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Abstract— Many vision-based automatic traffic monitoring
systems require a calibrated camera for computing speeds and
length-based classifications of tracked vehicles. A number of
techniques, both manual and automatic, have been proposed for
performing such calibration, but no study has yet focused upon
evaluating the relative strengths of these different alternatives.
We present a taxonomy for roadside camera calibration that not
only encompasses the existing methods (VVW, VWH, and VWL)
but also includes several novel ones as well (VVH, VVL, VLH,
VVD, VWD, and VHD). We also introduce an overconstrained
approach that takes into account all the available measurements,
resulting in reduced error as well as overcoming the inherent
ambiguity in the single-vanishing-point solutions. This important
but oft-neglected ambiguity has not received the attention thatit
deserves; we analyze it and propose several ways of overcoming
it. Our analysis includes the relative tradeoffs between two-
vanishing-point solutions, single-vanishing-point solutions, and
solutions that require the distance to the road to be known.
The various methods are compared using simulations and exper-
iments with real images, showing that methods that use a known
length generally outperform the others in terms of error, and
that the overconstrained method reduces errors even further.

I. I NTRODUCTION

A S the cost of cameras and processors continues to de-
crease, vision-based sensing is becoming an increasingly

popular alternative to traditional sensors for collectingtraffic
data. A number of both research and commercial systems have
shown the promise of gathering information such as volume,
speed, classification, incidents, and turning movements from
video. In addition to their cost, vision systems are especially
attractive due to their non-intrusiveness and rich data gathering
ability.

In order for a vision-based system to measure the speeds of
vehicles, there must be a mapping from pixels in the image
to coordinates in the world. Such a mapping can also be
used to increase the accuracy of the estimation of other types
of data such as volume, classification, or incidents. While
some systems rely only upon pixel-based measurements to
infer world lengths in certain directions [13], [21], a complete
image-to-world mapping enables much more detailed analysis
of the scene.

In recent years a number of authors have proposed various
methods for calibrating a roadside camera. Trajković [17]
describes an interactive approach to calibrating a Pan-Tilt-
Zoom (PTZ) camera by assuming that the camera height is
known. Bas and Crisman [1] use the known height and tilt
angle of the camera, along with a single set of parallel lines
(along the road edges) drawn by the user, while Lai [12]
removes the assumption of known height and tilt angle by
using an additional line of known length perpendicular to

the road edges. The technique of Fung et al. [5] uses the
pavement markings and known lane width but requires the
user to draw a rectangle formed by parallel lane markings in
adjacent lanes. The problem of ill-conditioned vanishing points
(i.e., parallel lines in the world appearing parallel in theimage,
so that the vanishing point is at infinity) has been addressed
by He et al. [8] using known length and width of road lane
markings. In an automatic approach, Schoepflin and Dailey
[14] dynamically calibrate PTZ cameras using lane activity
maps to find lane centers, along with gradient histograms to
estimate the direction perpendicular to the direction of travel.
Song et al. [15] use edge detection to find the lane markings
in the static background image, from which the vanishing
point is estimated by assuming that the camera height and
lane width are known in advance. Note that these application-
specific techniques are motivated by the fact that generic
camera calibration techniques [18], [23] are difficult to apply
to the roadside setting due to the lack of a calibration grid,the
dominance of a single plane, and the variable focal length.

A natural question to ask is, What is the relationship
between these methods? Early in our investigation we imple-
mented an existing technique only to find that it was extremely
sensitive to the input, so that even a slight amount of noise
would cause the resulting estimates for the parameters to
exhibit surprisingly large errors. This puzzling behaviorled
us to investigate the conditions under which such a technique
would prove practically useful, as well as the conditions under
which it cannot be trusted. We also sought to study the
characteristics of the other techniques to see whether they
would exhibit similar behavior, and we desired to consider
related techniques that had not yet been proposed. In effect,
our goal was to determine and analyze the space of roadside
camera calibration methods.

In this paper we present the results of this investigation.
Starting with a simplified pinhole camera model, we derive
the relationship between 3D world coordinates and 2D image
coordinates using the main parameters of the system. We then
introduce a taxonomy for the different calibration methodsthat
arise due to the differing image and world measurements avail-
able. We divide the methods into two categories, depending
upon whether only a single vanishing point or two vanishing
points are available. The taxonomy includes three existing
techniques (VVW, VWH, and VWL) as well as six novel ones
(VVH, VVL, VLH, VVD, VWD, and VHD). We show that
under certain conditions the single-vanishing point techniques
result in an ambiguous answer, and we introduce a heuristic
to overcome the ambiguity. This ambiguity has not been
previously analyzed nor given the attention that it deserves. In
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addition, we propose an overconstrained approach that takes
into account all the available measurements to refine the result
of any of the individual methods as well as to overcome
the ambiguity when additional measurements are available.
Following this, we discuss how existing methods fit into
the proposed taxonomy. Finally, we present simulations and
experiments to quantitatively compare the different methods
under a variety of conditions, showing the improvement that
results from the overconstrained approach.

