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Abstract—We present a simple approach for vision-based path
following for a mobile robot. Based upon a novel concept called
the funnel lane, the coordinates of feature points during the
replay phase are compared with those obtained during the teach-
ing phase in order to determine the turning direction. Increased
robustness is achieved by coupling the feature coordinates with
odometry information. The system requires a single off-the-shelf,
forward-looking camera with no calibration (either external or
internal, including lens distortion). Implicit calibration of the
system is needed only in the form of a single controller gain.
The algorithm is qualitative in nature, requiring no map of
the environment, no image Jacobian, no homography, no fun-
damental matrix, and no assumption about a flat ground plane.
Experimental results demonstrate the capability of real-time
autonomous navigation in both indoor and outdoor environments,
on flat, slanted, and rough terrain with dynamic occluding objects
for distances of hundreds of meters. We also demonstrate that
the same approach works with wide-angle and omnidirectional
cameras with only slight modification.

Index Terms—feature tracking, mobile robot navigation,
vision-based navigation, control

I. I NTRODUCTION

ROute-based knowledge, in which the spatial layout of
an environment is recorded from the perspective of a

ground-level observer, is an important component of human
and animal navigation systems [31]. In this representation,
navigating from one location to another involves comparing
current visual inputs with a sequence of views captured along
the path in a previous instance. Applications that would benefit
from such a path-following capability include courier and
delivery robots [4], robotic tour guides [32], or reconnaissance
robots following a scout [7].

One approach to path following is visual servoing, in which
the robot is controlled to align the current image with a
reference image, both taken by an onboard camera [14]. Such
an approach generally employs a Jacobian to relate the coordi-
nates of world points to their projected image coordinates [5],
a homography or fundamental matrix to relate the coordinates
between images [29], [20], [27], [36], or bundle adjustment
to minimize the reprojection error over multiple image frames
[28]. As a result, the camera usually must be calibrated [5],
[27], [28], [36], and even uncalibrated systems require lens
distortion to be removed. Alternative vision-based algorithms
make strong assumptions about the environment or the sensor,
such as a flat ground plane [5], [20], [12], [29], a man-made
environment in which vertical straight lines are present [16],
[12], [29], [34], or an omnidirectional camera [10], [35], [18],
[34].

To overcome these limitations, we consider the problem
from a novel viewpoint in which there is no equation re-
lating image coordinates to world coordinates. Such a direct
approach is motivated by the observation that the problem

is vastly overdetermined, with tens of thousands of image
pixels available to determine a single turning command output.
We present a simple algorithm that uses a single, off-the-
shelf camera attached to the front of the robot. The technique
follows the teach-replay approach [5] in which the robot is
manually led through the path once during a teaching phase
and then follows the path autonomously during the replay
phase. Without any camera calibration (even calibration for
lens distortion), the robot is able to follow the path by making
only qualitative comparisons between the feature coordinates
in the two phases. All that is needed is a single controller
gain parameter to convert pixel coordinates to turning angles.
We demonstrate the technique on several indoor and outdoor
experiments, showing its robustness with respect to slanted
surfaces, changing lighting conditions, and dynamic occluding
objects. This paper extends the applicability and improves
upon the robustness of our earlier work [6] by incorporating
odometry information and correcting for camera roll. We
also demonstrate the ability of the technique to work with
wide-angle and omnidirectional cameras, with only slight
modification in the latter case to ignore the bottom half of
the image which views the scene behind the robot.

The proposed approach falls within the category of mapless
algorithms [8]. As such, it is closely related to the view-
sequenced route representation (VSRR) of Matsumoto et al.
[21], [22], [15] in which the turning angle is computed by
cross-correlating images acquired during the replay phasewith
those captured during training. However, VSRR requires large
amounts of memory to store the views and is sensitive to
occlusions by dynamic objects. Along with a homography-
based extension using vertical lines [29], it has only been
demonstrated for short sequences on flat terrains. An alternate
mapless approach is to learn the mapping from images to
turning commands based on their classification [37], [1]. While
this method can successfully follow a specific pattern such
as a road or hallway, it will have difficulty generalizing to
environments in which the images cannot be categorized into
a small number of classes known at training time. Another
approach that has received considerable attention [10], [38],
[39], [33], [17], [35], [13] is to store an example image with
each specific location of interest. At run time, the image
database is searched to find the image that most closely
resembles the current one (or, alternatively, the current image
is projected onto a manifold learned from the database [25],
[18]). Such approaches require extensive training and have
difficulty providing sufficient spatial resolution to determine
actual turning commands in large environments. Similarly,
sensory-motor learning has been used used to map visual
inputs to turning commands, but the resulting algorithms
have been too computationally demanding for real-time per-
formance [11]. Other researchers have developed mapless
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algorithms for low-level functionality like corridor following
or obstacle avoidance [26], [30], [2], [19], [23], [24], butthese
techniques are not applicable to following a specific arbitrary
path.

