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Abstract— A potential function based path planner for a  presence of both stationary and moving obstacles.
mobile robot to autonomously navigate an area crowded with Even with mo\/ing obstacles, motion decisions for these
people is proposed. Path planners based on potential funais — 15nners are taken without incorporating much, if any, in-

have been essentially static, with very limited represention f fi bout h the obstacl . Thi K
of the motion of obstacles as part of their navigation model. ormation about how the obstacles are moving. This makes

The static formulations do not take into account the possibity  their formulation inherently static in nature. Moreoverge
of using predicted workspace configuration to augment the with convergence, the path is not guaranteed to be optimal.
performance of the path planner. The use of an elliptical regpn There have been various attempts to maintain the frame-
signifying the predicted position and direction of motion d i of potential functions while improving their alertrset®
an obstacle is proposed in this paper. The repulsive poterai - . . .
caused by an obstacle is defined relative to this elliptical éid. the behavior OT objects in the workspace. Ge and Cui in [6],
An analytic switch is made when the robot enters this prediatd ~ [7] add a velocity term to the system state to enhance the path
elliptical zone of the obstacle. The development of navigain  planner with motion information, making it possible in to
functions makes it possible to design a potential-based ptaer  track a moving object [6] and to reach a goal with obstacles
which is guaranteed to converge to the target. nearby [7]. In the latest of a series of papers [8], Melchior e
al. approach the problem of making dynamic potential field
calculations by employing the concept of fractional atiivac

The motivation for our work is to develop a robust vision-and repulsive forces. This derives from fractional calsulu
based system for a mobile robot to be able to follow a humasind is a method of altering the potential of an obstacle based
leader in crowded environments. There are many challengn its level of danger to the robot traversing a path to goal.
ing sub-problems which need to be solved before such aDespite their successes, all potential function based-plan
system can be considered complete. One such sub-problaegrs assume a near-complete knowledge of the position and
is avoiding moving obstacles while navigating to a goalelocity of the obstacles. Moreover, there is no framework
position in the workspace. We propose a path planner whiakithin which these planners can currently incorporate a
incorporates probabilistic information in the framework o ‘look-ahead’ feature, which allows the potential to be sthp
traditional potential-based path planning to trace a moigy extrapolating from the obstacle’s current trajectome-P
optimal path to the goal. Computer vision (not discussediction and some modeling of uncertainty in prediction are
in this paper) will be used to provide motion and positiorvital characteristics for a path planner designed to work in
information as input to the path planner proposed in thipractical, populated environments where objects will Isare
paper. move along precise and deterministic trajectories. Ndiriga

The simple and effective idea behind a potential functiothrough such populated environments or through crowds has
driven path planner is to attract the robot toward the targekeen a great deal of recent interest in path planning litezat
while simultaneously repelling it from obstacles in its waywhere discrete path planners have been used. Techniques
These opposing potentials create a topology for navigatingsed include reinforcement learning [9] and building proba
the robot. The use of potential functions was proposed in filistic maps based on obstacle motion prediction ([10]][1
seminal work by Khatib [1] and has since gained widespredd?2]).
acceptance as a path planning technique for mobile robots.An extension to the navigation function based path planner
Various potential function based planners ([2], [3]) hageml [4] which allows obstacle positions as well as their motions
proposed to expand the initial concept. to be characterized with a probabilistic region we call a

