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Abstract

We introduce the concept of a spatiogram, which is a gen-
eralization of a histogram that includes potentially higher
order moments. A histogram is a zeroth-order spatiogram,
while second-order spatiograms contain spatial means and
covariances for each histogram bin. This spatial informa-
tion still allows quite general transformations, as in a his-
togram, but captures a richer description of the target to
increase robustness in tracking. We show how to use spa-
tiograms in kernel-based trackers, deriving a mean shift
procedure in which individual pixels vote not only for the
amount of shift but also for its direction. Experiments show
improved tracking results compared with histograms, using
both mean shift and exhaustive local search.
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1 Introduction

Histograms have proved themselves to be a powerful rep-
resentation for the image data in a region. Discarding all
spatial information, they are the foundation of classic tech-
niques such as histogram equalization and image indexing
[9]. Building upon these concepts, several successful track-
ing systems have been developed over the last several years
using color histograms, taking advantage of their robustness
to changing object pose and shape [1, 8, 10, 3, 2, 4, 11].

Other tracking systems have traditionally adopted a com-
pletely different point of view. Representing an image re-
gion by a template window of pixel intensities, the window
is registered with the previous frame of the sequence to de-
termine the displacement of the object [7, 5]. Such an ap-
proach lies at the opposite end of the spectrum from his-
tograms, because the spatial arrangement of the pixels in
the window is explicitly expected not to deviate from a low-
order parametric motion model.

Recently, Hager et al. [4] developed a connection be-
tween these two seemingly unrelated techniques by propos-
ing to use multiple spatially-weighted histograms. The
mathematical mechanism for enabling this connection is the
mean shift algorithm, which is a kernel-based method for
determining the alignment between two probability distri-

butions. Mean shift has recently gained significant atten-
tion as an efficient and robust method for visual tracking
[3, 2, 11].

In this paper we consider the concept of a single his-
togram in which each bin is spatially weighted by the mean
and covariance of the locations of the pixels that contribute
to that bin. We call this concept a spatial histogram, orspa-
tiogram. We show that spatiograms are simply histograms
with higher-order moments, and that histograms are zeroth-
order spatiograms. Spatiograms are a richer representation,
capturing not only the values of the pixels but their spa-
tial relationships as well. We derive a mean shift procedure
for spatiograms and demonstrate improved tracking results
when compared with traditional histograms on an image se-
quence of a person’s head.

2 Histograms and spatiograms

Given a discrete functionf : x → v, wherex ∈ X and
v ∈ V , a histogram of f captures the number of occur-
rences of each element in the range off . More specifically,
the histogram ishf : v → Z∗, wherev ∈ V andZ∗ is
the set of non-negative integers, andhf(v) is the number of
elementsx ∈ X such thatf(x) = v. Another way to look
at hf is as the marginal of a binary functiongf (x, v) over
x, wheregf (x, v) = 1 if f(x) = v and0 otherwise. That
is, hf(v) =

∑

x∈X
gf(x, v) is the zeroth-order moment of

g along thev dimension. Histograms are important because
they discard all information about the domain, thus mak-
ing them invariant toany one-to-one transformation of the
domain of the original function.

A limited amount of information regarding the domain
may be retained by using higher-order moments of the bi-
nary functiong, where theith-order moment is given by
h

(i)
f (v) =

∑

x∈X
xigf (x, v). We use the term spatial his-

togram, orspatiogram, to refer to this concept, because it
captures not only occurrence information about the range
of the function, as in a histogram, but also information
about the (spatial) domain. We define thekth-order spa-
tiogram to be a tuple of all the moments up to orderk:
〈h

(0)
f (v), . . . , h

(k)
f (v)〉. A histogram, then, is just a zeroth-



order spatiogram. To our knowledge, higher-order spa-
tiograms have not previously been explored.

The spatiogram may be thought of as a geometric model
bridging the gap between histograms, which allow for ar-
bitrary transformations, and more specific models such as
translation, similarity, affine, projective, or B-splines. Like
histograms, spatiograms are efficient to compute, and they
enable comparison between corresponding image patches
without specifically calculating the geometric transforma-
tion between them. Nevertheless, like the more specific
models, spatiograms retain some information about the
geometry of the patches. Compared with co-occurrence ma-
trices [6], spatiograms capture the global positions of the
pixels rather than their pairwise relationships.