II. QUALITATIVE MAPPING FROM FEATURE COORDINATES

TO TURNING DIRECTION

Consider a mobile robot equipped with a camera whose
optical axis is parallel to the heading direction of the robot.
Suppose we wish to move the robot from locationC =
(xC , yC , θC) to a previously encountered locationD =
(xD, yD, θD), where (xi, yi) and θi are the position and
orientation, respectively, in thexy plane, i ∈ {C,D}. The
robot has access to a current imageIC , taken atC, and a
destination imageID, taken previously at the destinationD.

We start with a simple observation. Suppose the robot
views a fixed landmark in both images yielding image feature
coordinates ofuC anduD, as shown in Figure 1. The features
are computed with respect to a coordinate system centered
at the principal point (the intersection of the optical axisand
the image plane), so that positive coordinates are on the right
side of the image while negative coordinates are on the left
side. If the robot moves toward the destination in a straight
line with the same heading direction as that of the destination
(i.e., θC = θD), then the pointuC will move away from
the principal point towarduD, reachinguD when the robot
reachesD. This observation is made more precise in the
following theorem.

Theorem 1:Let a mobile robot move in a straight line
toward locationD on a flat surface. Letuj be the horizontal
image coordinate, relative to the principal point, of a mono-
tonic projection at locationj of a fixed landmark. For any
location C along the line such thatθC = θD, |uC | < |uD|
and sign(uC) = sign(uD).

The theorem can be easily proved by geometry. Note that
the image projection function is only required to be monotonic
(i.e., perspective projection is not necessary), so the result
applies equally to a camera with radial lens distortion. Thepri-
mary assumption is that the optical axis of the camera passes
through the axis of rotation of the robot. Other assumptions
include the alignment of the optical axis with the robot heading
direction, zero roll and tilt angles of the camera with respect
to the robot, and a flat ground plane. In practice, misalignment
is not an issue because the camera alignment can be learned
automatically by estimating the focus of expansion as the robot
drives forward. Similarly, rough terrain is easily handledby
measuring image rotation to compensate for a non-zero roll
angle of the robot and by recognizing that a non-zero tilt angle
has a negligible effect on the horizontal feature coordinates.

A. The funnel lane

According to the preceding theorem, if the robot is on the
path toward the destination with the same heading direction,
then two constraints are satisfied. Conversely, as shown in
Figure 2, if the constraints are satisfied then the robot lies
within a trapezoidal region (assuming perspective projection)
for any given relative robot angleα = θC − θD. For α = 0

Fig. 1. The robot is atC moving toward the destinationD with the same
heading direction. The open circle coincides with both the camera focal point
and the robot position, the arrow indicates the heading direction, π is the
image plane, andφ is the angle between the optical axis and the projection
ray from the landmark.

the sides of the trapezoid are defined by two lines passing
through the landmark, one throughD and another that is
parallel to the destination direction. These lines are rotated
about the landmark byα if the relative angle is nonzero.
We call the trapezoidal region thefunnel laneassociated with
the landmark, destination, and relative angle. The terminology
arises from the analogy of pouring liquid into a funnel: The
liquid moves in a straight line until it hits the sides of the
funnel, which cause it to bounce back and forth until it
eventually reaches the spout. In a similar manner, the sides
of the trapezoid act as bumpers, guiding the robot toward the
goal. The notion of the funnel and the funnel lane are captured
in the following definitions.