Early potential field based path planners exhibited locglosition fieldis described in this paper. The shape of the
minima, places in the topology where the robot “gets stuckfield conveys information about the predicted position of
at a point other than the global minimum located at théhe obstacle and the confidence in this prediction. The
destination. Rimon and Koditschek [4] introduced a speciglosition field is formulated to maintain the simplicity of
kind of a potential function, called the navigation functio the navigation function based framework while enhancing
to counter this problem. They proved that the structure ef thits effectiveness in avoiding obstacles and reaching iitgeta
navigation function guarantees a unique minimum at the gotle propose an elliptical position field and keep the current
configuration, thus allowing the robot to “roll down” the gra robot position at one focus of the ellipse, while specifyting
dient of the field toward a guaranteed stop at the goal. Chgmedicted position to lie at the other focus and computirgg th
et al. [5] demonstrated the navigation function approach fgotential relative to this predicted position. The size lod t
multiple robots navigating to their respective goals in thenajor and minor axes of the ellipse encapsulate information
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about the predicted direction of motion and the confidence Using the bump function, a boundary function is defined,
in this prediction respectively. In keeping with the prapes  the purpose of which is to repel the robot from the workspace
of navigation functions, the proposed path planner ensurbsundary as it gets close to it. Denoted By: R? — R,

that the robot stays within its workspace, avoids collisionit is a function satisfying

with obstacles, and reaches its destination.

Il. PROBLEM FORMULATION L [1 + cos (ﬁ%)} it h<flg)<1
The robot is assumed to start inside the 2D workspace,
which is circular. The position of the target within the g, (q)={ 0 it flg) =1

workspace is known to the robot. The position and velocity
of obstacles in the workspace are measurable, though their

velocity at a future time instant may be known with a degree 1 if f(q) <h.
of uncertainty. This degree of uncertainty is influenced by _ S )
two factors: The first condition implies that the robot has sensed the

boundary but is not touching it, the second that the robot has
touched the workspace boundary, and the final term indicates

« Model of the object’s motion within the workspace )
. . . ._that the robot is far away from the workspace boundary. The
It is assumed that the above information about uncertam%nctionf is defined as

is conveyed to the path planner by a filtering or estimation
algorithm, working with camera or laser range-finder inputs

Physical dimensions of both the robot and obstacles are fla) = - llg = gooll, ®)
known, though the dimensions of obstacles could be approx-

imated by a circular zone which envelops all the points o\ﬁVhereT Is the radius of the roboti, is the radius of the

b
each obstacle. The initial configuration is such that th@mbworkspace, _andoo_ € R” is the center of the workspace. The
. . ; AR arameter is defined as

is not in physical contact with either the workspace bouylda|1:J

« Knowledge of the history of motion of an object

or with any of the obstacles. Too — T's
Given the above, the following are the path-planning h = oo — T (4)
objectives:

oS- _ ... .. wherer, is the sensing range of the robot. Since< r; <
« Objective 1 The robot should remain within its . 0 0<h<l1

workspace at all times.

L ) . _ For each of then obstacles, the repulsive potential with
« Objective 2 The robot should avoid collisions with

respect to the robot is called and is defined ag; : R? —

moving and stationary obstacles. o R{, i=1,2,---,n, a function such thag;(q) = 0 means

« Objective 3 The robot should reach its destination. =+ the robot has made contact with tHé obstacle. In

I1l. REVIEW OF PREVIOUS CONTROLLER earlier literature [4], [5], the obstacle beta is computsthg
DEVELOPMENT a simple distance formula between the robot's position and

L the obstacle’s position in the workspace:
To address the problem of robot navigation through an P P

environment with obstacles, we will modify the navigation 2 9
function method first proposed by Rimon et al. [4] and later Bil@) = lla = aoill” = (r +70i), ()
modified by Chen et al. [5]. whereq,; € R? is the center and,; € R the radius of the

it" obstacle. When the robot and obstacle touch, the value of

0; goes to zero as per the requirement of the beta function.

