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Abstract— Person following is integral to robot companion
systems and in service and assistive robots operating in various
other scenarios. Human populated environments challenge
these robots to navigate around highly dynamic workplaces.
The primary challenges for these robotic systems, navigation
through uncertainty and occlusion detection and handling,are
addressed in this paper. Appearance descriptors built around
pose information from person-tracking framework assist in
occlusion inference. Predictive fields path planning models ob-
stacle motion and is useful in navigating dynamic environments.
Person followers need to map and localize their environmentto
be able to accomplish their primary tasks. A mapping method
based on robot odometry and Manhattan constraints achieves
drift-free mapping in feature-poor, homogeneous hallwaystypi-
cal to indoor environments. A taxonomy is proposed to be able
to classify person followers relative to expectations fromthe
human leader interacting with the robot.

I. I NTRODUCTION

Robots are beginning to make a gradual expansion from
industrial environments into everyday life, participating in
household or personal activities. Such robots are called
‘service robots’ [1], and are charged with operating in human
populated environments. Various applications of mobile ser-
vice robots have been investigated over the past few years,
from ‘BIRON’ [2] the robot companion, to ‘Johnny’ [3] the
robot butler.

Person following is either a module in a multi-functional
service robot or an independent service robot class. Service
robots with person following have typically been used to
provide service and care in indoor environments, and have
been called ‘socially assistive robots’ [4]. Such robots have
helped the elderly suffering from cognitive impairment [5],
[6] and carried around oxygen therapy tanks for their human
companions [7].

The importance of person following in assistive robotics
has driven the development of many person follower systems.
These systems have highlighted and addressed many of the
individual challenges in person following. Leader detection
and tracking has been demonstrated using stereo and feature
tracking [8], [9], mean-shift color histograms [10], and
machine learning [11]. Occlusion detection and inference
has been implemented using motion models with Extended
Kalman Filter (EKF) [12], or purely based on appearance
information [13]. Navigation in dynamic environments has
been implemented by learning human motion patterns [14],
avoiding typically crowded areas in familiar environments
[15], and tracking human motion to avoid their projected
real-time positions [16].

The conceptual development and practical implementation
of a person follower is presented in this paper. The system-

level contributions of this work are threefold: an occlusion
inference system based on appearance and pose information
is developed (Section III-A); a Simultaneous Localization
and Mapping (SLAM) approach robust to rotational drift and
homogeneity of typical indoor environments is demonstrated
(Section III-B); and our work in predictive fields path plan-
ning [17], [18], [19] is applied to the challenging problem
of robot navigation in dynamic, populated environments
(Section III-C). The Kinect RGBD is used for sensing the
robot environment. Results which highlight each contribution
are given in Section IV.

The importance of particular contributions to person fol-
lowing literature has thus far been hard to gauge. In previous
work on person followers, expectations from the robot have
been well defined [20] and system development has largely
been guided by robot-centric goals. However, no explicit
effort has been made so far to define the person follower
problem in terms of expectations from the human leader.
An human-centric taxonomy of person follower systems
is proposed in Section II, with the intention of providing
context for person follower systems to both end-users and
researchers.

II. PERSON FOLLOWER CLASSIFICATION SYSTEM

Yoshimi et al. [20] clearly outlined the functions of person
following robots as follows:

• The robot should initialize to its leader,
• It should follow the leader at his/her pace,
• It should avoid obstacles, and
• Contact with the leader should be resumed after occlu-

sions
Person followers have implicitly or explicitly been designed
with these considerations in mind. While these tasks capture
robot-specific requirements quite well, they do not address
an equally important question - what is the expected role
of the leader in the human-robot interaction for a specific
person following robot?

The expected role of the human leader is an useful
perspective for users of person following robots. Moreover,
it provides an human-centric basis to compare and contrast
person following systems. A taxonomy for person followers,
which could lead to a standardized metric for assessing such
systems, is proposed in this section.

The proposed classification system assigns four ‘levels’ of
sophistication for the person follower. The levels are assigned
titles appropriate to leader expectations: ‘Fully cooperative
leader’ (Level 1), ‘Partially cooperative leader’ (Level 2),
‘Patient leader’ (Level 3), and ‘Independent leader’ (Level



Fig. 1. Block diagram of the person follower system.

4). Every level contains at least the functionality of all levels
preceding it, and additional capabilities which separate it
from preceding levels.

A. Level 1 - Fully cooperative leader

In Level 1, the leader:

• Is aware of the physical limitations of the robot, e.g.
maximum speed, sensor range, physical dimensions.

• Creates an ‘exact’ path for the robot to follow.
• Stays within the maximum range of the robot sensor.
• Ensures that neither partial nor complete occlusion

occurs due to obstacles in the environment.

Thus, a fully cooperative leader guides the robot to a position
close to him/her at all times, and maintains a direct line of
sight with respect to the robot.

