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Abstract— Person following is integral to robot companion level contributions of this work are threefold: an occlusio
systems and in service and assistive robots operating in vaus  inference system based on appearance and pose information
other scenarios. Human populated environments challenge g geveloped (Section I11-A); a Simultaneous Localization

these robots to navigate around highly dynamic workplaces. . . .
The primary challenges for these robotic systems, navigain and Mapping (SLAM) approach robust to rotational drift and

through uncertainty and occlusion detection and handlingare ~homogeneity of typical indoor environments is demonsttate
addressed in this paper. Appearance descriptors built arond  (Section IlI-B); and our work in predictive fields path plan-
pose information from person-tracking framework assist in  ning [17], [18], [19] is applied to the challenging problem
occlusion inference. Predictive fields path planning modslob- ¢ \ohot navigation in dynamic, populated environments
stacle motion and is useful in navigating dynamic environmets. . . X .
Person followers need to map and localize their environmento (Section !”'C)' The Kinect RC_;BD 1S Qsed for sensu"_lg the
be able to accomp"sh their primary tasks. A mappn’]g method rObOt environment. Results Wh|Ch h|ghl|ght eaCh Contlldmut
based on robot odometry and Manhattan constraints achieves are given in Section IV.
drift-free mapping in feature-poor, homogeneous hallwaysypi- The importance of particular contributions to person fol-
cal to indoor environments. A taxonomy is proposed to be able |4ying Jiterature has thus far been hard to gauge. In previou
to classify person followers relative to expectations fronthe .
human leader interacting with the robot. work on person followers, expectations from the robot have
been well defined [20] and system development has largely
|. INTRODUCTION been guided by robot-centric goals. However, no explicit
Robots are beginning to make a gradual expansion frogffort has been made so far to define the person follower
industrial environments into everyday life, participgtim problem in terms of expectations from the human leader.
household or personal activities. Such robots are callédh human-centric taxonomy of person follower systems
‘service robots’ [1], and are charged with operating in hamais proposed in Section II, with the intention of providing
populated environments. Various applications of mobile secontext for person follower systems to both end-users and
vice robots have been investigated over the past few yeargsearchers.
from ‘BIRON’ [2] the robot companion, to ‘Johnny’ [3] the
robot butler. o ) .
Person following is either a module in a multi-functional Yos.h|m| et al. [20] clearly outlined the functions of person
service robot or an independent service robot class. Servifollowing robots as follows:
robots with person following have typically been used to « The robot should initialize to its leader,
provide service and care in indoor environments, and havee It should follow the leader at his/her pace,
been called ‘socially assistive robots’ [4]. Such robotgseha « It should avoid obstacles, and
helped the elderly suffering from cognitive impairment,[5]  Contact with the leader should be resumed after occlu-
[6] and carried around oxygen therapy tanks for their human  sions
companions [7]. Person followers have implicitly or explicitly been desigh
The importance of person following in assistive roboticwith these considerations in mind. While these tasks captur
has driven the development of many person follower systemmbot-specific requirements quite well, they do not address
These systems have highlighted and addressed many of #re equally important question - what is the expected role
individual challenges in person following. Leader detcti of the leader in the human-robot interaction for a specific
and tracking has been demonstrated using stereo and featpeeson following robot?
tracking [8], [9], mean-shift color histograms [10], and The expected role of the human leader is an useful
machine learning [11]. Occlusion detection and inferencperspective for users of person following robots. Morepver
has been implemented using motion models with Extendedprovides an human-centric basis to compare and contrast
Kalman Filter (EKF) [12], or purely based on appearancperson following systems. A taxonomy for person followers,
information [13]. Navigation in dynamic environments hasvhich could lead to a standardized metric for assessing such
been implemented by learning human motion patterns [143ystems, is proposed in this section.
avoiding typically crowded areas in familiar environments The proposed classification system assigns four ‘levels’ of
[15], and tracking human motion to avoid their projectedsophistication for the person follower. The levels aregresil
real-time positions [16]. tittes appropriate to leader expectations: ‘Fully coofieea
The conceptual development and practical implementatideader’ (Level 1), ‘Partially cooperative leader’ (Leve), 2
of a person follower is presented in this paper. The systerfRatient leader’ (Level 3), and ‘Independent leader’ (LUeve

Il. PERSON FOLLOWER CLASSIFICATION SYSTEM
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Fig. 1. Block diagram of the person follower system.

