos

aθk−1

x′
k cos

aθk−1 − y′k sin
aθk−1

]

(22)

if a + 1 ≤ i ≤ b, or a
bBi ≡ 0 otherwise, where 0

is a vector of zeros. As in the incremental state space
approach of Olson et al. [17], we never need to compute
the Jacobian explicitly.

In the general case the Jacobian is neither sparse
nor linear. Plugging (20) into (18) yields a linear sys-
tem that is difficult to compute due to the M−1 =

(JT (x̃)ΩJ(x̃))−1 term. Following Olson et al. [17],
instead of explicitly computing this matrix we instead
ignore all but the diagonal elements:

M ≈ diag(JT (x̃)ΩJ(x̃)) (23)

= diag




∑

(a,b)∈E

amb





︸ ︷︷ ︸

m

, (24)

where diag(v) ≡
∑

i eieTi veTi creates a diagonal matrix
from a vector, ei is a vector of all zeros except a 1 in
the ith element, and

amb ≡
[
· · · 0 a

bγ
T
a+1

a
bγ

T
a+2 · · · a

bγ
T
b 0 · · ·

]T
,

(25)
where

a
bγi ≡ diag(abB

T
i Ωai

a
bBi), (26)

and diag(A) ≡
∑

i eTi Aeiei extracts the diagonal of a
matrix.

When the constraint is between two consecutive
nodes, b = a+1, the Jacobian reduces to a very simple
form:

Jab =
[
· · · 0 I{3×3} 0 · · ·

]
, (27)

where I{3×3} is the 3 × 3 identity matrix. Oftentimes
the vast majority of constraints in a pose optimization
problem are between consecutive nodes, in which case
this simple form yields a tremendous speedup. Note also
that as the preconditioned matrix is being constructed,
the computation is simpler in the case of consecutive
nodes:

amb ≡
[
· · · 0 diag(Ωab) 0 · · ·

]T
. (28)

Plugging the simplified Jacobian of (27) into (18),
approximating M by its diagonal elements, and taking
the Moore-Penrose pseudoinverse, we get

∆x = λabM
+
[
. . . 0 diag(Ωab) 0 . . .

]T
rab(x̃)
(29)

≈ λab

[
. . . 0 I{3×3} 0 . . .

]T
rab(x̃) (30)

= λabrab(x̃), (31)

where the second line is equal in the case of a di-
agonal Ωab. Thus it can be seen that in the case of
consecutive nodes, only one state needs to be modified,
and the update is extremely simple. In the general
case, the complexity of computing JT

abΩabrab is pro-
portional to the number of nodes between a and b.
Pseudocode for POReSS can be seen in Algorithm 1,
where m ≡

∑
amb ≡

[
m1 · · · mn

]T
is the vector

such that M ≈ diag(m), r =
[
rx ry rθ

]T
, ∆ =

[
∆x ∆y ∆θ

]T
, and modθ computes the modulo of

the last element of the vector while leaving the other



Algorithm 1 POReSS
Input: relative states x1:n, δab and Ωab ∀(a, b) ∈ E
Output: updated relative states x1:n
⊲ Precompute M
m← zeros(3n, 1)
for (a, b) ǫ E do ⊲Note: a < b

m← m + amb

end for
⊲ Minimize
while not converged do

for (a, b) ǫ E do ⊲Note: a < b
r← (δab −

apb) modθ 2π
if b == a+ 1 then

xb ← xb + λr
else

r← Ωabr

for i← a+ 1 to b do

∆← R(aθi−1)





rx
ry
0



+ rθ





a
bαi
a
bβi

1





xi ← xi + λ
b−a





∆x/m3i−2

∆y/m3i−1

∆θ/m3i





end for
end if

end for
decrease λ

end while

elements unchanged. To improve readability the pseu-
docode does not include all the optimizations used in
our implementation.

B. Graph-Seidel

While the use of non-stochastic gradient descent
(NGD) on a Relative State Space allows us to quickly
optimize a pose graph, it does a poor job of converging
to the correct solution. We address this in the second
phase of our optimization process. In this phase we
use an implementation of Gauss-Seidel that is optimized
for a graph, which we refer to as Graph-Seidel. Graph-
Seidel is better suited to finding exact solutions and can
perform well given adequate initial conditions. In our
Graph-Seidel optimization we do not use a relative state
space but instead use a global state space. This change is
made because the second phase provides a refinement to
the original optimization, and we want to prevent small
changes in one state from having large effects on the
entire system.