The Level 1 paradigm has been used in the past to test
algorithms such as stereo based leader detection [9], and
stereo-based outdoor person following [8].

B. Level 2 - Partially cooperative leader

In Level 2, the leader:

• Is aware of the physical limitations of the robot.
• Expects robot path planning around environmental or

stationary obstacles.
• Ensures complete occlusion does not occur; however,

allows partial occlusions such as low-lying stationary
obstacles.

Level 2 differs from Level 1 in terms of the expectations from
the robot to plan its own path around stationary obstacles.
Hence, the leader is said to be ‘partially cooperative’. Some
form of map generation may be required for path planning.

The Level 2 paradigm has been used in demonstrating
stationary obstacle avoidance within the person following
problem definition [20], [21].

C. Level 3 - Patient leader

In Level 3, the leader:

• Expects the robot to create its own path around station-
ary or moving obstacles.

• Makes no effort to stay within robot sensor range.
• Makes no effort to avoid partial or complete occlusions.
• Waits for the robot to overcome occlusions before

resuming his/her motion.

Level 3 differs from Level 2 in that an occlusion detection
and handling module is mandated by system requirements.
A sophisticated path planning mechanism with mapping
and localization is required for path planning in dynamic
environments. The ‘patient leader’ requirement is that the
leader allow the robot to execute its planned route fully
before resuming motion.

The proposed system [17] is fully compliant with Level 3
requirements. Other Level 3 approaches have used motion-
based tracking to recover leader after occlusions[11].

D. Level 4 - Independent leader

In Level 4, the leader:

• Expects the robot to create its own path around station-
ary or moving obstacles.

• Does not wait for occlusion handling to complete before
resuming motion.

• Expects high level communication when the robot is
either distressed (e.g. mechanical breakdown) or lost.

Level 4 differs from Level 3 in the relaxation of the require-
ment for the leader to wait for the robot. The implies that
the robot should be capable of reestablishing leader location
relative to a global map, and should be able to communicate
with the leader.

Level 4 systems, which place very limited expectations
on the leader, are thus the least intrusive to humans in a
human populated environment. A system which realizes all
of the requirements for Level 4 person followers has not



been realized, though recent work on socially assistive robots
comes close [6].

As service robots become common, the proposed taxon-
omy could be standardized to act as a guide for customers
looking for the right robot for household or office use.

III. PERSON FOLLOWER SYSTEM

Designed in accordance with the requirements of a ‘Level
3 - Patient Leader’ person follower, the system block dia-
gram is shown in Figure 1. The system comprises of three
modules:

• Leader tracking
• Mapping and localization
• Navigation

‘Leader tracking’ leverages skeletal information provided
by the Kinect skeletal tracker [22] to solve the challenging
problem of keeping track of the leader through short term and
long term occlusions. Skeletal tracking output is augmented
with appearance descriptors to develop an appearance and
pose based occlusion inference algorithm.

‘Mapping and localization’ for an indoor-navigating robot
has to work in typical hallway environments. Typical si-
multaneous localization and mapping (SLAM) approaches
depend on availability of workspaces with an abundance of
color or depth features. The technique developed for our
mapping module requires neither; it uses robot odometry and
Manhattan constraints to give a reliable, drift-free mapping
output.

The output of leader tracking and mapping modules feeds
the ‘navigation’ module. Robot navigation algorithms need
to have guarantees of convergence to goal, and need to
incorporate obstacle motion to work in human-populated,
dynamic environments. Our recent work on ‘predictive fields
path planning’ [18], [19] extends the classic navigation
function technique [23] to practical environments, and is a
natural fit for the navigation requirements of a robotic person
follower.

A. Leader tracking

The leader tracking module is designed to be capable
of tracking the leader through short-term and long-term
occlusions. Without this capability, a person follower would
be over-dependent on its leader for occlusion avoidance.
Previous work on occlusion avoidance has focused on depth
[12] or appearance [13] as separate cues for occlusion
inference. The system presented here combines both into a
pose and appearance based occlusion inference algorithm.

Pose information is extracted from a depth image using
the Microsoft Kinect SDK skeletal tracker [22]. This part-
based algorithm represents the human figure as an ensemble
of 20 joints (19 bones), and can track up to6 skeletons per
depth image, providing access to relevant information such
as joint 3D positions and tracking status per skeleton. It is
capable of robustly tracking unoccluded skeletons. However,
the tracker does not have the capability to maintain skeletal
tracks through occlusions, assigning a new identity to a
skeleton reappearing after occlusion.

Fig. 2. Tabulated results from descriptor comparisons

In each cell, the row image is the leader, against which all test
descriptors of the trial corresponding to the column image are

compared. Thex axis is frame number andy axis is comparison
score. Leader descriptors from frames in the same trial showlow
comparison scores along the diagonal. Off-diagonal graphsshow

higher comparison scores, as desired.