2.1 Spatiograms in images

An image is a two-dimensional mappingI : x → v from
pixels x = [x, y]T to valuesv. For our purposes, the
meaning of these values is arbitrary. They may represent
raw gray-level intensities or component colors, or the result
of preprocessing (quantization, color space transformation,
wavelet coefficients, etc.).

We represent the second-order spatiogram of an image
as

h
(2)
I (b) = 〈nb, µb,Σb〉, b = 1, . . . , B,

wherenb is the number of pixels whose value is that of the
bth bin, andµb andΣb are the mean vector and covariance
matrices, respectively, of the coordinates of those pixels.
(There is a one-to-one transformation from this parameteri-
zation to the non-centralized moments mentioned earlier.)
The numberB = |V| is the number of bins in the spa-
tiogram. Notice that

h
(0)
I (b) = nb, b = 1, . . . , B

is just the histogram ofI.
The similarity between two spatiograms can be com-

puted as the weighted sum of the similarity between the two
histograms:

ρ(h, h′) =

B
∑

b=1

ψbρn(nb, n
′
b). (1)

For a zeroth-order spatiogram,ψb = 1. For a second-order
spatiogram, we setψb to the probability that̄xb was drawn
from a Gaussian distribution described by(x̄′

b,Σ
′
b), multi-

plied by the probability in the reverse direction:

ψb = η exp

{

−
1

2
(µb − µ′

b)
T Σ̂−1

b (µb − µ′
b)

}

, (2)

whereη is the Gaussian normalization constant andΣ̂−1
b =

(Σ−1
b + (Σ′

b)
−1). Notice that the value inside the summa-

tion is the average of the two Mahalanobis distances, one
betweenx andx′ and the other betweenx′ andx.

The similarity between the histogram bins can be com-
puted using any of a number of techniques, such as his-
togram intersection [9, 1]:

ρn(nb, n
′
b) =

min(nb, n
′
b)

∑B
j=1 nj

or the Bhattacharyya coefficient [3]:

ρn(nb, n
′
b) =

√

nbn′
b

√

(

∑B
j=1 nj

)(

∑B
j=1 n

′
j

)

.

2.2 Probabilistic view

A spatiogram captures the probability density function
(PDF) of the image values:

P (I(x) = v) = p(x, v) = p(x|v)p(v), (3)

where, for a second-order spatiogram, we have

p(v) =
nb

∑B
j=1 nj

p(x|v) = η exp

{

−
1

2
(x − µk)T Σ−1

k (x − µk)

}

, (4)

v is the value of thebth bin, andη is the Gaussian normaliza-
tion constant as before. For a zeroth-order spatiogram (his-
togram), there is no spatial dependency and the joint PDF is
equal to the marginal:p(x, v) = p(v).

It is instructive to consider the relationship between spa-
tiograms and Gaussian Mixture Models (GMMs), which
are semi-parametric alternatives to the non-parametric his-
tograms. A GMM captures the probability of a value as a
weighted sum ofM Gaussians:

p(v) =

M
∑

j=1

p(v|j)p(j), (5)

where

p(v|j) = η exp

{

−
1

2
(v − µj)

T Σ−1
j (v − µj)

}

(6)

is the Mahalanobis distance to thejth Gaussian, andp(j)
is the a priori likelihood thatj is the correct Gaussian from
whichv is drawn.

