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Abstract— A potential function based path planner for a
mobile robot to autonomously navigate an area crowded with
people is proposed. Path planners based on potential functions
have been essentially static, with very limited representation
of the motion of obstacles as part of their navigation model.
The static formulations do not take into account the possibility
of using predicted workspace configuration to augment the
performance of the path planner. The use of an elliptical region
signifying the predicted position and direction of motion of
an obstacle is proposed in this paper. The repulsive potential
caused by an obstacle is defined relative to this elliptical field.
An analytic switch is made when the robot enters this predicted
elliptical zone of the obstacle. The development of navigation
functions makes it possible to design a potential-based planner
which is guaranteed to converge to the target.

I. INTRODUCTION

The motivation for our work is to develop a robust vision-
based system for a mobile robot to be able to follow a human
leader in crowded environments. There are many challeng-
ing sub-problems which need to be solved before such a
system can be considered complete. One such sub-problem
is avoiding moving obstacles while navigating to a goal
position in the workspace. We propose a path planner which
incorporates probabilistic information in the framework of
traditional potential-based path planning to trace a more
optimal path to the goal. Computer vision (not discussed
in this paper) will be used to provide motion and position
information as input to the path planner proposed in this
paper.

The simple and effective idea behind a potential function
driven path planner is to attract the robot toward the target
while simultaneously repelling it from obstacles in its way.
These opposing potentials create a topology for navigating
the robot. The use of potential functions was proposed in a
seminal work by Khatib [1] and has since gained widespread
acceptance as a path planning technique for mobile robots.
Various potential function based planners ([2], [3]) have been
proposed to expand the initial concept.

Early potential field based path planners exhibited local
minima, places in the topology where the robot “gets stuck”
at a point other than the global minimum located at the
destination. Rimon and Koditschek [4] introduced a special
kind of a potential function, called the navigation function,
to counter this problem. They proved that the structure of the
navigation function guarantees a unique minimum at the goal
configuration, thus allowing the robot to “roll down” the gra-
dient of the field toward a guaranteed stop at the goal. Chen
et al. [5] demonstrated the navigation function approach for
multiple robots navigating to their respective goals in the

presence of both stationary and moving obstacles.
Even with moving obstacles, motion decisions for these

planners are taken without incorporating much, if any, in-
formation about how the obstacles are moving. This makes
their formulation inherently static in nature. Moreover, even
with convergence, the path is not guaranteed to be optimal.

There have been various attempts to maintain the frame-
work of potential functions while improving their alertness to
the behavior of objects in the workspace. Ge and Cui in [6],
[7] add a velocity term to the system state to enhance the path
planner with motion information, making it possible in to
track a moving object [6] and to reach a goal with obstacles
nearby [7]. In the latest of a series of papers [8], Melchior et
al. approach the problem of making dynamic potential field
calculations by employing the concept of fractional attractive
and repulsive forces. This derives from fractional calculus
and is a method of altering the potential of an obstacle based
on its level of danger to the robot traversing a path to goal.

Despite their successes, all potential function based plan-
ners assume a near-complete knowledge of the position and
velocity of the obstacles. Moreover, there is no framework
within which these planners can currently incorporate a
‘look-ahead’ feature, which allows the potential to be shaped
by extrapolating from the obstacle’s current trajectory. Pre-
diction and some modeling of uncertainty in prediction are
vital characteristics for a path planner designed to work in
practical, populated environments where objects will rarely
move along precise and deterministic trajectories. Navigating
through such populated environments or through crowds has
seen a great deal of recent interest in path planning literature,
where discrete path planners have been used. Techniques
used include reinforcement learning [9] and building proba-
bilistic maps based on obstacle motion prediction ([10], [11],
[12]).

An extension to the navigation function based path planner
[4] which allows obstacle positions as well as their motions
to be characterized with a probabilistic region we call a
position field is described in this paper. The shape of the
field conveys information about the predicted position of
the obstacle and the confidence in this prediction. The
position field is formulated to maintain the simplicity of
the navigation function based framework while enhancing
its effectiveness in avoiding obstacles and reaching its target.
We propose an elliptical position field and keep the current
robot position at one focus of the ellipse, while specifyingthe
predicted position to lie at the other focus and computing the
potential relative to this predicted position. The size of the
major and minor axes of the ellipse encapsulate information



about the predicted direction of motion and the confidence
in this prediction respectively. In keeping with the properties
of navigation functions, the proposed path planner ensures
that the robot stays within its workspace, avoids collisions
with obstacles, and reaches its destination.