Let the robot be defined by its position in the workspacqye discuss the weaknesses of this formulation and propose
q(t) and a circular envelope of radiuswhich completely g improvement in Section IV.

contains the robot, wherg(t) € R?, r € RT, andt is time.
It is assumed [5] that the robot can be described by tH8. Robot Navigation

following kinematic model The navigation function, which encapsulates the forces
experienced by the robot, is defined in [4] as

A. Model Development

q=u, 1) ,
whereu(t) € R? is the control input to the robot. The static ©(q) = Kolla—d'l T (6)
destination of the robot is representeddiy whereq* € R? [”q — q*HQ'f +G (q)}

and is assumed to be within the workspace.
Two functions, called beta functions, are designed to repalherex € R is a positive constant parameter afigd € R™

the robot from the boundary of the workspace and fromns a scale factor used to establish correspondence bettveen t

obstacles inside the workspace. Both functions require tlgizometry of the potential field and the units of the coordinat

use of a curve called the smooth bump function, defineslystem occupied by the robat(q) = GoG; € R, and the

in [13]. scalar functions7y, G; € R are defined as follows



lengths of the major axi®a and the minor axi2b of the
ellipse. When the obstacle is either known to be stationary

Golg) = BS(Q) 7 or nothing is known about its motion, the ellipse collapses
G _ (q). g) intoa C|_rcle the size of the obstacle to indicate no motion
1(9) 11:[1 fi(a) ® information. As we learn (based on estimates from the vision

. . ) system) the motion of the obstacle, the circle is skewed in
wheref, and; were defined in (2) and (5), respectively. yhe girection of motion. Therefore, the direction of the araj

The convergent path planner was designed in [5] based QQis ingicates the estimated direction of motion, and the
the kinematic model in (1) length of the major axis indicates the estimated speed. The
oo\ T length of the minor axis then indicates the uncertainty & th
u=— <—¢) , (9) direction estimate. Thus, various scenarios are captuyed b
9q the construction of this elliptical field, enabling it to dajm
whereK is a a vector of gains angﬁ € R¥*2 is the partial the influence of predictive fields in potential field basechpat

derivative ofy (¢) from (6) with resqpect tay (t). planning. Typical evolution of the elliptical field is illtrsited
in Fig. 1.
IV. DEVELOPMENT OF ELLIPTICAL OBSTACLE It is beyond the scope of this paper to discuss the methods
FUNCTION of arriving at values of, andb. Without losing the generality

The original definition ofg; satisfies the requirements of of the approach, we can assume that sensors and algorithms
the beta function and has the favorable property that betorking in parallel with the path planner can track objects
changes quadratically as the robot moves toward the obstacind provide suitable values af and b to guide the model
This rate of change ensures that the robot's approach ¢evelopment for this work.
an obst_a(_:I_es current position is strongly repelleq. ch_’/vev B. Constraints on the size of the ellipse
this definition does not account for the manner in which an
obstacle has been moving or is expected to move. It doesThe elliptical position field is a probabilistic estimate of
not convey the level of threat posed by an obstacle to thghere we expect the obstacle to be at a future time instant.
robot’s approach to the goal. For example, even if the carrefhis estimate should obviously contain the current pasitio
position of the obstacle is not between the robot and the go&f the obstacle, so its radius should not extend outside the
is there a chance that the obstacle will move in between tierimeter of the ellipse. If the obstacle of radiysis placed

robot and target at a later instant? at the focus of the ellipse, then this means that the radius of
) ) N ) the obstacle should be less than the periapsis (the smallest
A. Using an Ellipse to Create a Position Field radial distance) of the ellipse:
ro < a— v a?— b2, (11)
which rearranging terms yields a constraint on the length of
/ the minor axis:
Fig. 1. Transition of the ellipse from the stationary asstiamp(red circle) b> /1o (2a —10). (12)

to increasing estimates of the velocity of the object (bllipses). As . . . . . .
the estimated speed increases, the ellipse begins to skéme iastimated 1 N€ limiting case of (11) is when the ellipse is a circle,,i.e.