4). Every level contains at least the functionality of alldes C. Level 3 - Patient leader
preceding it, and additional capabilities which separate i |, evel 3. the leader:

from preceding levels. « Expects the robot to create its own path around station-

ary or moving obstacles.
« Makes no effort to stay within robot sensor range.
In Level 1, the leader: « Makes no effort to avoid partial or complete occlusions.
« Waits for the robot to overcome occlusions before
resuming his/her motion.

Level 3 differs from Level 2 in that an occlusion detection
and handling module is mandated by system requirements.
A sophisticated path planning mechanism with mapping
and localization is required for path planning in dynamic
environments. The ‘patient leader’ requirement is that the
Thus, a fully cooperative leader guides the robot to a pmsiti |eader allow the robot to execute its planned route fully
close to him/her at all times, and maintains a direct line ofefore resuming motion.
sight with respect to the robot. The proposed system [17] is fully compliant with Level 3
The Level 1 paradigm has been used in the past to tegfquirements. Other Level 3 approaches have used motion-

algorithms such as stereo based leader detection [9], apgsed tracking to recover leader after occlusions[11].
stereo-based outdoor person following [8].

A. Level 1 - Fully cooperative leader

« Is aware of the physical limitations of the robot, e.g.
maximum speed, sensor range, physical dimensions.

« Creates an ‘exact’ path for the robot to follow.

« Stays within the maximum range of the robot sensor.

o Ensures that neither partial nor complete occlusio
occurs due to obstacles in the environment.

D. Level 4 - Independent leader

B. Level 2 - Partially cooperative leader In Level 4, the leader:
« Expects the robot to create its own path around station-

In Level 2, the leader: .
ary or moving obstacles.

« Is aware of the physical limitations of the robot. « Does not wait for occlusion handling to complete before
« Expects robot path planning around environmental or  resuming motion.
stationary obstacles. « Expects high level communication when the robot is

« Ensures complete occlusion does not occur; however, gijther distressed (e.g. mechanical breakdown) or lost.

allows partial occlusions such as low-lying stationary o\ e| 4 differs from Level 3 in the relaxation of the require-

obstacles. ment for the leader to wait for the robot. The implies that
Level 2 differs from Level 1 in terms of the expectations fromthe robot should be capable of reestablishing leader lmeati
the robot to plan its own path around stationary obstaclegelative to a global map, and should be able to communicate
Hence, the leader is said to be ‘partially cooperative’. 8omwith the leader.
form of map generation may be required for path planning. Level 4 systems, which place very limited expectations

The Level 2 paradigm has been used in demonstratiman the leader, are thus the least intrusive to humans in a

stationary obstacle avoidance within the person followinuman populated environment. A system which realizes all
problem definition [20], [21]. of the requirements for Level 4 person followers has not



comes close [6]. LEADERS

been realized, though recent work on socially assistivetsob o= M I T
(!

As service robots become common, the proposed taxon-
omy could be standardized to act as a guide for customers
looking for the right robot for household or office use.

