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Qualitative Vision-Based Path Following

Zhichao Chen and Stanley T. Birchfiel8enior Member, IEEE

Abstract—We present a simple approach for vision-based path is vastly overdetermined, with tens of thousands of image
following for a mobile robot. Based upon a novel concept called pixels available to determine a single turning command @utp
the funnel lane, the coordinates of feature points during the We present a simple algorithm that uses a single, off-the-

replay phase are compared with those obtained during the teach- .
ing phase in order to determine the turning direction. Increased shelf camera attached to the front of the robot. The tecleniqu

robustness is achieved by coupling the feature coordinates with follows the teach-replay approach [5] in which the robot is
odometry information. The system requires a single off-the-shelf manually led through the path once during a teaching phase
forward-looking camera with no calibration (either external or  and then follows the path autonomously during the replay
internal, including lens distortion). Implicit calibration of the phase. Without any camera calibration (even calibratian fo
system is needed only in the form of a single controller gain. | d" . h bot is abl foll h hb .
The algorithm is qualitative in nature, requiring no map of ens 'Sto,”'o_”)’t ero Qt Is able to follow the pat yr‘rm@?(l

the environment, no image Jacobian, no homography, no fun- Only qualitative comparisons between the feature cootelina
damental matrix, and no assumption about a flat ground plane. in the two phases. All that is needed is a single controller
Experimental results demonstrate the capability of real-time gain parameter to convert pixel coordinates to turning esg|
autonomous navigation in both indoor and outdoor environments, We demonstrate the technique on several indoor and outdoor

on flat, slanted, and rough terrain with dynamic occluding objects . t howi it bust ith f to gant
for distances of hundreds of meters. We also demonstrate that SXPEMNMENLS, showing IS robustness with respect to slante

the same approach works with wide-angle and omnidirectional Surfaces, changing lighting conditions, and dynamic atiolg
cameras with only slight modification. objects. This paper extends the applicability and improves

Index Terms—feature tracking, mobile robot navigation, UPON the rgbustne;s of our earlier_work [6] by incorporating
vision-based navigation, control odometry information and correcting for camera roll. We
also demonstrate the ability of the technique to work with
wide-angle and omnidirectional cameras, with only slight
modification in the latter case to ignore the bottom half of

Oute-based knowledge, in which the spatial layout @he image which views the scene behind the robot.

an environment is recorded from the perspective of aThe proposed approach falls within the category of mapless
ground-level observer, is an important component of humafgorithms [8]. As such, it is closely related to the view-
and animal navigation systems [31]. In this representatiosequenced route representation (VSRR) of Matsumoto et al.
navigating from one location to another involves comparin@l], [22], [15] in which the turning angle is computed by
current visual inputs with a sequence of views capturedgalooross-correlating images acquired during the replay phvitse
the path in a previous instance. Applications that woulddfien those captured during training. However, VSRR requiregelar
from such a path-following capability include courier anéhmounts of memory to store the views and is sensitive to
delivery robots [4], robotic tour guides [32], or reconisaisce occlusions by dynamic objects. Along with a homography-
robots following a scout [7]. based extension using vertical lines [29], it has only been

One approach to path following is visual servoing, in whicdemonstrated for short sequences on flat terrains. An ateern
the robot is controlled to align the current image with anapless approach is to learn the mapping from images to
reference image, both taken by an onboard camera [14]. Staiming commands based on their classification [37], [1]. M/hi
an approach generally employs a Jacobian to relate theieoothis method can successfully follow a specific pattern such
nates of world points to their projected image coordina®s [ as a road or hallway, it will have difficulty generalizing to
a homography or fundamental matrix to relate the coordiatenvironments in which the images cannot be categorized into
between images [29], [20], [27], [36], or bundle adjustmerst small number of classes known at training time. Another
to minimize the reprojection error over multiple image fesn approach that has received considerable attention [18], [3
[28]. As a result, the camera usually must be calibrated [389], [33], [17], [35], [13] is to store an example image with
[27], [28], [36], and even uncalibrated systems requireslemach specific location of interest. At run time, the image
distortion to be removed. Alternative vision-based algons database is searched to find the image that most closely
make strong assumptions about the environment or the sensssembles the current one (or, alternatively, the curmagie
such as a flat ground plane [5], [20], [12], [29], a man-madse projected onto a manifold learned from the database [25],
environment in which vertical straight lines are preser@][1 [18]). Such approaches require extensive training and have
[12], [29], [34], or an omnidirectional camera [10], [351.9], difficulty providing sufficient spatial resolution to deteine
[34]. actual turning commands in large environments. Similarly,