direction of motion. a = b. This leads to the following constraint on the length

) . ] of the major axis:
In our formulation, the original beta function for obstacle

in (5) is modified to incorporate information about the matio a>r, (13)
and expected future state of an obstacle. As we shall see in

the simulations, this new formulation makes the robot more. Making the Elliptical Field Relevant to;

responsive to the threat posed by the motion of an obstacle,Now that the elliptical field has been defined to capture
and it skews the gradient of the navigation function in suckotion trends of an object, the potential in (5) needs a
a way that the region in which the obstacle may be expecteddefinition to give the ellipse importance in this formidat

to appear is avoided by the robot. To begin the discussion, needs to be noted that the ellipse is paobabilistic

consider a standard ellipse region for the presence of the obstacle, and it is possible
5 5 that the robot finds itself this ellipse. This is not explicit

(z = he) + (y — ke) -1 (10) forbidden, as long as the robot does not touch the measured
a? b (or deterministic) position of the obstaclg; should go to

centered ath., k.) and fully containing the obstacle. In this zero on physical contact between the robot and obstacle, and
work we assume the ellipse is aligned with the coordinatine robot should be repelled from the obstacle both inside
axes, but it could easily be rotated to make the approaemd outside the ellipse.

general. The predictive position field is defined using the The requirements for the beta redefinition are



in the direction of motion to arrive at its predicted pogitio
& q,, at a future time instant’. Then ., is defined as
Robot motion =
" s robat et /:f-;;;‘,::f;:""‘ T ﬁei (Q) = ||q - qzn - (T‘ + dEi)Q + 0, (15)
m S whered,, is the distance from the predicted obstacle position
l = T \ q,, to the pointg,.., where the line joining the robot position
‘ :\/ PE——— q and the predicted position of the obstagfg intersects
NS ﬁl o | el g the ellipse. Note that if we set = 0, this formula for 3.,
e 2 guarantees that it goes to zero when the robot touches the
i e outside of the ellipse. The curve described by this formula
(with a nonzer®) can be seen in the right half of Fig. 2(b).
5 s ; We will see later how to definé.
R ' ’ oot The requirement for the overall bets is that it should
(a) Various positions of the robot (indicated by the greearsecting be defined up to the point of contact with the obstacle. To
circles) as it approaches the obstacle along a straight Tihe left satisfy this, the constatallows 3., to reduce to a non-zero
focus of the ellipse (red) is the actual obstacle positibe right focus . . ‘ .
(black) is the most likely predicted position. Points ofeirstection minimum at the point where the robot touches the elllpse.
with the ellipse are calculated and the point closer to tHeotrds This constant is also the value gf, at the point where the
selected for3. computation. robot touches the ellipse. As the robot continues to mowe int
600 ‘ ‘ ‘ ‘ ‘ ‘ the ellipse toward the targes,, reduces to zero as desired.

7Bc

o The G, curve should be continuous with respect to the

curve to make the resultant beta differentiable throughteut
domain.

The requirements of the functioh,, are:

e« The function should reach its maximum value at
the boundary of the ellipse, i.e., whefy — ¢,
(r+de,).

o The function should reach its minimum value of zero
when the robot and the obstacle touch, i.e., when

500

4001

@ 300

:Repulsion from ellipse
2000 Be p! P

1ol BC:R(eﬁ{JIsion frdm obstacle | ||q — Qo; H = (T‘ + 7‘01.).
/ « The maximum value of the function should be given by
oL A e ‘ ‘ ‘ the 3., value when the robot touches the ellipse along a
0 5 O e 3 o ok e obstie 30 3 stra|ght_l|n§ approach to the obstacle._ Let this p_omt be
(b) The analytical switch between thi# and 3. curves takes place dre;: This givess a ConStan value relgtwe .tO the line of
when the robot touches the elliptical field. When the robatuiside approachy = [|qre, — o, ||” + (7 + 75,)". This constant
the elliptical field, the quadrati@. curve determines the overad. value is added to the ellipse beta when the robot is