Definition 1: The funnelof a fixed landmarkλ and a robot
location D is the set of locationsFλ,D such that, for each
C ∈ Fλ,D, the two funnel constraints are satisfied:

|uC | < |uD| (Constraint 1)

sign(uC) = sign(uD) (Constraint 2)

whereuC anduD are the coordinates of the image projection
of λ at the locationsC andD, respectively.

Definition 2: The funnel laneof a fixed landmarkλ, a robot
location D, and a relative angleα is the set of locations
Fλ,D,α ⊂ Fλ,D such thatθC − θD = α for eachC ∈ Fλ,D,α.

Multiple features yield multiple funnel lanes, the intersec-
tion of which is the set of locations for which both constraints
are satisfied for all the features. This intersection, whichwe
call thecombined funnel lane, is depicted in Figure 2. Notice
the importance of having features on both sides of the image
in order to narrowly constrain the path of the robot, thus
achieving more robust and accurate results. Features can beat
any depth, and there need not be any relationship between the
depths of the various features as long as they remain visible.

B. Qualitative control algorithm

The funnel constraints lead to a simple control algorithm,
illustrated in Figure 3. The robot continually moves forward,
turning to the right whenever Constraint 1 is violated and to
the left whenever Constraint 2 is violated, given a feature on
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Fig. 2. TOP: The funnel lane created by the two constraints, shown when the
robot is facing the correct direction (left) and when it has turned by an angle
α (right). BOTTOM: The combined funnel lane created by multiple feature
points, shown when the robot is facing the correct direction(left) and when
it has turned by an angleα (right).

the right side of the image (uD > 0). If the feature is on the
left side (uD < 0), then the directions are reversed.

For each featurei, a desired heading is obtained by

θ
(i)
d =







γ min{uC , φ(uC , uD)} if uC > 0 anduC > uD

γ max{uC , φ(uC , uD)} if uC < 0 anduC < uD

0 otherwise

whereφ(uC , uD) = 1
√

2

(
uC − uD

)
is the signed distance to

the line uC = uD. Here we approximate the conversion of
pixels to radians with a constant gainγ.

At any given time, the desired heading of the robot is given
by

θd = η
1

N

N∑

i=1

θ
(i)
d + (1 − η)θo, (1)

whereN is the total number of feature points,θo is the desired
heading obtained by sampling a third-order polynomial thatis
fit to the initial and destination odometry measurements of
the segment in the teaching phase, and the factor0 ≤ η ≤
1 determines the relative importance of visual measurements
versus odometry measurements. We setη = 0.5 in our system.

III. T EACH-AND-REPLAY NAVIGATION

The navigation system involves two phases. In the teaching
phase, an operator manually moves the robot along a desired
path to gather training data. The path is divided into a number
of non-overlapping segments. Within each segment, feature
points are automatically detected in the first image and tracked
in subsequent images. When the percentage of features that
have been successfully tracked falls below 50% of the original
features in the segment, a new segment is declared. For each
feature that is successfully tracked throughout a segment,its
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Fig. 3. Qualitative control decision space. The horizontalcoordinates of the
feature point in the current and destination images (uC anduD , respectively)
are compared to determine whether to turn the robot to the right, to the left,
or not at all. LEFT: Top-down view of decision space. RIGHT: 3D view of
decision space, showing the desired angleθ

(i)
d

versusuC anduD .

graylevel intensity pattern andx-coordinate in the first and last
images of the segment are stored in a database for use in the
replay phase. We also store the length of each segment and the
change of heading direction of the robot in each segment by
odometry, which are used in determining the desired heading
and the segment transitions.

In the replay phase, the robot automatically proceeds se-
quentially through the segments starting from approximately
the same initial location as that of the teaching phase. At
the beginning of each segment, correspondence is established
between feature points in the current image and those of
the first teaching image of the segment. Then, as the feature
points are tracked in the incoming images, their coordinates
are compared with those of themilestone image(i.e., the last
teaching image of the segment) in order to determine the
turning direction for the robot. Prior to comparison, feature
coordinates are warped to compensate for a non-zero roll angle
about the optical axis by applying the RANSAC algorithm
[9] to pairs of random features. This compensation removes
the undesirable in-plane image rotation that occurs due to
unpaved, rough terrain. Note that this is the only place in the
algorithm where they-coordinates of the features are used.