This gap in the tracking framweork is addressed by
augmenting pose information for the detected skeletons
with a novel color-based appearance descriptor. To gen-
erate this descriptor, the skeletal outline from the depth
image provided by the tracker is superimposed on the RGB
image. ‘Bone patches’, sections of the RGB image along
bone orientation, are extracted and converted to two differ-
ent colorspaces: Hue-Saturation-Intensity (HSI) and L*a*b*
(CIE1976). These colorspaces provide separate access to
chrominance components of color. Concatenating their mean
chromaticity components (H,S and a*,b*) provides an illu-
mination invariant color representation for each bone patch.
This pose-based skeleton appearance descriptor comprisesof
76 elements:

Dn = [ H1 S1 a∗
1

b∗
1

. . . H19 S19 a∗
19

b∗
19

]

A leader appearance descriptor is generated during system
initialization. Subsequent descriptors, e.g. descriptori in
framej (Dj

i ), are compared to the leader descriptor,Dleader,
to infer whether the leader has been occluded. The Euclidean
distance between these76d descriptors gives a match score
Sj
i,leader :

Sj
i,leader =

∥

∥

∥
D0

leader −Dj
i

∥

∥

∥
. (1)

A threshold is set for the match score, and scores ex-
ceeding this threshold are indicative of an occlusion hav-
ing occurred. Figure 2 shows that generated descriptors
are sensitive to appearance variations. To ensure that the
skeletal tracker and appearance descriptor don’t work at cross
purposes, the following rules are observed:

• When the skeletal tracker infers that the leader is
tracked, high confidence is placed in its tracking abil-
ity. This is done by setting a less strict match score
threshold.



• When the leader skeleton has been lost, reidentification
is confirmed by setting a strict match score threshold
for the appearance descriptor. When this is satisfied,
the skeleton is labeled as the leader.

The advantage of appearance based descriptors over tem-
poral occlusion handling methods [11] is that they place no
constraints on the time between occlusion and reappearance.
Thus, both short and long term occlusions can be inferred.

B. Mapping and localization

Fig. 3. Multi-line RANSAC estimates from scan data

The top image shows raw occupancy image data. This is
converted to a scan representation and multi-line RANSAC

operates on scan data to estimate wall lines, shown in the bottom
image using yellow lines.

To overcome occlusions, a person follower needs to
build a local map and localize itself so as to plan a path
within its environment. This requires the use of SLAM
techniques, which commonly use 3D points corresponding to
image features [24], 3D point clouds (Iterative Closest Point
[25]), or 2D range scans [26] to estimate inter-frame robot
transformations. These techniques work best in feature rich
environments, where visual or depth cues can be leveraged
to accurately build a local map. Their performance degrades
in homogeneous hallways typical to indoor environments.

The mapping approach for the system presented here over-
comes this vulnerability of standard techniques by combining
robot odometry and Manhattan rotation estimates. Manhattan
rotation estimates [27] are based on the assumption that
planes in an indoor environment are mutually orthogonal.
With this assumption, which holds true for many common
indoor environments, it is possible to get rotation estimates
free from rotational drift which inevitably accumulates when
feature or scan based inter-frame estimates are used.

The raw data for mapping is an ‘occupancy image’,
which uses a least square estimated floor plane equation to
identify non-floor points. This is converted to a polar(r, θ)
representation, where, for each angleθi, ri is the radial
distance to the shortest occupied point in the occupancy

map. These ‘scan points’ are used in multi-line RANSAC
estimation [17], shown in Figure 3.

During map initialization, a reference line orientation is
detected and mutually orthogonal orientation reference bins
are created. Difference in orientation, or ‘offset’, of lines in
each frame relative to reference orientation bins is computed.
Inter-frame rotation can then be computed using the offset
values, leading to total rotation estimate relative to map
origin:

θntotal
= θn−1total

+ θnn−1
(2)

To get an estimate of the translation, the robot motion
pattern is controlled such that it rotates first and then trans-
lates at a fixed velocitẏr along its new orientation vector. If
∆tnn−1

is the time elapsed since the last translation estimate,
then the robot has translated:

rnn−1
= ṙnn−1

·∆tnn−1
(3)

along its direction vector.
If the inter-frame translation of the robot is given by

(∆xn
n−1

,∆znn−1
), then the current position of the robot

relative to the map origin in the(x, z) plane is given by:

xntotal
= xn−1total

+∆xn
n−1

zntotal
= zn−1total

+∆znn−1

(4)

To generate a map using this data, the location of each
point in the occupancy map is transformed using Eq. 2 and
Eq. 4 and the transformed location indicated on the global
map.