Inside the field, only the circlgg, caused by the current position of

the obstacle. takes effect. outside the ellipse, and accounts for the movement of

the robot inside the elliptical position field.
Fig. 2. The variation in obstacle beta (b) as the robot amres an « Additionally, the addition of delta tg., ensures that
obstacle (a). the obstacle beta constraint, i.e., beta goes to zero
only when the robot and obstacle physically touch, is
satisfied even with the addition of the ellipse to the
formulation.
This is accomplished by using a mirror image of the bump
nction described in [13], since the highest point on the

_ N o curve needs to be further away from the x axis.
From the above list, a modified beta function is proposed Gjven the above constraints, let the following terms be

« The elliptical position field should provide the obstacle’s
repulsive force when the robot is outside the ellipse.

o The circular formulation from (5) should come into play]cu
only when the robot is inside the ellipse.

as follows: defined:
Ty, = s —Qo;|| — (1o, +1
0 robot touches the boundary of an obstacle h = ﬂqr:_ r o (ro )
.. . . c - 0j
Bi =< [, robotis inside the ellipse 5 o= | B ”2 —(r+r )2
(., robot is outside the ellipse e = o o
(14) where the notations represent:

wherej,, is the beta function for the robot with respect to « r, - range of the bump function, or the coordinate
the ellipse around th&" obstacle. The obstacle is located at ~ where it attains its maximum

one focus of the ellipse defined in (10). Let this position be « A, - zero point of the bump function relative to distance
do;- The obstacle is expected to move along the major axis  of the robot from obstacle



« ¢ - maximum value of the bump function, added to the
ellipse beta

An additional point has to be made abayt,. When we
are outside the ellipse, the point of intersection of theotob
and the ellipse is simply the point closest to the robot of
the two possible points of intersection. When we calculate
the bump function value, we are inside the ellipse and the
definition of the point of intersection needs a slight change
As we move closer and closer to the obstacle, it is possible
that the point of intersection on the other side of the olstac
is the nearer point of intersection. This chandgefor the
bump function and the desired shape of theurve is lost
because of this. To ensure this does not happen, we introduce
the unit vector from the obstacle to the robot,,. The point
of intersection is then defined as the one which is along the
VeCctor i, .

The bump function is then defined as:

ry < X
0<z<h,

Jul) = )} he <z <my

(16)
he

[1 — cos (wﬁihc
The bump function then gets the following values..At
h., the obstacle and robot touch apg, goes to zero. At
x = 1y, the elliptical position field and the robot touch and
B., gets its maximum value af. Beyondr,, the maximum
value of theg,, term,§, adds to the3., term which begins
to dominate the overalb function. Therefore the value of
0., approaches9 instead of0 as the robot moves towards
the ellipse.
With these definitions fof,., (16) andg., (15), the overall

e, O

Fig.

o 1‘0 2‘0 3‘0
(a) The motion of the robot using the formula-

tion from [5], when it does not have predictive
information to guide its path.

0 10 20 30

(b) The motion of the robot using our pro-

posed approach with the elliptical beta func-
tion, which guides the robot behind the obsta-
cle using the predicted position of the obstacle

3. Two obstacles, one moving and one stationary, occingy
workspace as the robot moves from the start position to i gb the

definition of 3; (14) is consistent with the requirements oﬁop °|f ;thte f'QL;]fte( mafkelf C% ”lﬁ feCfaﬂ?'eWtThhe tmo‘/g;gt O?Sfm‘JtveS
the ObStaC|e functlon See Flg 2 from le 0o rg as marke y the arrow, Ithout preaietiinformation

(a), the robot first attempts to move in the direction of dan@e front
of the moving obstacle) and takes a longer path. The patheofdhot is

V. SIMULATION RESULTS

represented by a succession of smaller circles. The patlviie optimal as

predictive information is added (b).