A crucial component of the technique is determining when
to transition to a new segment. To solve this problem, we
continually monitor the probability that the robot at timet is
at the end of the current segment:

δ(t) = exp

{

−
ε2f (t)

2σ2
f

}

︸ ︷︷ ︸

feature

exp

{

−
ε2d(t)

2σ2
d

}

︸ ︷︷ ︸

distance

exp

{

−
ε2h(t)

2σ2
h

}

︸ ︷︷ ︸

heading

, (2)

assuming that the feature, distance, and heading measurements
are independent. In this equationεf (t) is the mean squared
error of the feature coordinates between the current and
milestone images;εd(t) is the difference between the distance
traveled in the current segment and the corresponding segment
in the teaching phase, calculated by odometry; andεh(t) is
the difference between the current heading and the heading at
the end of the teaching segment. These errors are normalized
by values computed automatically by the system:σf is the
mean squared error of the feature points at the beginning
of the segment;σd is the length of the segment calculated
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Fig. 4. The teaching and replay paths of the robot in an indoorenvironment
(left), and an outdoor environment (right).

by odometry in the teaching phase; andσh is the maximum
variation in heading encountered during the teaching segment.

Two values are actually computed:δ(t) using the current
milestone image andδ−(t) using the previous milestone
image. Ifδ(t−1)−δ(t) > τ andδ−(t−1)−δ−(t) > τ , where
τ = 0.05, then the system advances to using the next milestone
image. The rationale is that bothδ(t) and δ−(t) increase as
the robot approaches the end of the segment then decrease
afterward. Therefore, when both values have decreased by a
significant amount, the end has been reached. We have found
that using both values yields improved results compared with
using a single value. To reduce the effects of noise, both
signals are first smoothed by a low-pass nonlinear filter.

IV. EXPERIMENTAL RESULTS

The qualitative algorithm was implemented in Visual C++
on a Dell Inspiron 700m laptop (1.6 GHz) controlling an
ActivMedia Pioneer P3-AT mobile robot with an inexpensive
Logitech QuickCam Pro 4000 webcam mounted on the front.
The 320× 240 images were acquired at 30 Hz and processed
by the KLT algorithm with the default7 × 7 feature window
size [3]. In all experiments a maximum of 60 features were
detected and tracked throughout each segment. On average
85% of the features survive the initial correspondence in the
first image of the segment during replay.

The algorithm was tested in a number of indoor and outdoor
environments.1 Figure 4 shows two typical runs in which the
robot successfully navigated between chairs and desks along
a 10 m path in our laboratory, as well as along a 380 m
loop trajectory in a parking lot of our university campus. The
driving speed of the robot was 100 mm/s and the turning speed
was 4 degrees per second during both the teaching and replay
phases of the indoor experiments. Outdoors, the additional
maneuvering room enabled the driving and turning speeds to
be increased to 750 mm/s (the maximum driving speed of the
robot) and 6 degrees per second, respectively. The error was
less than 1 m for two-thirds of the sequence and remained
below 2.5 m for the entire sequence.

Figure 5 shows sample images from two experiments
demonstrating the robustness of the algorithm. In the first,the
robot navigated a slanted ramp in a 40 m run, thus verifying
that the algorithm does not require a flat ground plane. In
the second, the robot navigated a narrow road for 80 m

1Videos of the results can be found in the multimedia attachment or at
http://www.ces.clemson.edu/˜stb/research/mobile_rob ot

Fig. 5. Sample image frames showing the robot traveling down andup a
ramp and past dynamic objects. The circles indicate the features.
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Fig. 6. The approach successfully following a path using a wide-angle camera
(left) and an omnidirectional camera (right).

while a pedestrian walked by the robot and later a van drove
by it. Because the milestone images change frequently, the
algorithm quickly recovered from the loss of features due to
the occlusion caused by the dynamic objects.

Similarly, Figure 6 shows the results of the approach using
cameras with severe lens distortion. In one experiment we
used a wide-angle camera with a 3.5 mm focal length and
110-degree field of view. The other experiment utilized an
omnidirectional camera with a 360-degree field of view. For
both experiments we used the same parameters as the previous
experiments. The only change made to the code was to
discard the bottom half of the omnidirectional donut image.
This step was necessary because features behind the robot
(whether viewed by an omnidirectional or standard camera)
move in a way that violates the fundamental assumptions of
our approach. In contrast, features in front of the camera obey
the funnel constraints sufficiently to be of use in keeping
the robot on the path, despite their moving in curved image
paths due to the severe lens and catadioptric distortion. The
average error of the two experiments was 0.04 m and 0.04 m,
respectively, while the maximum error was 0.13 m and 0.09 m.