Ill. PERSON FOLLOWER SYSTEM

Designed in accordance with the requirements of a ‘Level
3 - Patient Leader’ person follower, the system block dia-
gram is shown in Figure 1. The system comprises of three N

modules: W
« Leader tracking
« Mapping and localization
« Navigation Fig. 2. Tabulated results from descriptor comparisons

‘Leader tracking’ leverages skeletal information provide | each cell, the row image is the leader, against which atl te
by the Kinect skeletal tracker [22] to solve the challenging descriptors of the trial corresponding to the column image a
problem of keeping track of the leader through short term andompared. The: axis is frame number angl axis is comparison
long term occlusions. Skeletal tracking output is augmenteScore- Leader descriptors from frames in the same trial dbaw
with appearance d_esc_riptors to devel_op an appearance afignparnson ﬁicgor::f fé%‘gaﬁ?s%g'zggrrg: gsﬁggzﬁggél graplos/
pose based occlusion inference algorithm.

‘Mapping and localization’ for an indoor-navigating robot
has to work in typical hallway environments. Typical si-

| localizati ) h This gap in the tracking framweork is addressed by
multaneous localization and mapping (SLAM) approac e§fugmenting pose information for the detected skeletons

depend on availability of workspaces with an abundance Qfit, 4 novel color-based appearance descriptor. To gen-

color or depth features. The technique developed for OWrate this descriptor, the skeletal outline from the depth

mapping module requires neither; it uses robot odometry arﬁ‘?luage provided by the tracker is superimposed on the RGB
Manhattan constraints to give a reliable, drift-free magpi image. ‘Bone patches’, sections of the RGB image along

output. . . one orientation, are extracted and converted to two differ
The OF”F"%I of leader tracking and_ mapping quules feedsy colorspaces: Hue-Saturation-Intensity (HSI) and b*a*

the ‘navigation’ module. Robot navigation algorithms nee CIE1976). These colorspaces provide separate access to

to have guarantees of convergence to goal, and need df,minance components of color. Concatenating their mean

Incorporate Qbstacle motion to work in human.-p(_)pul.ate hromaticity components (H,S and a*,b*) provides an illu-

dynamic environments. Our recent work on ‘predictive f'eld?‘nination invariant color representation for each bone tpatc

path planning’ [18], [19] extends the classic navigationrps ose hased skeleton appearance descriptor compfises
function technique [23] to practical environments, and is 35 elements:

natural fit for the navigation requirements of a robotic pars
follower. D,=[H S a} bf ... Hig Sig aly blg ]

A. Leader tracking _ _ _ A leader appearance descriptor is generated during system
The leader tracking module is designed to be capabjgitialization. Subsequent descriptors, e.g. descriptdn

of traCking the leader through short-term and |Ong'terrﬂ*amej (Di)' are Compared to the leader descripmreadeh

occlusions. Without this capability, a person follower Wbu g infer whether the leader has been occluded. The Euclidean

be over-dependent on its leader for occlusion avoidancgistance between thegéd descriptors gives a match score
Previous work on occlusion avoidance has focused on depgfgleader;

[12] or appearance [13] as separate cues for occlusion’ _ _
inference. The system presented here combines both into a Sf,zeader = HD?eade'r' - Dj
pose and appearance based occlusion inference algorithm. .

Pose information is extracted from a depth image using A threshold is set for the match score, and scores ex-
the Microsoft Kinect SDK skeletal tracker [22]. This part_peedlng this thr_eshold are indicative of an occlusion .hav—
based algorithm represents the human figure as an enseniB@ occurred. Figure 2 shows that generated descriptors
of 20 joints (19 bones), and can track up toskeletons per aré sensitive to appearance variations. To ensure that the
depth image, providing access to relevant information sucfieletal tracker and appearance descriptor don’t workosscr
as joint 3D positions and tracking status per skeleton. It gUrPoses, the following rules are observed:
capable of robustly tracking unoccluded skeletons. Howeve « When the skeletal tracker infers that the leader is
the tracker does not have the capability to maintain skeleta tracked, high confidence is placed in its tracking abil-
tracks through occlusions, assigning a new identity to a ity. This is done by setting a less strict match score
skeleton reappearing after occlusion. threshold.