We used Simulink (Mathworks Inc., Natick, MA) to
simulate the proposed path planner in such a way that it

would be possible to directly compare our method against Both cases are tested with and without the predictive
previous results from Chen et al. [5]. This is made possibleosition field surrounding the obstacle. The setup of the
by the fact that when the position field is forced to a circke thworkspace is described as follows:

size of the obstacle, the equation in (15) reduces to (5). Our,
hypothesis was that the predictive position fields would enak
it possible for the robot to converge to the target following
a more optimal trajectory than that followed by purely stati
workspace information. Moreover, the predictive look-adhe
should make it possible for the robot to stay away from the
predicted path of the obstacle, thus lowering its chances of
a collision with the obstacle. .
We tested our approach using two hypothetical scenarios:
1) An obstacle initially obstructs the straight line path

from robot to goal, but it begins to move out of the
way as the simulation progresses.

Robot with boundary sensing zome = 5 and radius

r =1 is initially located at(—10, —20).

Goal is located af—10, 20).

Stationary obstacle with radius,, = 3 is located at
(=20, 8). The stationary nature of the obstacle causes
the predictive position field around it to shrink to a circle
with the same radius as the obstacle.

The workspace is centered é1,0) with a radius of
oo = 35.

The predictive position field of the moving obstacle of
radiusr,z = 3 is described by an ellipse with parameter
a = 8 in both cases.

2) An obstacle is initially at a distance from the straight In Scenario 1, the obstacle startgat0, 0) and travel0
line trajectory from robot to goal, but it moves to units in the workspace at a constant velocity. The sense of it

obstruct the path as the simulation progresses.

motion is such that it is moving out of the way of the robot’s



(a) The motion of the robot using the formu-
lation from [5]

(1]

(b) The motion of the robot using our pro-
posed approach with the elliptical beta func-
tion, which prevents the robot moving toward
the path of the obstacle

(2]

3
Fig. 4. The motion of the robot in a setup similar to Fig. 3 etcthat 3]

this time, the obstacle moves from right to left (as markedthsy arrow).
Without predictive information (a), the robot first attempgb move in the
direction of danger (in front of the obstacle) and takes adorpath. The
robot goes around the obstacle as predictive informaticadded (b).

[4]
(5]

path to goal. Without the use of a predictive position field,
we observe that the robot (in Fig. 3(a)) tries to move aroundé]
the obstacle. This causes it to move toward the path of the
obstacle and forces a correction in its path approximatelyr
midway through its trajectory. However, when the position
field is added, the path planner is able to sense that the mo
optimal path to goal would actually be behind the obstacle,
as seen in Fig. 3(b). The trajectory traced as a result is much
more intuitive than the first case. A similar improvement wasy,
observed in Scenario 2 (see Fig. 4).

The scale factoK, from the navigation function (6) is set
to a constant value ofe10 for our simulations, resulting in
velocities of around unit/sec for the robot. The gains from
the navigation (6, 9) are set at= 4.5 and K = 1.2. The [11]
gainsx and K remain unchanged regardless of the position
of the goal and of the obstacles. However, they need to lpe]
tuned on changing the number of obstacles in the workspace
for the robot to converge to goal. [13]

Results from multiple trials corroborated the hypothesis
that the robot was able to successfully converge to the goal
while improving on its trajectory to goal after the elligic

[20]

position field was defined for obstacles in the workspace.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to encode probabilistic
data and motion information into the conventional formu-
lation of potential fields. A path planner with a predictive
position field has been shown to work favorably for moving
obstacles. However, it is essential to recognize that the
elliptical shape of the position field is not a prerequisite
for predictive path planners to work within the framework
of navigation functions. It will be interesting to investig
other geometric representations of position fields whicly ma
be capable of more accurately representing the behavior of
specific categories of obstacles. This will change the chsta
beta function, but the overall framework of the solutionlwil
stay unchanged. This flexibility to new geometric models is
one of the strengths of potential field based planners which
we will continue to investigate. One of the deficiencies @f th
method is sensitivity to parameter values in the systemh Wit
automatic parameter estimation and tuning, we will be able t
make the planner more flexible to dynamic environments and
get closer to realizing a mobile robot capable of navigating
through crowds.
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