To overcome these limitations, we consider the problesensory-motor learning has been used used to map visual
from a novel viewpoint in which there is no equation reinputs to turning commands, but the resulting algorithms
lating image coordinates to world coordinates. Such a tirdtave been too computationally demanding for real-time per-
approach is motivated by the observation that the probldormance [11]. Other researchers have developed mapless

I. INTRODUCTION
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algorithms for low-level functionality like corridor fadwing Landmark
or obstacle avoidance [26], [30], [2], [19], [23], [24], biltese ¢ ’
techniques are not applicable to following a specific aabytr \,D’ ——
path. p&”

Robot at the destination

Il. QUALITATIVE MAPPING FROM FEATURE COORDINATES
TO TURNING DIRECTION

Consider a mobile robot equipped with a camera whose /

. . . . B . u c
optical axis is parallel to the heading direction of the robo gp—rr
Suppose we wish to move the robot from locati6h = ¢
(zc,yc,0c) to a previously encountered locatioh =
(xP’ YD, Op), Wherg (@4, yl> and 0; are _the position and Fig. 1. The robot is a’ moving toward the destinatio® with the same
orientation, respectively, in they plane,i € {C,D}. The heading direction. The open circle coincides with both thmera focal point
robot has access to a current imagﬁ taken atC, and a and the robot position, the arrow indicates the headingctioe, = is the

. . . . . . image plane, and is the angle between the optical axis and the projection
destination |m_ageir D t_aken prewously at the destinatidn. ray from the landmark.
We start with a simple observation. Suppose the robot

views a fixed landmark in both images yielding image feature

coordinates of.“ andu”, as shown in Figure 1. The featureshe sides of the trapezoid are defined by two lines passing
are computed with respect to a coordinate system centetgebugh the landmark, one through and another that is
at the principal point (the intersection of the optical aar®l parallel to the destination direction. These lines areteota
the image plane), so that positive coordinates are on tie rigghout the landmark by if the relative angle is nonzero.
side of the image while negative coordinates are on the lgffe call the trapezoidal region tHennel laneassociated with
side. If the robot moves toward the destination in a straigfe landmark, destination, and relative angle. The tertogy
line with the same heading direction as that of the deSﬁnatiariseS from the anaiogy of pouring ||qu|d into a funnel: The
(e, 0c = Op), then the pointu® will move away from |iquid moves in a straight line until it hits the sides of the
the principal point toward:”, reachingu” when the robot funnel, which cause it to bounce back and forth until it
reachesD. This observation is made more precise in theventually reaches the spout. In a similar manner, the sides
following theorem. of the trapezoid act as bumpers, guiding the robot toward the
Theorem 1:Let a mobile robot move in a straight linegoal. The notion of the funnel and the funnel lane are cagture
toward locationD on a flat surface. Let’ be the horizontal jn the following definitions.
image coordinate, relative to the principal point, of a mono pefinition 1: The funnelof a fixed landmark\ and a robot
tonic projection at locatiory of a fixed landmark. For any |ocation D is the set of locationsFy p such that, for each
location C' along the line such thale = 0p, [u°| < [uP| (¢ ¢ F, p, the two funnel constraints are satisfied:
and sigriu®) = sign(u?). ’
The theorem can be easily proved by geometry. Note that [ < [uP| (Constraint 1)
the image projection function is only required to be monaton signu) = signu®) (Constraint 2)
(i.e., perspective projection is not necessary), so theltres
applies equally to a camera with radial lens distortion. ftie  Whereu and” are the coordinates of the image projection
mary assumption is that the optical axis of the camera pas8ég' at the locations” and D, respectively.
through the axis of rotation of the robot. Other assumptions Definition 2: Thefunnel laneof a fixed landmark, a robot
include the alignment of the optical axis with the robot fiegd location D, and a relative angler is the set of locations
direction, zero roll and tilt angles of the camera with respe’».0.a C Fx,p such thatic —0p = o for eachC' € i p a-
to the robot, and a flat ground plane. In practice, misalignme Multiple features yield multiple funnel lanes, the interse
is not an issue because the camera alignment can be leariaiy Of which is the set of locations for which both consttain
automaticaiiy by estimating the focus Of expansion as tben'o are satisfied for all the features. This intersection, whigh
drives forward. Simiiariy, rough terrain is easiiy handibyi call thecombined funnel |andS depicted in Figure 2. Notice
measuring image rotation to compensate for a non-zero rBle importance of having features on both sides of the image
angle of the robot and by recognizing that a non-zero tilt@angn order to narrowly constrain the path of the robot, thus

