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Abstract— A predictive field based path planner for mobile
robot navigation in indoor areas is described. Predictive fields
are used for incorporating moving obstacle information into
the navigation function framework. Navigation functions have
been limited by geometric restrictions for robot workspaces and
cannot easily be used in everyday environments. A method-
ical description of indoor workspaces such that they follow
the constraints of a navigation function based path planner
is proposed. Typical use of navigation function based path
planners as a gradient based control input requires large
scaling factors in practical use. A direction based controlinput,
which eliminates the scaling factor altogether, is proposed and
its stability and convergence is proved using Lyapunov-type
analysis. The proposed algorithm improves the practicability of
navigation functions and makes it possible to envisage a person
following mobile robot operating in indoor environments using
predictive field navigation.

I. I NTRODUCTION

Using a mobile robot to follow a person around indoor
environments is an interesting application of service robotics.
Such robots can potentially be used in hospitals and homes
for assisting the elderly or the infirm. In workplaces, robotic
carts could be used to follow the workers to transport
supplies and instruments. The major challenges for such an
application are identification and tracking of the leader, and
planning a collision-free path behind the human or robotic
leader in the presence of stationary and moving obstacles.
We seek to tackle the problem of person following by
addressing its primary components, i.e. path planning and
sensing, separately.

In this paper, we present a path planning approach for
person-following mobile robots operating in indoor en-
vironments. This approach builds on the classic Rimon-
Koditschek path planner. Rimon and Koditschek, in their
seminal work [1], [2], proposed an integrated path planning,
motion planning, and control approach which they called
the navigation function method. A navigation function is a
mathematical description of the workspace which guarantees
a collision-free and singularity-free path for the mobile
robot. In spirit, it resembles Khatib’s work [3], which is
the widely used potential function method. Similar to the
potential function approach, the navigation functions create
a topology in which the robot is attracted to goal and repelled
from obstacles. However, the navigation function differs from
the potential function method in that it ensures a unique
minimum at the goal and the absence of local minima as
long as certain conditions are met while formulating the
navigation function.

Navigation functions are attractive solutions for path plan-
ning because of their relative ease of formulation, their
packaging of various aspects of robot navigation into a single
framework, and the fact that they prove convergence to the
goal. Thus, they have attracted attention [4], [5], [6], [7]
since they were first formulated. Some improvements have
been made to the original approach. Tanner et al. [7] showed
navigation functions could be applied to complex robotic
manipulators by systematically decomposing the object into
spherical regions. Chen [6] demonstrated that they work
with moving obstacles in the workspace. Most recently,
Filippidis [4] proposed an algorithm to automatically tune
the navigation function gain. In their original formulation,
navigation functions did not allow for incorporating an ele-
ment of uncertainty which is inevitable to obstacles moving
in practical environments. A solution to this was proposed
in [8], in which moving obstacles were represented using
elliptical envelopes around them called predictive fields.

Even with these structural improvements in place, naviga-
tion functions are still limited by their lack of practicability.
They require the use of arbitrary scaling factors to be
applied to the dimensions of a given workspace. Mapping
from the navigation function world, which is circular or
spherical, to the real world (or vice versa) requires estimating
a transformation called the star-world transformation [1],
which is difficult to realize in practice. The attractiveness
of its mathematical guarantees of convergence do make a
convincing case for navigation functions to be used in appli-
cations; however, due to these constraints on implementation,
there has not been widespread adoption. Discrete or cell
based path planners [9] are relatively easier to implement.

In this paper, we seek to move towards a practical navi-
gation function based person following robot. A workspace
generation approach which applies the spherical world con-
straint from Rimon and Koditschek is presented. This ap-
proach takes into account sensor feedback which is available
to the robot. The scale factor is eliminated through the use
of a gradient direction controller, and the stability of this
controller is proved. Finally, the predictive fields method
from our previous work [8] is applied to account for motion,
and uncertainty thereof, of moving obstacles.

II. REVIEW - PREDICTIVE POSITION FIELDS

Predictive position fields were used previously [8] to de-
scribe the motion of obstacles within the navigation function
framework. Navigation functions were not originally used
with moving obstacles in the workspace. The workspace



was assumed to be completely static until it was shown [6]
that the rules of navigation functions did permit convergence
to the goal when the obstacles were in motion. However,
obstacles in practical environments move with an inherent
uncertainty, and this important property was not part of
the moving obstacles solution in [6]. On the discrete path
planning side, there have been various efforts, such as the use
of reinforcement learning [10] or of probabilistic maps based
on predicted obstacle motion [11]. Analogous approaches
on the potential fields side include Ge and Cui [12], and
Melchior et al. [13].