To further illustrate the lack of calibration, we conducted
an outdoor experiment in which the robot navigated the same
50 m path twice. In the first run the robot used the Logitech
Quickcam Pro 4000 camera, while in the second run it used an
Imaging Source DFK21F04 Firewire camera with an 8.0 mm
F1.2 lens. The same camera was used for both teaching
and replay. As shown in Figure 7, the algorithm was able
to successfully follow the path using either camera, without
changing any parameters between runs.

Three additional experiments are shown in Figure 8. In
the first, a scout robot was sent along an outdoor path.
Another robot, which received the transmitted path informa-
tion, was then able to follow the same path as the scout.
This demonstrates a natural application to swarm robotics,
where calibrating dozens or hundreds of cameras would be
prohibitive, especially if recalibration is needed whenever the
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Fig. 7. Teaching and replay paths for the robot using two different
uncalibrated cameras, with the same system parameters. LEFT: Logitech
QuickCam Pro 4000 USB webcam, RIGHT: Imaging Source DFK 21F04
Firewire camera.
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Fig. 8. LEFT: The robot followed a path taken earlier by a scout robot.
M IDDLE : A path on rough terrain. RIGHT: A path with sharp turns.

lenses are refocused or the cameras adjusted. The second
experiment shows the robot following a path along rough
terrain, in which roll and tilt angles up to 5 degrees were
encountered. The roll angle compensation described earlier
was sufficient to enable the robot to remain on the path. In
the third, a path with several sharp turns is demonstrated. This
ability is achieved by setting the replay driving speed to be
that of the teaching driving speed, which is decreased during
a turn.

Additionally, the algorithm was tested in various scenarios
to quantitatively measure its accuracy and repeatability.Table I
displays the results of the algorithm compared with those of
the earlier version [6] which did not use odometry, relied
upon a bang-bang control scheme, and did not compensate
for the camera roll angle. The algorithms were tested in three
environments: a 15 m path in an indoor laboratory environment
with rich texture for feature tracking, a 60 m trajectory in an
outdoor paved parking lot, and a 40 m path along unpaved
terrain. In each case, we conducted ten trials and recorded
the final 2D location of the robot for each trial:{xi}

n

i=1,
wherexi ∈ R

2 and n = 10. Accuracy was measured as the
RMS Euclidean distance to the final ground truth location:√

1
n

∑n

i=1 ||xi − xgt||2. Repeatability was measured as the

standard deviation of the final locations:
√

1
n

∑n

i=1 ||xi − µ||2,

whereµ = 1
n

∑n

i=1 xi. While the earlier algorithm works well
when the ground is paved and the scenery is rich in texture, the
improved algorithm is more robust, achieving maximum errors
of only 0.23 m, 1.20 m, and 1.76 m, respectively, compared
with 0.45 m, 1.20 m, and 5.68 m for the earlier algorithm.

V. D ISCUSSION

Because our system does not explicitly model the geometric
world, its geometric accuracy is limited. Therefore, when com-
pared with map-based approaches using calibrated cameras
[28], the errors exhibited by the simple control scheme of

outdoor outdoor
Algorithm indoor paved ground rough terrain

acc. / rep. acc. / rep. acc. / rep.
(m) / (m) (m) / (m) (m) / (m)

vision only [6] 0.30 / 0.18 0.77 / 0.74 3.87 / 1.85
combination (this paper) 0.14 / 0.08 0.60 / 0.55 1.47 / 0.66

TABLE I
COMPARISON OF THE ACCURACY AND REPEATABILITY OF THE

ALGORITHM WITH AN EARLIER VERSION, IN THREE DIFFERENT

SCENARIOS. THE LOWEST NUMBER IN EACH CASE IS IN BOLD.

our algorithm are rather large. Nevertheless, the remarkable
flexibility and versatility of the system offer some important
advantages over more precise techniques. With our approach,
one can literally take an off-the-shelf camera, attach it tothe
robot, align it approximately in the forward direction, andstart
the system.