II. PROBLEM FORMULATION

The robot is assumed to start inside the 2D workspace,
which is circular. The position of the target within the
workspace is known to the robot. The position and velocity
of obstacles in the workspace are measurable, though their
velocity at a future time instant may be known with a degree
of uncertainty. This degree of uncertainty is influenced by
two factors:

• Knowledge of the history of motion of an object
• Model of the object’s motion within the workspace

It is assumed that the above information about uncertainty
is conveyed to the path planner by a filtering or estimation
algorithm, working with camera or laser range-finder inputs.
Physical dimensions of both the robot and obstacles are
known, though the dimensions of obstacles could be approx-
imated by a circular zone which envelops all the points on
each obstacle. The initial configuration is such that the robot
is not in physical contact with either the workspace boundary
or with any of the obstacles.

Given the above, the following are the path-planning
objectives:

• Objective 1 The robot should remain within its
workspace at all times.

• Objective 2 The robot should avoid collisions with
moving and stationary obstacles.

• Objective 3 The robot should reach its destination.

III. REVIEW OF PREVIOUS CONTROLLER
DEVELOPMENT

To address the problem of robot navigation through an
environment with obstacles, we will modify the navigation
function method first proposed by Rimon et al. [4] and later
modified by Chen et al. [5].

A. Model Development

Let the robot be defined by its position in the workspace
q(t) and a circular envelope of radiusr which completely
contains the robot, whereq(t) ∈ R

2, r ∈ R
+, andt is time.

It is assumed [5] that the robot can be described by the
following kinematic model

q̇ = u, (1)

whereu(t) ∈ R
2 is the control input to the robot. The static

destination of the robot is represented byq∗, whereq∗ ∈ R
2

and is assumed to be within the workspace.
Two functions, called beta functions, are designed to repel

the robot from the boundary of the workspace and from
obstacles inside the workspace. Both functions require the
use of a curve called the smooth bump function, defined
in [13].

Using the bump function, a boundary function is defined,
the purpose of which is to repel the robot from the workspace
boundary as it gets close to it. Denoted byβ0 : R

2 → R
+
0 ,

it is a function satisfying

β0 (q) =


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1−h

)]

if h ≤ f(q) < 1

0 if f(q) ≥ 1

1 if f(q) < h.
(2)

The first condition implies that the robot has sensed the
boundary but is not touching it, the second that the robot has
touched the workspace boundary, and the final term indicates
that the robot is far away from the workspace boundary. The
function f is defined as

f(q) =
1

ro0 − r
‖q − qo0‖ , (3)

wherer is the radius of the robot,ro0 is the radius of the
workspace, andqo0 ∈ R

2 is the center of the workspace. The
parameterh is defined as

h =
ro0 − rs

ro0 − r
, (4)

wherers is the sensing range of the robot. Sincer < rs <

ro0, 0 ≤ h < 1.
For each of then obstacles, the repulsive potential with

respect to the robot is calledβi and is defined asβi : R
2 →

R
+
0 , i = 1, 2, · · · , n, a function such thatβi(q) = 0 means

that the robot has made contact with theith obstacle. In
earlier literature [4], [5], the obstacle beta is computed using
a simple distance formula between the robot’s position and
the obstacle’s position in the workspace:

βi(q) = ‖q − qoi‖
2
− (r + roi)

2, (5)

whereqoi ∈ R
2 is the center androi ∈ R

+ the radius of the
ith obstacle. When the robot and obstacle touch, the value of
βi goes to zero as per the requirement of the beta function.
We discuss the weaknesses of this formulation and propose
an improvement in Section IV.

B. Robot Navigation

The navigation function, which encapsulates the forces
experienced by the robot, is defined in [4] as

ϕ (q) =
Ks ‖q − q∗‖

2

[

‖q − q∗‖
2κ

+ G (q)
]1/κ

, (6)

whereκ ∈ R
+ is a positive constant parameter andKs ∈ R

+

is a scale factor used to establish correspondence between the
geometry of the potential field and the units of the coordinate
system occupied by the robot.G(q) , G0G1 ∈ R, and the
scalar functionsG0, G1 ∈ R are defined as follows



G0 (q) = β0(q) (7)

G1 (q) =

n
∏

i=1

βi (q) , (8)

whereβ0 andβi were defined in (2) and (5), respectively.
The convergent path planner was designed in [5] based on

the kinematic model in (1)

u = −K

(

∂ϕ

∂q

)T

, (9)

whereK is a a vector of gains and∂ϕ
∂q ∈ R

1×2 is the partial
derivative ofϕ (q) from (6) with respect toq (t).