The use of elliptical position fields was an effort to incor-
porate obstacle motion information in navigation functions.
The significance of the ellipse was in capturing the speed
and motion uncertainty of the obstacles. Navigation functions
require the definition of an obstacle avoidanceβ term, which
is an indirect measure of the repulsion experienced by the
robot due to the obstacle. The requirements for an obstacle
β are quite simple: it should reach0 when the robot and
obstacle contact each other, and should be a non-decreasing
function of the distance elsewhere.

These minimal constraints provide an opportunity for
shaping this repulsive term according to the predicted motion
of the obstacle. An ellipse is generated such that the shape of
the ellipse has physical significance with respect to obstacle
motion. The major axis represents the direction of predicted
obstacle motion, its length is representative of the speed
of the obstacle, and the minor axis indicates the degree of
certainty of this prediction. The obstacle sits at one focus.

To incorporate a sense of the ‘danger’ posed by an obstacle
based on its predicted motion, theβ term is comprised of two
components:βe outside the ellipse, andβc inside the ellipse.
Outside the ellipse, the robot is repelled by the projected
position of the obstacle along the major axis. When the robot
enters into the elliptical field, an analytic switch causes the
βc term to act as the repulsive term, and the robot is repelled
from the measured position of the obstacle. Fig. 1(a) and Fig.
1(b) illustrate the variation in the repulsive term as the robot
approaches an obstacle’s elliptical field.

It was found that the use of elliptical position fields caused
the robot to swerve away from the projected path of the
obstacle, thus away from a potential collision with it. Further,
since the geometry of the workspace was not being changed,
the obstacle itself was still circular in shape when the
repulsive term was computed. Retaining the spherical world
constraint from [1] ensured that none of the mathematical
constraints for navigation functions were violated, whilea
measure of motion uncertainty was added to the formulation.

III. C ONTROL DEVELOPMENT

Navigation functions solve the problem of driving a robot
from its given position in the workspace to the goal position
while constantly navigating free configuration space. A navi-
gation functionϕ is defined to have the following properties,
according to Rimon and Koditschek [1], [2].

Let q ∈ ℜ1×2 denote robot position. Letqd ∈ ℜ1×2 be the
goal point in the interior of a robot free configuration space

F . A mapϕ : F → [0, 1] is a navigation function if it is

• analytic onF ,
• polar, with a unique minimum atqd,
• admissible onF , and
• a Morse function.

Mathematically, this function is described as

ϕ (q) =
Ks ‖q − qd‖

2

[

‖q − qd‖
2k +G (q)

]1/k
, (1)

wherek ∈ N and the termG is a composite of workspace
boundary and interior obstacle avoidance functions. The
Rimon-Koditschek [1] definitions for boundary avoidance are
retained and the predictive fieldβ from [8] is used to define
obstacle repulsion.

The controller introduced here differs from previous con-
trollers [6], [1]. The preceding controller [6] requires the use
of an arbitrarily high scale factor, or gain,Ks to drive the
robot to goal. The resultant system was found to be extremely
gain-sensitive and it was difficult to empirically estimate
the scaling required for the robot to be successfully driven
to goal for a particular configuration. Thus, a modification
is made to the control input, driving the robot using the
direction of the navigation gradient rather than the gradient
itself. The modified control input to drive the robot toqd is:

q̇ = u. (2)

where

u = −K
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K ∈ ℜ2×2 is a matrix of positive gain values andǫ is a
small positive constant.

A. Stability Analysis

Consider a Lyapunov candidate function, same as the one
used in [6],

V (q) = ϕ(q). (3)

First differentiating (3) with respect to time and then
substituting the right hand side of (2) yields

V̇ = ∂ϕ
∂q · q̇

= −∂ϕ
∂q ·K ·

( ∂ϕ
∂q )

T

‖ ∂ϕ
∂q ‖+ǫ

= −f(t)

wheref(t) denotes a non-negative function as follows
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(a) Intersecting circles indicate the approach of the robottowards an obstacle.
The left focus of the ellipse is the actual obstacle position, the right being
the predicted position. Predicted position is used for computing the obstacle
repulsion term.
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(b) When the robot is outside the elliptical field, the quadratic βe curve
determines the overallβ. Inside the field, only the circleβ, caused by the
current position of the obstacle, takes effect.