has a negligible effect on the horizontal feature coordisat achieving more robust and accurate results. Features can be
any depth, and there need not be any relationship between the

depths of the various features as long as they remain visible

Robot at the current position

|

A. The funnel lane

According to the preceding theorem, if the robot is on the o )
path toward the destination with the same heading directidr Qualitative control algorithm
then two constraints are satisfied. Conversely, as shown inThe funnel constraints lead to a simple control algorithm,
Figure 2, if the constraints are satisfied then the robot lidkistrated in Figure 3. The robot continually moves fordiar
within a trapezoidal region (assuming perspective prmeagt turning to the right whenever Constraint 1 is violated and to
for any given relative robot angle = 6 — 6p. Fora = 0 the left whenever Constraint 2 is violated, given a feature o
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o ° Fig. 3. Qualitative control decision space. The horizontardinates of the
Landmarks @ La“dm”ks. feature point in the current and destination images andu?, respectively)
° e ° ° are compared to determine whether to turn the robot to the, rigthe left,
R _f_—' y or not at all. LEFT: Top-down view of decision space.I®HT: 3D view of
*\ \ decision space, showing the desired arﬁé versusu® anduP.

3 ’ B graylevel intensity pattern andcoordinate in the first and last
\ / /z 3 images of the segment are stored in a database for use in the
“Funnel N //“')_Funnel N replay phase. We also store the length of each segment and the
ans Turn right lane Turnleft  change of heading direction of the robot in each segment by
Fig. 2. Top: The funnel lane created by the two constraints, shown when tOdometry' which are U§§d in determining the desired heading
robot is facing the correct direction (left) and when it hased by an angle and the segment transitions.
a (right). BotTom: The combined funnel lane created by multiple feature | the replay phase, the robot automatically proceeds se-
points, shown when the robot is facing the correct direcfleft) and when iallv th h th ’ . f .
it has turned by an angle (right). guentially t' roug t e segments starting from gpprox@ate
the same initial location as that of the teaching phase. At
the beginning of each segment, correspondence is estadblish
the right side of the imageu{’ > 0). If the feature is on the between feature points in the current image and those of
left side («” < 0), then the directions are reversed. the first teaching image of the segment. Then, as the feature
For each feature, a desired heading is obtained by points are tracked in the incoming images, their coordmate
ymin{uC, ¢(uC,uP)} if uC >0 anduC > uP are cc_)mpgred with those of thfmlesFone imagédi.e., the I_ast
(4) c c D e O C p teaching image of the segment) in order to determine the
0, =< ymax{u”,¢(u,u”)} if v <0andu® <u : . . .
; turning direction for the robot. Prior to comparison, featu
0 otherwise ;
coordinates are warped to compensate for a non-zero rdé ang

where ¢(u®,uP) = % (u® — uP) is the signed distance toabout the optical axis by applying the RANSAC algorithm

N\

Turn right

the line u® = u”. Here we approximate the conversion of9] to pairs of random features. This compensation removes
pixels to radians with a constant gain the undesirable in-plane image rotation that occurs due to
At any given time, the desired heading of the robot is give#npaved, rough terrain. Note that this is the only place & th
by algorithm where they-coordinates of the features are used.
1 X @ A crucial component of the technique is determining when
0a = UﬁZ% + (1 =n)0o, (1) to transition to a new segment. To solve this problem, we
=1 continually monitor the probability that the robot at timés

whereN is the total number of feature points, is the desired at the end of the current segment:
heading obtained by sampling a third-order polynomial that

fit to the initial and destination odometry measurements Ofé(t) — exp {_ﬁfc(f)}ex {_efl(t)}ex {_e,%(t)} @
the segment in the teaching phase, and the fatter n < 207 202 202 |’