IV. DEVELOPMENT OF ELLIPTICAL OBSTACLE
FUNCTION

The original definition ofβi satisfies the requirements of
the beta function and has the favorable property that beta
changes quadratically as the robot moves toward the obstacle.
This rate of change ensures that the robot’s approach to
an obstacle’s current position is strongly repelled. However,
this definition does not account for the manner in which an
obstacle has been moving or is expected to move. It does
not convey the level of threat posed by an obstacle to the
robot’s approach to the goal. For example, even if the current
position of the obstacle is not between the robot and the goal,
is there a chance that the obstacle will move in between the
robot and target at a later instant?

A. Using an Ellipse to Create a Position Field

Fig. 1. Transition of the ellipse from the stationary assumption (red circle)
to increasing estimates of the velocity of the object (blue ellipses). As
the estimated speed increases, the ellipse begins to skew inthe estimated
direction of motion.

In our formulation, the original beta function for obstacles
in (5) is modified to incorporate information about the motion
and expected future state of an obstacle. As we shall see in
the simulations, this new formulation makes the robot more
responsive to the threat posed by the motion of an obstacle,
and it skews the gradient of the navigation function in such
a way that the region in which the obstacle may be expected
to appear is avoided by the robot. To begin the discussion,
consider a standard ellipse

(x − he)
2

a2
+

(y − ke)
2

b2
= 1 (10)

centered at(he, ke) and fully containing the obstacle. In this
work we assume the ellipse is aligned with the coordinate
axes, but it could easily be rotated to make the approach
general. The predictive position field is defined using the

lengths of the major axis2a and the minor axis2b of the
ellipse. When the obstacle is either known to be stationary
or nothing is known about its motion, the ellipse collapses
into a circle the size of the obstacle to indicate no motion
information. As we learn (based on estimates from the vision
system) the motion of the obstacle, the circle is skewed in
the direction of motion. Therefore, the direction of the major
axis indicates the estimated direction of motion, and the
length of the major axis indicates the estimated speed. The
length of the minor axis then indicates the uncertainty in the
direction estimate. Thus, various scenarios are captured by
the construction of this elliptical field, enabling it to explain
the influence of predictive fields in potential field based path
planning. Typical evolution of the elliptical field is illustrated
in Fig. 1.

It is beyond the scope of this paper to discuss the methods
of arriving at values ofa andb. Without losing the generality
of the approach, we can assume that sensors and algorithms
working in parallel with the path planner can track objects
and provide suitable values ofa and b to guide the model
development for this work.

B. Constraints on the size of the ellipse

The elliptical position field is a probabilistic estimate of
where we expect the obstacle to be at a future time instant.
This estimate should obviously contain the current position
of the obstacle, so its radius should not extend outside the
perimeter of the ellipse. If the obstacle of radiusro is placed
at the focus of the ellipse, then this means that the radius of
the obstacle should be less than the periapsis (the smallest
radial distance) of the ellipse:

ro ≤ a −
√

a2 − b2, (11)

which rearranging terms yields a constraint on the length of
the minor axis:

b ≥
√

ro (2a− ro). (12)

The limiting case of (11) is when the ellipse is a circle, i.e.,
a = b. This leads to the following constraint on the length
of the major axis:

a ≥ ro. (13)

C. Making the Elliptical Field Relevant toβi

Now that the elliptical field has been defined to capture
motion trends of an object, the potential in (5) needs a
redefinition to give the ellipse importance in this formulation.
It needs to be noted that the ellipse is aprobabilistic
region for the presence of the obstacle, and it is possible
that the robot finds itself this ellipse. This is not explicitly
forbidden, as long as the robot does not touch the measured
(or deterministic) position of the obstacle.βi should go to
zero on physical contact between the robot and obstacle, and
the robot should be repelled from the obstacle both inside
and outside the ellipse.

The requirements for the beta redefinition are



(a) Various positions of the robot (indicated by the green intersecting
circles) as it approaches the obstacle along a straight line. The left
focus of the ellipse (red) is the actual obstacle position, the right focus
(black) is the most likely predicted position. Points of intersection
with the ellipse are calculated and the point closer to the robot is
selected forβe computation.
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(b) The analytical switch between theβc andβe curves takes place
when the robot touches the elliptical field. When the robot isoutside
the elliptical field, the quadraticβe curve determines the overallβ.
Inside the field, only the circleβ, caused by the current position of
the obstacle, takes effect.

Fig. 2. The variation in obstacle beta (b) as the robot approaches an
obstacle (a).

• The elliptical position field should provide the obstacle’s
repulsive force when the robot is outside the ellipse.

• The circular formulation from (5) should come into play
only when the robot is inside the ellipse.