Fig. 1. The obstacle beta curve as the robot approaches an obstacle [8] 1.

Each of the terms inf(t) is positive. So we can conclude
that

V̇ ≤ 0. (4)

ThereforeV (q) is non-increasing. To establish conver-
gence, we invoke the corollary of Barbalat’s Lemma used
for stability analysis from [14] (Lemma 4.3) which states
that:

• If V (t) is a non-negative function of time on[0,∞),
• If V̇ (t) ≤ −f(t), f(t) being non-negative,
• If ḟ(t) ∈ L∞

then

lim
t→∞

f(t) = 0. (5)

It is clear that the first condition is satisfied by the basic
requirement of the navigation function as a mapping onto
[0, 1], and the second by the proof forf(t) being non-
negative. For the third, we consider that the navigation
function is analytic on the free configuration space, which
establishes that∂ϕ∂q ,

∂2ϕ
∂q2 ∈ L∞. Thusḟ(t) ∈ L∞ is satisfied,

and the lemma can be applied.

From the lemma and from the equation forf(t),
∥

∥

∥

∂ϕ
∂q

∥

∥

∥
→

∞ ast → 0. The properties of the navigation function imply
that ∂ϕ

∂q → 0 only at the goal configurationqd.
Hence it is proven that

q(t) → qd (6)

within a specific workspace.



The control input described in this section uses the gra-
dient of the navigation function. The gradient vector is
normalized to unit magnitude, but itsx and y components
vary according to the direction of the gradient. This unit-
length directional vector is multiplied by the gainK to create
a constant magnitude, velocity control, input to the robot.

IV. WORKSPACEGENERATION

Navigation functions operate in spherical worlds, or in
transformed star-worlds. Each of these geometries is pro-
hibitive for different reasons. Practical indoor environments
do not resemble spherical worlds, and finding a mapping
from a practical environment (star-world) to a spherical
world is non-trivial. These constraints force us to look for
another option, i.e. to describe a practical environment as
a spherical world. However, this representation has to be
practicable; failing this, it will not register as a contribution
to the understanding or application of navigation functions
to the real-world.

For our proposed method of workspace generation, we
make the following reasonable assumptions:

• The robot’s sensing range is limited,
• Sensing technology (e.g. Microsoft Kinect) permits

gathering all information necessary to implement a
navigation function, and

• The person to be followed is always within the sensing
range of the robot.

The limited sensing range of the robot makes it possible
to define workspace boundaries for the navigation function.
The area of the hallway visible to the robot is enveloped
by a circular workspace. Intersecting segments of the wall
with this sensing envelope are computed. Since the wall is
an obstacle in this setup, non-overlapping circular obstacles
are generated out of the wall segments. Moreover, each of
the stationary and moving obstacles are encompassed by a
circular envelope, thus defining non-wall obstacles for the
generated workspace. Thus, when the robot begins its person
following task, the workspace defined for its motion has been
computed to be fully compatible with the requirements of
navigation functions. The generated workspace is shown in
Fig. 2.

The setup described previously will work well for a
single instance. But it is required to extend it over the
duration of the person following task. For accomplishing
this, an important navigation function constraint needs tobe
considered. The goal position is not allowed to move inside
a workspace. However, this constraint will render navigation
functions unusable for person following applications, where
the goal is generally moving. Thus, it is necessary to come
up with a description of workspaces in which this conflict is
resolved.

This is done by using the tracked motion of the leader
to generate waypoints for the robot to follow. The setup is
easy to visualize. As the robot moves to the goal position
in the ith workspace, its sensing algorithm tracks the leader.

1To be reprinted with permission from IEEE

Fig. 2. Generation of workspace compatible with navigationfunctions.
The robot is at the bottom, moving towards the goal marked at the top.
Wall segments are enveloped by circular obstacles and internal obstacles
are generated in the same manner.

On converging to theith goal, the sensing algorithm has
identified thei+1th goal position. Each workspace contains
obstacles which become part of the navigation function for-
mulation for that workspace. This process continues until the
person stops or the robot is commanded to stop following the
leader. A sample setup, generated waypoints, and obstacles
for each workspace are seen in Fig. 3.