Comparing Eqs. (3)-(4) with (5)-(6), we see that spa-
tiograms and GMMs involve similar computations. The
difference is that GMMs capture the likelihood of a value
as the weighted sum of multiple Gaussians defined in the
range ofI, while spatiograms capture the likelihood of
a value at a particular location as the weight of a single
Gaussian defined in the domain ofI. Whereas GMMs are



Figure 1: Three different poses of a person (top), with im-
ages generated from the histogram (middle) and spatiogram
(bottom). The spatiogram captures spatial relationships
among the colors, whereas the histogram discards all spa-
tial information.

non-parametric in their domain and semi-parametric in their
range, and histograms are non-parametric in both their do-
main and range, spatiograms are non-parametric in their
range but semi-parametric in their domain. One could com-
bine spatiograms with GMMs to obtain a representation in
both domain and range, but we have left that for future re-
search. As an aside, we also notice that, comparing Eqs. (1)-
(2) with (5)-(6), the difference between two spatiograms is
exactly a GMM, with a Gaussian associated with each bin.

Figure 1 illustrates the difference between a histogram
and a spatiogram. For each of three poses of a person’s
head, we computed the histogram and spatiogram, which
we then used as a generative model to produce a new image
the same size as the original by sampling the PDF given by
Eqs. (3)-(4). An RGB color space was used with 8 bins per
channel, and only the diagonal elements ofΣi were used,
with the variances clipped at 1 pixel in order to makeΣi

invertible even for bins for whichnb is 0 or 1.

3 Tracking by mean shift

In our context, the problem of tracking is to determine
the image locationy ∈ R2 in the current image frame
for which the similarity is maximized between the model
spatiogramh′ = 〈n′, µ′,Σ′〉 and the spatiogramh(y) =
〈n(y), µ(y),Σ(y)〉 at the locationy. Generally the model
comes from the previous image frame.

The mean shift algorithm is an efficient technique for
computing the locationy corresponding to the nearest mode
of the probability distribution [3]. As a kernel-based tech-
nique, it requires that the histogram be smoothed with the
profilek : [0,∞) → R of a suitable kernel:

n′
b = C

N
∑

i=1

k(‖ xi ‖
2)δib

nb(y) = Ch

Nh
∑

i=1

k(‖ (xi − y)/h ‖2)δib, (7)

whereN is the number of pixels in the model’s region,Nh

is the number of pixels in the region of sizeh, andδib is
1 if the value ofxi is that of thebth bin and 0 otherwise.
These equations give the value in thebth bin of the model
and candidate histograms, respectively. The kernel profile
is convex and monotonic decreasing to weight pixels more
toward the center and zero outside the region. An Epanech-
nikov profile

k(x) =

{

1
2c

−1
d (d+ 2)(1 − x) x ≤ 1

0 x > 1
,

wherecd is the volume of the unitd-dimensional sphere,
andd is the dimensionality of the state space (2 in our case),
has the advantage that its derivative is constant, thus simpli-
fying the mean shift equation — see Equations (9) and (10)
below. The coordinatesxi, as well asxi − y, are normal-
ized so that they reach a value of 1 at the periphery of the
region. For an elliptical region this means dividing by the
major and minor axis length, andh is a scale parameter to
handle different sized ellipses. The normalization constants
are chosen so the sum of all the bins is one:

C =
1

∑N
i=1 k(‖ xi ‖2)

Ch =
1

∑Nh

i=1 k(‖ (y − xi)/h ‖2)

3.1 Mean shift for histograms

Let us first review the special case whenh andh′ are zeroth-
order spatiograms, i.e., histograms, a scenario that has been
studied extensively in the literature [3, 2, 11]. Following[3],
we define the likelihood̂ρ(y) that the target is at location
y as the similarity between the two histograms using the
Bhattacharyya coefficient:

ρ(y) = ρ(h(y), h′) =

B
∑

b=1

√

nb(y)n′
b

A Taylor series expansion around the current histogram
n(y0) yields a linear approximation to the coefficient:

ρ(y) ≈ ρ(y0) + [n(y) − n(y0)]
T ∂ρ

∂n
(y0)



=
1

2

B
∑

b=1

√

nb(y0)n
′
b +

1

2

B
∑

b=1

nb(y)

√

n′
b

nb(y0)

=
1

2

B
∑

b=1

√

nb(y0)n
′
b +

Ch

2

Nh
∑

i=1

wik

(

‖
y − xi

h
‖2

)

,

where the weights are given by

wi =

B
∑

b=1

√

n′
b

nb(y0)
δib. (8)