The residual is the same as before, but now we use
the left side of (15), which we combine with (19) to
yield

rab(x) = δab −RT (θa)(pb − pa) (32)

To simplify the math we define

r′ab(x) ≡ R(θa)rab(x) (33)

= pa − pb +R(θa)δab (34)

Ω′
ab ≡ R(θa)ΩabR

T (θa) (35)

and note that ǫ(x) does not change when substituting
r′ab for rab, and Ω′

ab for Ωab.
Graph-Seidel differs from Gauss-Seidel by assuming

that R(θa) is constant when taking the derivative ∂ǫ(x)
∂p

i

.
The key insight is that, if R(θa) is constant, then ǫ(x) is
convex in the states, and we do not need to linearize the
system at all. Instead we simply take derivatives to solve
directly for the states, then iterate by updating R(θa).
Employing this assumption and setting the derivative to
zero yields

∑

(a,i)∈Ein

i

Ω′
air

′
ai(x) =

∑

(i,b)∈Eout

i

Ω′
ibr′ib(x), (36)

where

E ini ≡ {(a, b) : (a, b) ∈ E and b = i} (37)

Eouti ≡ {(a, b) : (a, b) ∈ E and a = i} (38)

are the set of edges into and out of, respectively, node i.
Since we are using a GSS, x = p and xi = pi for

i = 1, . . . , n. Rearranging terms yields







Ω1 −Ω12 · · · −Ω1n

−Ω21 Ω2 · · · −Ω2n

...
. . .

...
−Ωn1 −Ωn2 · · · Ωn















x1
x2
...

xn







=








v1
v2
...

vn







, (39)

where, assuming we do not have a multigraph,

Ωab ≡ Ωba ≡







Ω′
ab if δab exists

Ω′
ba if δba exists

0{3×3} otherwise

(40)

Ωa ≡
∑

b

Ωab (41)

vi ≡
∑

(a,i)∈Ein

i

R(θa)Ωaiδai

︸ ︷︷ ︸

edges in

−
∑

(i,b)∈Eout

i

R(θi)Ωibδib

︸ ︷︷ ︸

edges out

.

(42)

This can be solved using Gauss-Seidel iterations of
the form:

x(k+1)
i = Ω

−1

i



vi +
∑

j<i

Ωijx(k+1)
j +

∑

j>i

Ωijx(k)
j



 ,

(43)
where k is the iteration number; to improve convergence,
we use successive over-relaxation (SOR). Note that,
unlike Gauss-Seidel, Graph-Seidel does not actually



Algorithm 2 Graph-Seidel

Input: global states x1:n, δab and Ωab ∀(a, b) ∈ E
Output: updated global states x1:n
while not converged do

⊲ Compute v
for i← 1 to n do

vi ← 0{3×1}

for (a, b) ∈ E do
if a == i then

vi ← vi +ΩabR(θa)δab
else if b == i then

vi ← vi − ΩabR(θa)δab
end if

end for
end for
⊲ Minimize
for i← 1 to n do

w← 0{3×1}

for (a, b) ∈ E do
if a == i then

w← w +Ωabxb

else if b == i then
w← w +Ωabxa

end if
end for
xi ← Ω

−1

i (vi + w)
end for

end while

minimize a linear system, because it recomputes the
vector v each iteration. The algorithm is fast because
the matrix remains constant. As before, the pseudocode
in Algorithm 2 does not show any optimizations used in
our implementation.

VI. EXPERIMENTAL RESULTS

For evaluation the approach was applied to two
synthetic datasets and one real dataset, as well as to
a simple, single-loop graph of varying sizes (up to
40 million nodes and constraints). All timings were
performed on an Intel Core i7-3770 CPU at 3.4 GHz
with 16 GB RAM.

A. Synthetic datasets

Our approach of POReSS + Graph-Seidel was com-
pared with two state-of-the-art algorithms, TORO [6],
[5], [7] and g2o [13]. TORO is a tree-based implemen-
tation designed to increase the speed of the algorithm
of Olson et al. [17]. Except for parameter differences,
the solution found by TORO should be the same as that
found by Olson et al.; we used the former because it is
freely available online.

Ground Truth Corrupted Input
‖r‖= 5212

POReSS TORO
1 iter. (0.007 sec.) 1 iter. (0.013 sec.)
‖r‖= 2384 ‖r‖= 4522

POReSS+GS TORO
2+346 iter. (0.238 sec.) 200 iter. (2.639 sec.)

‖r‖= 227 ‖r‖= 689

Fig. 1. The Manhattan World data set, containing 3500 nodes
and 5600 constraints (top); output of POReSS and TORO after
one iteration (middle); and final output of POReSS+GS and TORO
(bottom). Not shown are the results for TORO+GS (‖r‖= 356), g2o
(‖r‖= 146), and g2o+GS (‖r‖= 131).