1 determines the relative importance of visual measurements - ”

versus odometry measurements. Werset 0.5 in our system. feature distance heading

assuming that the feature, distance, and heading measueeme
lIl. TEACH-AND-REPLAY NAVIGATION are independent. In this equatien(t) is the mean squared
The navigation system involves two phases. In the teachiagor of the feature coordinates between the current and
phase, an operator manually moves the robot along a desineitestone images;,(t) is the difference between the distance
path to gather training data. The path is divided into a numbiaveled in the current segment and the corresponding segme
of non-overlapping segments. Within each segment, featurethe teaching phase, calculated by odometry; and) is
points are automatically detected in the first image andkeé@c the difference between the current heading and the heatling a
in subsequent images. When the percentage of features thatend of the teaching segment. These errors are normalized
have been successfully tracked falls below 50% of the calgirby values computed automatically by the system:is the
features in the segment, a new segment is declared. For eamgan squared error of the feature points at the beginning
feature that is successfully tracked throughout a segnitsnt, of the segmentp, is the length of the segment calculated
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T Decshk 5 ramp and past dynamic objects. The circles indicate the fesitur
0 1 2 3 4 5 6 0 50 100
x(m) x(m)
Fig. 4. The teaching and replay paths of the robot in an inéoeironment 4 4

(left), and an outdoor environment (right).

——Teaching
- - -Replay

2t ——Teaching
by odometry in the teaching phase; amgl is the maximum T TRepRy
variation in heading encountered during the teaching sagrr
Two values are actually computed(t) using the current
milestone image and~(¢) using the previous mileston — =
image. If6(t—1)—4(t) > rando~ (t—1)—d(t) > 7, where X(m) xm)
T = 0.05, then the system advances to using the next milestong. 6. The approach successfully following a path usingdewdngle camera
image. The rationale is that botf{t) and 6~ (¢) increase as (left) and an omnidirectional camera (right).
the robot approaches the end of the segment then decrease
afterward. Therefore, when both values have decreased by a
significant amount, the end has been reached. We have foitile a pedestrian walked by the robot and later a van drove
that using both values yields improved results comparetl wigy it. Because the milestone images change frequently, the
using a Sing|e value. To reduce the effects of noise, bo@ﬂgorithm QUICk|y recovered from the loss of features due to
signals are first smoothed by a low-pass nonlinear filter. the occlusion caused by the dynamic objects.
Similarly, Figure 6 shows the results of the approach using
IV. EXPERIMENTAL RESULTS cameras with severe lens distortion. In one experiment we

h litati laorith imol d in Visual used a wide-angle camera with a 3.5 mm focal length and
The qualitative algorithm was implemented in Visual C+4 14 yogree field of view. The other experiment utilized an

on a DeI.I In;plron 700m 'apt‘?p (1.6 GHZ) cqntrollmg Bmnidirectional camera with a 360-degree field of view. For
Act|yMed|a E>|oneer P3-AT mobile robot with an inexpensivg, experiments we used the same parameters as the previous
Logitech chkCam Pro 4000 ngcam mounted on the fro'étxperiments. The only change made to the code was to
The 320 x 240 images were acquired at 30 Hz and processeeh o4 the hottom half of the omnidirectional donut image.
by the KLT algorithm with the defaull x 7 feature window s sten was necessary because features behind the robot
size [3]. In all experiments a maximum of 60 features Werg ather viewed by an omnidirectional or standard camera)
detected and tracked throughout each segment. On avergag,. i, 5 way that violates the fundamental assumptions of

85% of the features survive the initial correspondence & thy | approach. In contrast, features in front of the camess ob

first image (,)f the segment 0_'“””9 replay. . the funnel constraints sufficiently to be of use in keeping
The algorithm was tested in a number of indoor and outdogy;