From the above list, a modified beta function is proposed
as follows:

βi =







0 robot touches the boundary of an obstacle
βci

robot is inside the ellipse
βei

robot is outside the ellipse
(14)

whereβei
is the beta function for the robot with respect to

the ellipse around theith obstacle. The obstacle is located at
one focus of the ellipse defined in (10). Let this position be
qoi

. The obstacle is expected to move along the major axis

in the direction of motion to arrive at its predicted position
q′oi

at a future time instantt′. Thenβei
is defined as

βei
(q) =

∥

∥q − q′oi

∥

∥

2
− (r + dei

)2 + δ, (15)

wheredei
is the distance from the predicted obstacle position

q′oi
to the pointqrei

where the line joining the robot position
q and the predicted position of the obstacleq′oi

intersects
the ellipse. Note that if we setδ = 0, this formula forβei

guarantees that it goes to zero when the robot touches the
outside of the ellipse. The curve described by this formula
(with a nonzeroδ) can be seen in the right half of Fig. 2(b).
We will see later how to defineδ.

The requirement for the overall betaβi is that it should
be defined up to the point of contact with the obstacle. To
satisfy this, the constantδ allowsβei

to reduce to a non-zero
minimum at the point where the robot touches the ellipse.
This constant is also the value ofβci

at the point where the
robot touches the ellipse. As the robot continues to move into
the ellipse toward the target,βci

reduces to zero as desired.
The βci

curve should be continuous with respect to theβei

curve to make the resultant beta differentiable throughoutits
domain.

The requirements of the functionβci
are:

• The function should reach its maximum value at
the boundary of the ellipse, i.e., when

∥

∥q − q′oi

∥

∥ =
(r + dei

).
• The function should reach its minimum value of zero

when the robot and the obstacle touch, i.e., when
‖q − qoi

‖ = (r + roi
).

• The maximum value of the function should be given by
theβci

value when the robot touches the ellipse along a
straight line approach to the obstacle. Let this point be
qrei

. This givesδ a constant value relative to the line of
approachδ = ‖qrei

− qoi
‖
2
+ (r + roi

)
2. This constant

value is added to the ellipse beta when the robot is
outside the ellipse, and accounts for the movement of
the robot inside the elliptical position field.

• Additionally, the addition of delta toβei
ensures that

the obstacle beta constraint, i.e., beta goes to zero
only when the robot and obstacle physically touch, is
satisfied even with the addition of the ellipse to the
formulation.

This is accomplished by using a mirror image of the bump
function described in [13], since the highest point on the
curve needs to be further away from the x axis.

Given the above constraints, let the following terms be
defined:

rb = ‖qrei
− qoi

‖ − (roi
+ r)

hc = roi
+ r

δ = ‖qrei
− qoi

‖
2
− (r + roi

)
2
,

where the notations represent:
• rb - range of the bump function, or thex coordinate

where it attains its maximum
• hc - zero point of the bump function relative to distance

of the robot from obstacle



• δ - maximum value of the bump function, added to the
ellipse beta

An additional point has to be made aboutqrei
. When we

are outside the ellipse, the point of intersection of the robot
and the ellipse is simply the point closest to the robot of
the two possible points of intersection. When we calculate
the bump function value, we are inside the ellipse and the
definition of the point of intersection needs a slight change.
As we move closer and closer to the obstacle, it is possible
that the point of intersection on the other side of the obstacle
is the nearer point of intersection. This changesδ for the
bump function and the desired shape of theβ curve is lost
because of this. To ensure this does not happen, we introduce
the unit vector from the obstacle to the robot,n̄rei

. The point
of intersection is then defined as the one which is along the
vector n̄rei

.
The bump function is then defined as:

βci
(x) =











1 rb ≤ x

0 0 ≤ x < hc

δ
2

[

1 − cos
(

π x−hc

rb−hc

)]

hc ≤ x < rb

(16)

The bump function then gets the following values. Atx =
hc, the obstacle and robot touch andβci

goes to zero. At
x = rb, the elliptical position field and the robot touch and
βci

gets its maximum value ofδ. Beyondrb, the maximum
value of theβci

term, δ, adds to theβei
term which begins

to dominate the overallβ function. Therefore the value of
βei

approachesδ instead of0 as the robot moves towards
the ellipse.

With these definitions forβci
(16) andβei

(15), the overall
definition of βi (14) is consistent with the requirements of
the obstacle function. See Fig. 2.