. 1)




« When the leader skeleton has been lost, reidentificationap. These ‘scan points’ are used in multi-line RANSAC
is confirmed by setting a strict match score thresholdstimation [17], shown in Figure 3.
for the appearance descriptor. When this is satisfied, During map initialization, a reference line orientation is
the skeleton is labeled as the leader. detected and mutually orthogonal orientation referenos bi

The advantage of appearance based descriptors over té¥f created. Difference in orientation, or ‘offset’, ofdgin
poral occlusion handling methods [11] is that they place neach frame relatl_ve to reference orientation blns_ is comsthut
constraints on the time between occlusion and reappearantger-frame rotation can then be computed using the offset
Thus, both short and long term occlusions can be inferredvalues, leading to total rotation estimate relative to map

origin:
B. Mapping and localization Onporar = On—1,,,0, + 001 2)

To get an estimate of the translation, the robot motion
pattern is controlled such that it rotates first and thenstran
lates at a fixed velocity along its new orientation vector. If
At?_, is the time elapsed since the last translation estimate,
then the robot has translated:

Tpo1 =Tn_1 Aty (3)

n—1

along its direction vector.
If the inter-frame translation of the robot is given by
(Az?_,,Az"_ ), then the current position of the robot

n—1» n—1
relative to the map origin in théx, z) plane is given by:
Tngorar = Tn—ligtar T Afcﬁ—l (4)
Zngotar = An—liotar T A2271

To generate a map using this data, the location of each
point in the occupancy map is transformed using Eq. 2 and
Fig. 3. Multi-line RANSAC estimates from scan data Eqg. 4 and the transformed location indicated on the global
The top image shows raw occupancy image data. This is Map-
converted to a scan representation and multi-line RANSAC

operates on scan data to estimate wall lines, shown in tierbot C. Navigation
image using yellow lines.

To overcome occlusions, a person follower needs to
build a local map and localize itself so as to plan a path
within its environment. This requires the use of SLAM
techniques, which commonly use 3D points corresponding to
image features [24], 3D point clouds (lterative ClosesnPoi
[25]), or 2D range scans [26] to estimate inter-frame robot
transformations. These techniques work best in featute ric
environments, where visual or depth cues can be leveraged
to accurately build a local map. Their performance degrades
in homogeneous hallways typical to indoor environments.

The mapping approach for the system presented here over-
comes this vulnerability of standard techniques by conmigini Overlapping black circles show robot trajectory acrosskspaces
robot odometry and Manhattan rotation estimates. Manhatta epresented by large blue circles. The robot avoids a moving
rotation_ estim_ates [27] are based on the assumption th%thtade Whosigggcg\?grl';p'&?"gifg éf\',g?ogezl.ue arrow
planes in an indoor environment are mutually orthogonal.

With this assumption, which holds true for many common
indoor environments, it is possible to get rotation estemat
free from rotational drift which inevitably accumulatesevh
feature or scan based inter-frame estimates are used.

The raw data for mapping is an ‘occupancy image
which uses a least square estimated floor plane equation
identify non-floor points. This is converted to a polat6)
representation, where, for each andlg r; is the radial 7 = MIN(Tobserved — Tdesired, T'magz ) (Mm/sec)
distance to the shortest occupied point in the occupancy 6 = Oopserved — Odesired(deg/ sec)

Fig. 4. Predictive field navigation over a L-shaped hallway

The robot follows its leader using a combination of ‘exact

person following’ and path planning. As long as the person
is visible, and the straight line trajectory to the person is