Fig. 3. Generation of leader waypoints as the robot follows the leader.
Workspaces are generated so that the navigation function solution to each
workspace is that of robot convergence to a static goal position, shown as
a “+”. Moving obstacles are represented as solid circles.

This completes the description of workspaces such that
the robot can follow a person without violating any of the
constraints of navigation functions, and without requiring
geometric transformations for arbitrarily shaped hallways.

V. SIMULATION RESULTS

MATLAB Simulink (Mathworks Inc., Natick, MA) was
used for simulating the predictive fields path planner and
controller. The waypoint generation system for workspace
goal positions was simulated by arbitrary selection of way-
points by mouse clicks inside the L-shaped hallway figure.
Initial position of the robot was selected using a mouse
click; beyond that, the end position of the robot in the
current workspace became its start position in the next
workspace. Interior obstacles were also manually positioned
in the hallway, and their direction of motion was input by
the user. Moving obstacles, marked with solid circles in
Fig. 3, and stationary obstacles, marked with empty circles,



were positioned in the workspace. For interior obstacles,
motion prediction had to be simulated using variable sized
ellipses, the variable size being another user input. The
workspace generation method described in Section IV would
then automatically determine the wall segments intersecting
with the robot’s sensing range for a given workspace and
generate wall obstacles for a given workspace. It needs to be
emphasized that the process of manual selection and labeling
was necessary only in the absence of real-world sensing
data. A sensing system will render a completely autonomous
person following robot for indoor environments.

Decomposing a hallway inton workspaces worked as
expected. This process was designed so that the task was
the same as solvingn independent navigation function
problems. Obstacles were correctly assigned to the individual
workspaces by the algorithm, and the robot converged to its
goal position in every single workspace, using the velocity
control inputs as seen in Fig. 4(b).

(a) Use of the elliptical field allows the robot to avoid
the path of the obstacle. This is clearly seen in the first
workspace with the overlapping ellipses.
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(b) A plot of the individual components of the unit ve-
locity vector being used as the control input. The vertical
dotted lines indicate a transition for the robot from one
workspace to another.

Fig. 4. Path taken by the robot in the presence of elliptical fields and
distance to waypoints in each workspace.

Fig. 5 and Fig. 4(a) illustrate the effect of predictive fields
on the path planned for the robot. In the absence of an
elliptical field (Fig. 5) the robot moves towards the path of
the obstacle before the navigation function guides it away
from it. This increases the chances of a collision in uncertain

environments, and of moving along a path which is less
optimal temporally or spatially. In contrast, the elliptical field
provides a path in which the robot moves away from the
projected obstacle path much earlier, as seen in Fig. 4(a).

Fig. 5. When the robot navigates to goal in the absence of predictive
information, it tends to react to the position of the obstacle and can move
towards the path of danger. This is seen clearly in the first workspace at the
left of the figure.

It can be seen that, for stationary obstacles, the elliptical
field is absent and the predictive formulation reduces to that
seen in the classical navigation function systems [6], [1].An
example of this can be seen in Fig. 6.
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Fig. 6. Predictive field navigation in the absence of obstacle motion is the
same as the original navigation function method. The robot converges to
goal past stationary obstacles using the unit velocity control input.

The use of a direction based controller allows for a very
standard gain value to be used in the setup. The navigation
function only has a single gain which needs to be tuned;
however, this gain is critical to the working of navigation
function based path planners. We found that a gain value of
k = 10 in Eq. 1 was adaptable to a wide variety of scenarios
in our simulated indoor hallway environment. The system
scale factorKs, typically a very large gain, was completely
eliminated by our choice of controller.

VI. CONCLUSIONS ANDFUTURE WORK

Steps which enhance the applicability of navigation func-
tions to practical indoor environments have been demon-
strated. Predictive fields, which were shown in previous work



to be effective at moving the robot away from the projected
path of moving obstacles, have been used. A new control
input, based on navigation function gradient direction rather
than the gradient vector, has been proposed. Its stability and
convergence have been demonstrated. However, an important
part of the proposed approach is the sensing algorithm on-
board the robot. Navigation functions require large amounts
of workspace information, and we have assumed that this
is available to the path planner via a robust sensing system.
While this is a valid assumption for the scope of this paper,
the usability of navigation functions can be conclusively
demonstrated only after experimental testing with such a
sensing system in place. Given the useful properties of
navigation function based planning and control, experimental
verification will be a desirable next step for indoor person
following systems using predictive fields.
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