Taking the partial derivative ofρ(y) with respect toy and
setting it to zero yields the mean shift equation:

y1 =

∑Nh

i=1 wig
(

‖
y

0
−xi

h
‖2

)

xi

∑Nh

i=1 wig
(

‖
y

0
−xi

h
‖2

) , (9)

where g(x) = −dk(x)/dx is the negative derivative
of the kernel profile. As mentioned above, ifk is the
Epanechnikov profile, then the equation reduces to a sim-
ple weighted average:

y1 =

∑Nh

i=1 wixi
∑Nh

i=1 wi

. (10)

The algorithm is straightforward. For the first image
frame we compute the histogram of the elliptical region us-
ing Eq. (7) and store it as the model. Then, for each new
image frame we compute the histogram of the region using
Eq. (7), which we use to calculate the weights according to
Eq. (8), which are then used to determine the offset to the
position vector by Eq. (9) or Eq. (10). These three steps are
repeated until convergence for each new image frame.

3.2 Mean shift for spatiograms

For a spatiogram, we must consider as well the means and
covariances:1

µb(y) =
1

∑Nh

j=1 δjb

Nh
∑

i=1

(xi − y)δib

Σb(y) =
1

∑Nh

j=1 δjb

Nh
∑

i=1

(xi − µb(y))T (xi − µb(y))δib

To compare, we use the similarity measure in Equation (1):

ρ(y) = ρ(h(y), h′) =

B
∑

b=1

ψb(y)
√

nb(y)n′
b

1Note: By subtracting one from the denominator of the second equa-
tion, an unbiased estimate would be obtained.

whereψb(y) is given by Equation (2):

ψb(y) = η exp

{

−
1

2
(µb(y) − µ′

b)
T Σ̂−1

b (y)(µb(y) − µ′
b)

}

,

whereΣ̂−1
b (y) = (Σ−1

b (y) + (Σ′
b)

−1).
A Taylor series expansion about the histogramn(y0) and

mean vectorµ(y0) about the current location yields a linear
approximation to the coefficient:

ρ(y) ≈ ρ(y0) + Γn(y; y0) + Γµ(y; y0),

where

Γn(y; y0) = [n(y) − n(y0)]
T ∂ρ

∂n
(y0)

=
1

2

B
∑

b=1

ψb(y0)

√

n′
b

nb(y0)
nb(y) −

1

2
ρ(y0)

and

Γµ(y; y0) = [µ(y) − µ(y0)]
T ∂ρ

∂µ
(y0)

=

B
∑

b=1

ψb(y0)
√

n′
bnb(y0) · · ·

·(µ′
b − µb(y0))Σ̂

−1
b (y0)(µb(y) − µb(y0)).

Substituting Equation (2) and taking the derivative with
respect toy yields

∂Γn

∂y
=

Ch

h2

B
∑

b=1

ψb(y0)

√

n′
b

nb(y0)

Nh
∑

i=1

k(·)δib(y − xi)

=

Nh
∑

i=1

αik

(

‖
y0 − xi

h
‖2

)

(y − xi)

∂Γµ

∂y
= −

B
∑

b=1

ψb(y0)
√

n′
bnb(y0)Σ̂

−1
b (y0)(µ

′
b − µb(y0))

where

αi =
Ch

h2

B
∑

b=1

ψb(y0)

√

n′
b

nb(y0)
δib.

Putting it all together, we set∂ρ
∂y to zero and solve fory:

y1 =

∑Nh

i=1 αig
(

‖
y

0
−xi

h
‖2

)

xi −
∑B

b=1 vb

∑Nh

i=1 αig
(

‖
y

0
−xi

h
‖2

) ,

where

vb = ψb(y0)
√

n′
bnb(y0)Σ̂

−1
b (y0)(µ

′
b − µb(y0)).

As before, if we use the Epanechnikov kernel profile then
the derivative of the kernel is constant and disappears:

y1 =

∑Nh

i=1 αixi −
∑B

b=1 vb
∑Nh

i=1 αi

.
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Figure 2: Tracking error inx andy using histograms (blue,
dashed) versus spatiograms (red, solid) with exhaustive lo-
cal search.