V. SIMULATION RESULTS

We used Simulink (Mathworks Inc., Natick, MA) to
simulate the proposed path planner in such a way that it
would be possible to directly compare our method against
previous results from Chen et al. [5]. This is made possible
by the fact that when the position field is forced to a circle the
size of the obstacle, the equation in (15) reduces to (5). Our
hypothesis was that the predictive position fields would make
it possible for the robot to converge to the target following
a more optimal trajectory than that followed by purely static
workspace information. Moreover, the predictive look-ahead
should make it possible for the robot to stay away from the
predicted path of the obstacle, thus lowering its chances of
a collision with the obstacle.

We tested our approach using two hypothetical scenarios:

1) An obstacle initially obstructs the straight line path
from robot to goal, but it begins to move out of the
way as the simulation progresses.

2) An obstacle is initially at a distance from the straight
line trajectory from robot to goal, but it moves to
obstruct the path as the simulation progresses.
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(a) The motion of the robot using the formula-
tion from [5], when it does not have predictive
information to guide its path.
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(b) The motion of the robot using our pro-
posed approach with the elliptical beta func-
tion, which guides the robot behind the obsta-
cle using the predicted position of the obstacle

Fig. 3. Two obstacles, one moving and one stationary, occupythe
workspace as the robot moves from the start position to its goal at the
top of the figure, marked by the rectangle. The moving obstacle moves
from left to right (as marked by the arrow). Without predictive information
(a), the robot first attempts to move in the direction of danger (in front
of the moving obstacle) and takes a longer path. The path of the robot is
represented by a succession of smaller circles. The path is more optimal as
predictive information is added (b).

Both cases are tested with and without the predictive
position field surrounding the obstacle. The setup of the
workspace is described as follows:

• Robot with boundary sensing zoners = 5 and radius
r = 1 is initially located at(−10,−20).

• Goal is located at(−10, 20).
• Stationary obstacle with radiusro1 = 3 is located at

(−20, 8). The stationary nature of the obstacle causes
the predictive position field around it to shrink to a circle
with the same radius as the obstacle.

• The workspace is centered at(0, 0) with a radius of
ro0 = 35.

• The predictive position field of the moving obstacle of
radiusro2 = 3 is described by an ellipse with parameter
a = 8 in both cases.

In Scenario 1, the obstacle starts at(−20, 0) and travels20
units in the workspace at a constant velocity. The sense of its
motion is such that it is moving out of the way of the robot’s
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(a) The motion of the robot using the formu-
lation from [5]
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(b) The motion of the robot using our pro-
posed approach with the elliptical beta func-
tion, which prevents the robot moving toward
the path of the obstacle

Fig. 4. The motion of the robot in a setup similar to Fig. 3 except that
this time, the obstacle moves from right to left (as marked bythe arrow).
Without predictive information (a), the robot first attempts to move in the
direction of danger (in front of the obstacle) and takes a longer path. The
robot goes around the obstacle as predictive information isadded (b).

path to goal. Without the use of a predictive position field,
we observe that the robot (in Fig. 3(a)) tries to move around
the obstacle. This causes it to move toward the path of the
obstacle and forces a correction in its path approximately
midway through its trajectory. However, when the position
field is added, the path planner is able to sense that the more
optimal path to goal would actually be behind the obstacle,
as seen in Fig. 3(b). The trajectory traced as a result is much
more intuitive than the first case. A similar improvement was
observed in Scenario 2 (see Fig. 4).

The scale factorKs from the navigation function (6) is set
to a constant value of1e10 for our simulations, resulting in
velocities of around1 unit/sec for the robot. The gains from
the navigation (6, 9) are set atκ = 4.5 and K = 1.2. The
gainsκ andK remain unchanged regardless of the position
of the goal and of the obstacles. However, they need to be
tuned on changing the number of obstacles in the workspace
for the robot to converge to goal.

Results from multiple trials corroborated the hypothesis
that the robot was able to successfully converge to the goal
while improving on its trajectory to goal after the elliptical

position field was defined for obstacles in the workspace.

VI. CONCLUSIONS AND FUTURE WORK

We have shown that it is possible to encode probabilistic
data and motion information into the conventional formu-
lation of potential fields. A path planner with a predictive
position field has been shown to work favorably for moving
obstacles. However, it is essential to recognize that the
elliptical shape of the position field is not a prerequisite
for predictive path planners to work within the framework
of navigation functions. It will be interesting to investigate
other geometric representations of position fields which may
be capable of more accurately representing the behavior of
specific categories of obstacles. This will change the obstacle
beta function, but the overall framework of the solution will
stay unchanged. This flexibility to new geometric models is
one of the strengths of potential field based planners which
we will continue to investigate. One of the deficiencies of this
method is sensitivity to parameter values in the system. With
automatic parameter estimation and tuning, we will be able to
make the planner more flexible to dynamic environments and
get closer to realizing a mobile robot capable of navigating
through crowds.
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