Clear, the robot is commanded to move to its desired position
and orientation using a control input similar to a simple

ptlooportional controller:



where (Tobserved, Qobserved) @re robot-relative polar coordi- Microsoft Kinect SDK, whereas computer vision components
nates of the leadery.s;-.q IS desired distance to leader. Theof the algorithm were implemented using the open source
robot rotates to place the leader at the center of the KimecBlepo vision library.
field of view. Leader tracking: Occlusion inference and leader detec-
Leader occlusion or obstacle detection activates the pation after reappearance was tested using a case where the
planning algorithm. This algorithm, called ‘predictivelfle |leader walked in front of the robot, was occluded, and the
path planning’ was developed in our previous work [17]pccluding person then moved out of the way. Figure 5 shows
[18], [19] as an extension of navigation function path planthe state of the occlusion inference module just after the
ning [23] to dynamic environments. It preserves navigationcclusion had passed. The bottom left and right plots have
function’s mathematical guarantees of convergence to goehme number (or time) as their axis. Inferred leader

and adds the following features: detections are plotted on the bottom left and occludinggrers
« Encapsulation of obstacle motion using predictive fieldgletections on the bottom right plot. As can be seen, the plots
« Normalized direction inputs for robot velocity. are consistent with the setup of the trial.

« A simple, practical workspace representation
« Moving goal representation in the form of waypoints.

The robot is given a directional control inpéit= u [18],

where: AT
gp
w= ng( %) 5)

K being the matrix of control gains anda small positive
constant. The ternp is called the navigation function [23].

It incorporates terms attractive to goal position and reipal
terms for moving and stationary obstacles which encapsulat
obstacle motion patterns using elliptical predictive field
[19]. A simulated indoor navigation route is shown in Figure
4.

IV. RESULTS

Fig. 6. Map output at L-junction.

frame 137

Occupancy images are stitched together using the mapping
algorithm to yield the map image. Red pixels in the map image
are transformed scan points from all frames, yellow dotsvstie
motion of the robot as it turns around the L-shaped hallwde T
white rectangle is the position of the leader in the curreammk.

Mapping and localization: The robot’s environment, and
the path traced by the robot in it, can be mapped relative to

leader norms other norms
70 £ 70

ol o ‘ the local map generated in Figure 6. Some of the occupancy
50 50 maps which are stitched together to get the local map are
g 40t ‘ g M shown in the top panel of this figure. Green areas in the
o o 5 occupancy map are floor pixels. Manhattan estimates allow
mg.,jg/ o 10 ~ the mapping module to cope with turns around corners with
G - 2 ~ Frame very little drift.

Navigation: The leader moved unoccluded for some time,

Fig. 5. Leader recovery after occusion. during which the robot operated in exact person following

Plot on the bottom left shows leader match scores and thaten tmOde‘ Sensor range or obstacle occlusions triggered afswitc
bottom right shows non-leader skeleton scores. The leader i (© Predictive path planning, as shown in Figure 7. After
identified after occlusion as shown by the reappearance tiiea b overcoming the occlusion, the robot switched back to its

mark and connecting line on the leader plot on the bottom left default ‘exact following’ state.
The non-leader skeleton consistently returned high coisqar
scores, as evidenced by the bottom-right plot.

V. CONCLUSIONS ANDFUTURE WORK

The system was implemented using a Pioneer P3-AT A person follower system was presented, motivated by
mobile robot, interfaced to the controlling laptop usingaAr the desire to develop a practical and useful service robot.
libraries. A tripod mounted Kinect was used as the forwardt was shown that the person following classification system
looking RGBD sensor. The Kinect was interfaced using thprovides a comparative basis for assessing person follower



[9]
[10]
[11]
[12]
[13]
Fig. 7. Path planning around a moving occluding person.
Wall obstacles are represented using overlapping yelloeles, [14]
and the single moving person obstacle, moving right to lsft,
represented by overlapping blue circles. Overlapping evbitcles
show the trajectory of the robot. To overcome occlusions, th (15]
robot uses predictive fields path planning. When the robathes
the large circular region around goal, it resumes exacovotig.
[16]

Future iterations of this system will benchmark robot per-
formance within each class. The appearance-based oatlusijor]
handling technique could be augmented using other modali-
ties such as face or gait recognition, to make it more robugts]
to occlusions. In indoor environments, landmark or event
detection, such as the opening of a door or the entrance t?lg]
stairwell, could provide useful heuristic information fibre
navigation module and greatly improve the utility of these
service robots.

[20]
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