To emphasize the similarity between this equation and
Equation (10), we can rearrange the numerator to obtain

y1 =

∑Nh

i=1 (αixi − v̂i)
∑Nh

i=1 αi

, (11)

where

v̂i =

∑B
b=1 vbδib

∑Nh

j=1 δjb

.

The relationship between the equations is now evident. In
Equation (10) each pixelxi casts a vote proportional towi in
the direction ofxi. In Equation (11) each pixel casts a vote
proportional to‖ αixi − v̂i ‖ in the direction ofxi − v̂i/αi.

4 Experimental results

To test the effectiveness of spatiograms com-
pared with histograms, we conducted three ex-
periments using the image sequences available at
http://www.ces.clemson.edu/˜stb/research/
headtracker . In all experiments the two techniques
were manually initialized to the same location in the
first image; the color space used wasB − G, G − R,
and (B + G + R)/3, as in [1]; and scale changes were
handled by searching± 10% in scale each image frame
and selecting the scale producing the maximum score, as in
[3]. The results are shown in Figure 4.

In the first experiment, the mean shift algorithm was run
on the sequence ’seqsb’. From frames 1 to 22 there is no
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Figure 3: The likelihood function at a single scale for frame
396 (top) and 464 (bottom) of Experiment 2. The spa-
tiogram produces a consistent likelihood, whereas the his-
togram likelihood is distracted by background pixels.

significant difference between the two techniques. Starting
at frame 23, histograms are distracted by the shirt as the
subject turns his head, while the spatiogram ellipse remains
on the head. At frame 37 the subject begins to move to the
right, causing both ellipses to move in that direction as well.
Then a quick jerk of the head at frame 43 loses both ellipses
permanently. We have found that, although mean shift is
exceptionally adept at rejecting outliers and maintaininga
good lock on the target when the motion is well-behaved, it
is not able to cope with quick, drastic accelerations.

In order to compare the techniques on the full sequence,
in the second experiment we ran the exhaustive search
method described in [1] with a±6 × ±6 × ±1 search
window in x, y, and scale. In addition to the color his-
togram/spatiogram, a gradient dot product module was also
used (this was necessary for the tracker to succeed). The
absolute error for every tenth frame, using manually deter-
mined ground truth, is shown in Figure 2. Although there
are a few frames in which the histogram does better, over-
all the spatiogram is the clear winner, exhibiting a mean-
squared error of 0.8 and 0.9 pixels (inx andy), compared
with 4.64 and 2.83 pixels (inx andy) for histograms. The
spatiogram is less distracted by surrounding skin-colored
objects, as seen by comparing the images of Figure 4 with
the likelihood functions of Figure 3.

In the third experiment we ran the same code as the pre-
ceding experiment on the sequence ‘seqmg’. On this se-
quence the spatiogram successfully tracks the head, while
the histogram slides off the target completely. This se-
quence is one of the few we have found in which the spa-
tiogram actually succeeds where the histogram fails. In
most of the sequences we have tried, both techniques either
succeed or fail together, although the spatiogram maintains



Experiment 1 (mean shift algorithm)

Experiment 2 (exhaustive local search)

Experiment 3 (exhaustive local search)

Figure 4: Tracking results for three experiments using histograms (blue) versus spatiograms (red). Shown are frames 7,27,
32, 37, 43 (top); 132, 192, 256, 396, 464 (middle); and 5, 15, 25, 28, 30 (bottom).

a more accurate lock on the target.

5. Conclusion

We have presented a novel concept that extends the famil-
iar histogram in a natural way by capturing a limited amount
of spatial information between the pixels contributing to the
histogram bins. This spatiogram, as we call it, is a gener-
alization of a histogram to higher-order moments. We have
derived a mean shift procedure to track an object using spa-
tiograms, and we have demonstrated improved tracking re-
sults when compared with histograms. Future work should
be aimed at better characterizing the reasons behind the suc-
cess of the spatiogram, especially since it is not specifically
designed to handle object pose changes.
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