. . - : . e robot on the path, despite their moving in curved image
environments. Figure 4 shows two typical runs in which the

b full . db hai d desks al aths due to the severe lens and catadioptric distortiop. Th
robot successiully navigated between chalrs and deskg a verage error of the two experiments was 0.04 m and 0.04 m,

a 10 m path i_n our Ial_)oratory, as we!l as.along a 380 P@spectively, while the maximum error was 0.13 m and 0.09 m.
loop trajectory in a parking lot of our university campus.£Th To further illustrate the lack of calibration, we conducted

driving speed of the robot was %OO mm/s and the f[urnlng SPE, ﬁioutdoor experiment in which the robot navigated the same
was 4 degrees per second during both the teaching and re qym path twice. In the first run the robot used the Logitech

phases Of. the indoor i)l(pgrlhmegt?. OUtd%OIS’ t_he add|t(|jo ickcam Pro 4000 camera, while in the second run it used an
Eqa_neuvenng roo7r‘goena /e h € driving and turning spéaefs aging Source DFK21F04 Firewire camera with an 8.0 mm
e increased to mm/s (the maximum driving speed of t .2 lens. The same camera was used for both teaching

robot) and 6 degrees per second, respectively. The error V&%ﬁ replay. As shown in Figure 7, the algorithm was able
less than 1 m for two-thirds of the sequence and remaingg successfully follow the path using either camera, withou

beII:(?w r255m f(r)]r\tlce en::else?muence. from two experim ng[:hanging any parameters between runs.
gure SNOWS - sample iImages 1o 0 EXPENMENIS 1 ee additional experiments are shown in Figure 8. In

demonstrating the robustness of the algorithm. In the finst, the first, a scout robot was sent along an outdoor path.

robot nawgatgd a slanted ramp ina 40 m run, thus verifyi other robot, which received the transmitted path informa
that the algorithm does not require a flat ground plane. ]n
ion, was then able to follow the same path as the scout.

the second, the robot navigated a narrow road for 80 m. o .
his demonstrates a natural application to swarm robotics,
1videos of the results can be found in the multimedia attachmeat o Wher.e_ (_:a“brat'ng. dozgns Or_ hU”P'fe‘?'S of cameras would be
http:/Avww.ces.clemson.edu/stb/research/mobile_rob ot prohibitive, especially if recalibration is needed whesrethe

y(m)
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0 o outdoor outdoor
Algorithm indoor paved ground| rough terrain
10 -10 acc. / rep. acc. / rep. acc. / rep.
~ R (m) / (m) (m) / (m) (m) / (m)
S £-20 vision only [6] 0.30/0.18| 0.77/0.74 3.87/1.85
combination (this paper) 0.14/ 0.08 0.60/ 0.55 1.47/0.66

——Teaching ——Teaching

end - - -Replay \ - - -Replay TABLE |
-40 -40 =
° L » 0 5o 1 COMPARISON OF THE ACCURACY AND REPEATABILITY OF THE
ALGORITHM WITH AN EARLIER VERSION, IN THREE DIFFERENT
Fig. 7. Teaching and replay paths for the robot using twoedffit SCENARIOS THE LOWEST NUMBER IN EACH CASE IS IN BOLD

uncalibrated cameras, with the same system parametesT: LLogitech
QuickCam Pro 4000 USB webcam,IdHT: Imaging Source DFK 21F04
Firewire camera.

our algorithm are rather large. Nevertheless, the remérkab

= scout robot
- - -following robot

flexibility and versatility of the system offer some importa
advantages over more precise techniques. With our approach
/ one can literally take an off-the-shelf camera, attach ith®
o il Ry robot, align it approximately in the forward direction, astdrt

— teaching
- - -replay

"0 -10 0 10 20 30 40 50 0 20
x(m)

60 - ) 5 10 15 20 25 30 35 the SyStem
x(m) . . - .
The algorithm is not perfect, and there are scenarios in
Fig. 8. LeErT: The robot foIIov_ved a path taken _earlier by a scout roboyyhich it will fail. For example, occasionally the aIgorithn‘nes
MIDDLE: A path on rough terrain. ®HT: A path with sharp turns. .. . . . .
not properly transition to the next milestone image, in vahic
case the overlap between the current and milestone image can

lenses are refocused or the cameras adjusted. The secdfifg€ase to the point that an insufficient number of features
experiment shows the robot following a path along rougge matched. Also, untextured scenes contalnl_ng distees tr
terrain, in which roll and tilt angles up to 5 degrees wer ushes, or undecorated indoor hallways_somenmes prevent t
encountered. The roll angle compensation described earféT @lgorithm from successfully tracking enough features
was sufficient to enable the robot to remain on the path. | @ccurately compute the heading direction. While only a
the third, a path with several sharp turns is demonstrateis, Thandful of features are necessary for the algorithm to sd;ce
ability is achieved by setting the replay driving speed to gkis important that features exist on both sides of the image

that of the teaching driving speed, which is decreased guriﬁnd that some number of features remain visible throughout
a turn. the milestone.