The algorithm is not perfect, and there are scenarios in
which it will fail. For example, occasionally the algorithmdoes
not properly transition to the next milestone image, in which
case the overlap between the current and milestone image can
decrease to the point that an insufficient number of features
are matched. Also, untextured scenes containing distant trees,
bushes, or undecorated indoor hallways sometimes prevent the
KLT algorithm from successfully tracking enough features
to accurately compute the heading direction. While only a
handful of features are necessary for the algorithm to succeed,
it is important that features exist on both sides of the image,
and that some number of features remain visible throughout
the milestone.

Another source of error is due to distant features. Although
features near the center of the image produce a narrow funnel
lane even when they are far from the camera, distant features
near the side of the image produce much larger funnel lanes
which are less useful for navigation. Moreover, image parallax
is inversely proportional to the distance to a feature. As a
result, distant features are primarily useful for correcting the
rotation of the robot and are quite incapable of informing
the robot about minor translation errors. This problem is
compounded by the inherent ambiguity between rotation and
translation in the funnel lane itself. Even though this ambiguity
has little effect when the robot is near the path, it hinders
the ability of the visual information to correctly determine
the correct amount of rotation when the robot has deviated
significantly. Odometry helps to overcome this limitation,and
we have conducted experiments in which the robot consistently
returns to the path after deviating by several meters. However,
much larger deviations either initially or during replay cannot
be handled by our present system. At any rate, it should be
noted that odometry drift is not an issue because we only
store odometry values local to the segment, not in a global
coordinate frame.

VI. CONCLUSION

In this paper we have presented a novel approach to the
problem of vision-based mobile robot path following using a
single off-the-shelf camera. The robot navigates by performing
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a qualitative comparison of feature coordinates across the
teaching and replay phases, utilizing the novel concept of a
funnel lane. Vision information is combined with odometry for
increased robustness. The algorithm does not make use of the
traditional concepts of Jacobians, homographies, fundamental
matrices, or the focus of expansion, and it does not require any
camera calibration, including lens calibration. It only requires
implicit calibration in the form of a controller gain. Experi-
mental results on both indoor and outdoor scenes demonstrate
the effectiveness of the approach on trajectories of hundreds
of meters, along with its robustness to effects such as dynamic
objects, slanted surfaces, and rough terrain. The versatility of
the algorithm in working with wide-angle and omnidirectional
cameras with only minor modification has also been shown.
Future work should be aimed at incorporating higher-level
scene knowledge to enable obstacle avoidance and terrain
characterization, as well as connecting multiple teachingpaths
in a graph-based framework to enable autonomous navigation
between arbitrary points.
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D. Schulz, W. Steiner, and S. Thrun. Experiences with an interactive
museum guide-robot.Artificial Intelligence, 114(1-2):3–55, 1999.

[5] D. Burschka and G. Hager. Vision-based control of mobile robots. In
Proceedings of the International Conference on Robotics and Automa-
tion, pages 1707–1713, May 2001.

[6] Z. Chen and S. T. Birchfield. Qualitative vision-based mobile robot
navigation. InProceedings of the IEEE International Conference on
Robotics and Automation (ICRA), pages 2686–2692, May 2006.

[7] S. Crawford, M. Cannon, D. Letourneau, P. Lepage, and F. Michaud.
Performance evaluation of sensor combinations on mobile robots for
automated platoon control. InION GNSS Conference, pages 706–717,
2004.

[8] G. N. DeSouza and A. C. Kak. Vision for mobile robot navigation:
A survey. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 24(2):237–267, Feb. 2002.

[9] M. A. Fischler and R. C. Bolles. Random sample consensus: Aparadigm
for model fitting with applications to image analysis and automated
cartography.Communications of the ACM, 24(6):381–395, 1981.

[10] P. Gaussier, C. Joulain, S. Zrehen, J. P. Banquet, and A.Revel. Visual
navigation in an open environment without map. InProceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 545–550, Sept. 1997.

[11] C. Giovannangeli, P. Gaussier, and G. Désilles. Robust mapless outdoor
vision-based navigation. InProceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 3293–3300, 2006.
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