We ran the algorithms against two synthetic datasets.
The first is the Manhattan World of [13], shown in
Figure 1. POReSS achieves a recognizable result, cutting
the residual in half in only one iteration.1 Subsequent
iterations of POReSS produce little change on this graph,
but following POReSS with several hundred Graph-
Seidel iterations reduces the residual by more than 95%
from its original value. In contrast, one iteration of
TORO barely changes the graph or residual, and even
after 10 times more computation than POReSS+GS,
TORO is only able to achieve a solution with much
higher residual. Although at a glance it may be difficult
to compare the solutions of POReSS+GS and TORO
from the figure, close visual inspection reveals that
indeed the former is more accurate in a number of
places, thus validating the residual as a measure of
accuracy. On this particular graph the best algorithm

1For brevity we use residual for the norm of the residual. This is
equivalent to the chi-squared error since we use the identity matrix
for the information matrix all experiments.
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Fig. 2. The norm of the residual versus runtime for the different
algorithms, on the Manhattan World dataset. The plot of TORO, which
converges after more than 2 seconds, extends past what is shown here.

is g2o, which achieves a residual nearly half that of
POReSS+GS with approximately the same computation.
We do not show the output of g2o for lack of space.

Figure 2 plots the residual found by the algorithms
versus time. Graph-Seidel converges the fastest but set-
tles into a local minimum. POReSS makes significant
progress in one iteration, but subsequent iterations have
little effect. Graph-Seidel converges onto the same solu-
tion after approximately 0.06 seconds regardless of the
number of POReSS iterations (assuming at least 1). This
is the same amount of time that it takes g2o to converge.
Note that due to TORO’s relatively long running time,
the scale of the plot does not reveal the fact that TORO
does indeed reduce the residual considerably. Note also
that each iteration of POReSS takes a noticeable amount
of time, but Graph-Seidel iterations are extremely fast.

The second dataset, obtained from [9], is a larger
graph with more interconnections, shown in Figure 3.
On this dataset POReSS alone was not as successful as
TORO at finding a solution, but POReSS+GS was able
to a significantly better solution in less time than TORO.
Note that the result shown is the final result of both
algorithms after convergence. As with the Manhattan
dataset, the best algorithm is g2o, which achieves a
lower residual than either of the other approaches.

B. Real dataset

The third dataset consists of real data collected from
a vehicle driving in loops around a parking lot, from
[1], shown in Figure 4. On this dataset POReSS+GS
achieved the best results, even outperforming g2o.

C. Large single loop

As a final experiment, we constructed graphs of
varying sizes. Each graph consisted of a single square
loop with one loop closing constraint between the first
and last nodes, so that the number of nodes equaled
the number of edges (constraints). Noise was added to
the rotational component at the corners. The number of
nodes per side of the square was varied from 1000 to

Ground Truth Corrupted Input
‖r‖= 309792

POReSS+GS TORO
3 + 773 iter. (3.33 sec.) 200 iter. (13.59 sec.)

‖r‖= 1209 ‖r‖= 7058

Fig. 3. The dataset of [9] containing 10,000 nodes and 30,000
constraints (top). The final result of POReSS+GS and TORO (bottom).
Not shown are the results for TORO+GS (‖r‖= 3776), g2o (‖r‖=
362), and g2o+GS (‖r‖= 343).
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Fig. 5. The runtime for one iteration of each algorithm to optimize
a single square loop with a certian number of nodes (equivalently
constraints).

10 million, so that the total number of nodes (or edges)
varied from 4000 to 40 million. Figure 5 shows the
runtime of one iteration of POReSS, g2o, TORO, and
our implementation of Olson’s algorithm. Regardless of
the size of the graph, POReSS required the least runtime.
On a graph of 40 million nodes, POReSS required
slightly more than two seconds per iteration.

VII. CONCLUSION

We have presented a two-step optimization process
for solving the PoseSLAM problem. The first step
(POReSS) uses a relative state space and non-stochastic
gradient descent (NGD) using a simple formulation for
the Jacobian. The second step (Graph-Seidel) performs
further relaxation in a global state space by executing ex-
tremely fast iterations. The idea of a two-step process is
not new [16], but this particular combined approach con-
verges more quickly than previous approaches. More-



Ground Truth Corrupted Input POReSS+GS TORO g2o
12 + 330 iter. (0.06 s) 100 iter. (0.37 s) 10 iter. (0.02 s)

‖r‖= 56308 ‖r‖= 56 ‖r‖= 1190 ‖r‖= 408

Fig. 4. Dataset of vehicle driving around parking lot, from [1], containing 407 nodes and 1625 constraints, along with the results of the
algorithms. Not shown are the results for TORO+GS (‖r‖= 796), and g2o+GS (‖r‖= 163).

over, it is easy to implement, does not require linear
algebra, and produces competitive results compared with
state-of-the-art methods on several synthetic and real
datasets. Alternatively, Graph-Seidel can be used on its
own as a post-processing step to further improve the
results of other algorithms.

There is plenty of room for future work. One bottle-
neck to using a relative state space is the same as that
encountered using an incremental state space, namely
constraints that affect multiple states. Others have shown
that a tree representation of the graph allows for a
quicker update of the states. While POReSS does not
require this update, it does require a composition of
relative transformations between two nodes at either
endpoint of a constraint. As a result, running POReSS
on a tree representation of the graph should speed up this
composition. In addition, future work should focus on
including landmarks into the system as well as extending
the approach to 3D.
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