C. Navigation

Fig. 4. Predictive field navigation over a L-shaped hallway

Overlapping black circles show robot trajectory across workspaces
represented by large blue circles. The robot avoids a moving

obstacle whose direction is indicated using a blue arrow andpath
using overlapping red envelopes.

The robot follows its leader using a combination of ‘exact
person following’ and path planning. As long as the person
is visible, and the straight line trajectory to the person is
clear, the robot is commanded to move to its desired position
and orientation using a control input similar to a simple
proportional controller:

ṙ = min(robserved − rdesired, ṙmax)(mm/sec)

θ̇ = θobserved − θdesired(deg/sec)



where (robserved, θobserved) are robot-relative polar coordi-
nates of the leader,rdesired is desired distance to leader. The
robot rotates to place the leader at the center of the Kinect’s
field of view.

Leader occlusion or obstacle detection activates the path
planning algorithm. This algorithm, called ‘predictive fields
path planning’ was developed in our previous work [17],
[18], [19] as an extension of navigation function path plan-
ning [23] to dynamic environments. It preserves navigation
function’s mathematical guarantees of convergence to goal
and adds the following features:

• Encapsulation of obstacle motion using predictive fields.
• Normalized direction inputs for robot velocity.
• A simple, practical workspace representation
• Moving goal representation in the form of waypoints.
The robot is given a directional control inputq̇ = u [18],

where:

u = −K

(

∂ϕ
∂q

)T

∥

∥

∥

∂ϕ
∂q

∥

∥

∥
+ ǫ

, (5)

K being the matrix of control gains andǫ a small positive
constant. The termϕ is called the navigation function [23].
It incorporates terms attractive to goal position and repulsive
terms for moving and stationary obstacles which encapsulate
obstacle motion patterns using elliptical predictive fields
[19]. A simulated indoor navigation route is shown in Figure
4.

IV. RESULTS

Fig. 5. Leader recovery after occusion.

Plot on the bottom left shows leader match scores and that on the
bottom right shows non-leader skeleton scores. The leader is

identified after occlusion as shown by the reappearance of a blue
mark and connecting line on the leader plot on the bottom left.
The non-leader skeleton consistently returned high comparison

scores, as evidenced by the bottom-right plot.

The system was implemented using a Pioneer P3-AT
mobile robot, interfaced to the controlling laptop using Aria
libraries. A tripod mounted Kinect was used as the forward-
looking RGBD sensor. The Kinect was interfaced using the

Microsoft Kinect SDK, whereas computer vision components
of the algorithm were implemented using the open source
Blepo vision library.

Leader tracking: Occlusion inference and leader detec-
tion after reappearance was tested using a case where the
leader walked in front of the robot, was occluded, and the
occluding person then moved out of the way. Figure 5 shows
the state of the occlusion inference module just after the
occlusion had passed. The bottom left and right plots have
frame number (or time) as theirx axis. Inferred leader
detections are plotted on the bottom left and occluding person
detections on the bottom right plot. As can be seen, the plots
are consistent with the setup of the trial.

Fig. 6. Map output at L-junction.

Occupancy images are stitched together using the mapping
algorithm to yield the map image. Red pixels in the map image

are transformed scan points from all frames, yellow dots show the
motion of the robot as it turns around the L-shaped hallway. The
white rectangle is the position of the leader in the current frame.

Mapping and localization: The robot’s environment, and
the path traced by the robot in it, can be mapped relative to
the local map generated in Figure 6. Some of the occupancy
maps which are stitched together to get the local map are
shown in the top panel of this figure. Green areas in the
occupancy map are floor pixels. Manhattan estimates allow
the mapping module to cope with turns around corners with
very little drift.

Navigation: The leader moved unoccluded for some time,
during which the robot operated in exact person following
mode. Sensor range or obstacle occlusions triggered a switch
to predictive path planning, as shown in Figure 7. After
overcoming the occlusion, the robot switched back to its
default ‘exact following’ state.

V. CONCLUSIONS ANDFUTURE WORK

A person follower system was presented, motivated by
the desire to develop a practical and useful service robot.
It was shown that the person following classification system
provides a comparative basis for assessing person followers.



Fig. 7. Path planning around a moving occluding person.

Wall obstacles are represented using overlapping yellow circles,
and the single moving person obstacle, moving right to left,is

represented by overlapping blue circles. Overlapping white circles
show the trajectory of the robot. To overcome occlusions, the

robot uses predictive fields path planning. When the robot reaches
the large circular region around goal, it resumes exact following.

Future iterations of this system will benchmark robot per-
formance within each class. The appearance-based occlusion
handling technique could be augmented using other modali-
ties such as face or gait recognition, to make it more robust
to occlusions. In indoor environments, landmark or event
detection, such as the opening of a door or the entrance to a
stairwell, could provide useful heuristic information forthe
navigation module and greatly improve the utility of these
service robots.
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