Additionally, the algorithm was tested in various scergrio Another source of error is due to distant features. Although

to quantitatively measure its accuracy and repeatabliityle | features near the center of the image produce a narrow funnel
displays the results of the algorithm compared with those 1€ €ven when they are far from the camera, distant features
the earlier version [6] which did not use odometry, relie€ar the side of the image produce much larger funnel lanes
upon a bang-bang control scheme, and did not Compens}g{{gch are less usefgl for navigation. Moreover, image paxal

for the camera roll angle. The algorithms were tested inethr nversely proportional to the distance to a feature. As a
environments: a 15 m path in an indoor laboratory envirortmelgSult distant features are primarily useful for cormegtthe
with rich texture for feature tracking, a 60 m trajectory im afotation of the robot and are quite incapable of informing
outdoor paved parking lot, and a 40 m path along unpavgbe robot about minor translatlor] errors. This prob!em is
terrain. In each case, we conducted ten trials and recordi@inPounded by the inherent ambiguity between rotation and
the final 2D location of the robot for each triafx;}",, transl_atlon in the funnel lane |tself: Even though this z_agnt_ty
wherex; € R? andn = 10. Accuracy was measured as thdas little effect when the robot is near the path, it hinders

RMS Euclidean distance to the final ground truth locatiof® @bility of the visual information to correctly deterrain
\/; S [[x; — x,0|]>. Repeatability was measured as th'éhe correct amount of rotation when the robot has deviated
n ci=1 1170 Rt P y significantly. Odometry helps to overcome this limitatiamd
standard deviation of the final locationg S°7_ ||x; — u/|2, ~we have conducted experiments in which the robot conslgtent
wherep = L 3" | x,. While the earlier algorithm works well returns to the path after deviating by several meters. Hewev

when the ground is paved and the scenery is rich in textuee, fRUCh larger deviations either initially or during replaynoat
improved algorithm is more robust, achieving maximum arroPe handled by our present system. At any rate, it should be
of only 0.23 m, 1.20 m, and 1.76 m, respectively, comparéted that odometry drift is not an issue because we only

with 0.45 m, 1.20 m, and 5.68 m for the earlier algorithm. store odometry values local to the segment, not in a global
coordinate frame.

40
x (m)

V. DISCUSSION

Because our system does not explicitly model the geometric
world, its geometric accuracy is limited. Therefore, wheme In this paper we have presented a novel approach to the
pared with map-based approaches using calibrated camgmasblem of vision-based mobile robot path following using a
[28], the errors exhibited by the simple control scheme aingle off-the-shelf camera. The robot navigates by panrfiog

VI. CONCLUSION
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a qualitative comparison of feature coordinates across the] A. Kosaka and A. C. Kak. Fast vision-guided mobile robavigation

teaching and replay phases, utilizing the novel concept of

a

funnel lane Vision information is combined with odometry for ;7

increased robustness. The algorithm does not make use of the localization in indoors environments.

traditional concepts of Jacobians, homographies, fundtahe
matrices, or the focus of expansion, and it does not requiye 18]
camera calibration, including lens calibration. It onlyju@es
implicit calibration in the form of a controller gain. Exper
mental results on both indoor and outdoor scenes demoanstr%?]
the effectiveness of the approach on trajectories of hutsdre

of meters, along with its robustness to effects such as dimart#°l
objects, slanted surfaces, and rough terrain. The vetgaifl
the algorithm in working with wide-angle and omnidirect&bn [21]
cameras with only minor modification has also been shown.
Future work should be aimed at incorporating higher—lev?jz]

scene knowledge to enable obstacle avoidance and terrain

characterization, as well as connecting multiple teacpiutys
in a graph-based framework to enable autonomous navigat'[gﬁ]
between arbitrary points.
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