II. T HE CAMERA MODEL

Consider a pinhole camera viewing a straight, flat road.
Assume that the camera has zero roll angle, square pixels
(i.e., unity aspect ratio), zero skew, and a principal pointat
the image center, as in [14], [15]. With these assumptions,
exactly three parameters are needed to map Euclidean points
on the road plane to image points on the image plane: the
camera focal lengthf , the heighth of the center of projection
above the road plane, and the tilt angleφ. In addition, the
pan angleθ is needed to align the road coordinates with the
direction of traffic flow. Note that a non-zero roll angle (also
known as the “swing angle”) can be compensated by a simple
image rotation, without affecting the findings of this paper.

Let us define two coordinate systems, as shown in Figure 1.
The camera coordinate system is centered on the image plane
at the principal point, withxc andyc axes that are aligned with
the rows and columns of the image, respectively. (Using the
standard image convention, thexc axis points toward the right
of the image, while theyc axis points downward.) The world
coordinate system is centered at the point on the road plane
directly beneath the center of projection. Thex axis is parallel
to thexc axis, while they axis is perpendicular to thex axis
so that, in a right-handed coordinate system, thez axis points
upward from the road. We adopt the convention thatφ = 0
when the camera is aimed at the horizon (i.e., the optical axis
zc is parallel to they axis), so that the two coordinate frames
are related by a rotation ofφ + π

2
about thex axis. The pan

angleθ is defined as the angle between theyz plane and the
direction of travel.

The projection of a point(x, y, z) in the world coordinate
frame to a point(u, v) in the image can be expressed as

p = Px = KRTx, (1)

where the homogeneous coordinates of the world point and its
projection arex = [x y z 1 ]

T andp = [αu αv α ]
T ,

α 6= 0, respectively, and(u, v) is a scaled version of(xc, yc)
according to the focal lengthf of the camera. The matrix

K =





f 0 0
0 f 0
0 0 1



 (2)

captures the internal camera parameters,

R =





1 0 0
0 − sinφ − cosφ
0 cosφ − sinφ



 (3)

corresponds to a rotation ofφ+ π
2

about thex axis, and

T =





1 0 0 0
0 1 0 0
0 0 1 −h



 (4)

captures the vertical translation of the camera. Note thatf is
in pixels,h in meters,0 < φ < π

2
, and0 ≤ θ ≤ π. Expanding

(1) yields the imaging expression for our model:





αu
αv
α



 =





f 0 0 0
0 −f sinφ −f cosφ fh cosφ
0 cosφ − sinφ h sinφ





︸ ︷︷ ︸

P=KRT






x
y
z
1




 ,

(5)
whereP = KRT is the 3 × 4 projection matrix. Converting
to inhomogeneous coordinates, we see that a point(x, y, 0) on
the road plane projects onto the image at

u =
αu

α
=

fx secφ

y + h tanφ
(6)

v =
αv

α
=

fh− fy tanφ

y + h tanφ
. (7)

These are the fundamental equations used to describe the
mapping from the road plane to the image plane. In the
following sections we describe a number of different scenarios
in which the calibration parametersf , h, φ, and θ can be
estimated.

A. Two vanishing points

Using the convention described above, the point at infinity
associated with the direction of traffic flow along the length
of the road is represented in 3D homogeneous coordinates as
x0 = [− tan θ 1 0 0 ]

T . Similarly, the point at infinity
associated with the direction in the road plane perpendicular
to traffic flow isx1 = [ 1 tan θ 0 0 ]

T . Projecting onto the
image plane yields the vanishing points(u0, v0) and(u1, v1):
[αui αvi α ]

T
= Pxi, where i ∈ {0, 1}. (Note that the

arbitrary scaling factorα 6= 0 need not be related in the various
equations in which it appears.) By expanding this expression,
we obtain

u0 =
αu0

α
=

−f tan θ

cosφ
(8)

v0 =
αv0
α

=
αv1
α

= −f tanφ (9)

u1 =
αu1

α
=

f

cosφ tan θ
, (10)

and v0 = v1 arises from the zero roll angle assumption.
It is straightforward to solve these three equations for the
unknowns:

f =
√

− (v2
0 + u0u1) (11)

φ = tan−1

(−v0
f

)

(12)

θ = tan−1

(−u0 cosφ

f

)

. (13)

Note several facts:
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(a) Left side view of the scene (b) Top view of the scene

Fig. 1. The coordinate systems used. The camera is placed at a height of h feet above the road with tilt angleφ and pan angleθ. The world coordinate
system is defined by thex, y, andz axes, whilexc andyc define the camera coordinate system. Both systems are right-handed, so thatx andxc (which are
parallel to each other) are into the page in the left side view, as indicated by the symbol⊗, while z is coming out of the page in the top view, shown by�.
The optical axis of the camerazc intersects the road plane along they axis atr = (0, h cot φ, 0).

• The heighth does not appear in the equations, because
vanishing points are independent of the camera position.
In fact, dividing (8) by (9) reveals that the vanishing point
coordinates bear a simple relation to the angles:

u0

v0
=

tan θ

sinφ
(14)

u1

v1
=

−1

sinφ tan θ
. (15)

• v0 ≤ 0. In other words, because the camera is pointed
downward (φ ≥ 0), the horizon line is in the top half of
the image. Similarly,u0 is negative whenθ is an acute
angle and positive whenθ is obtuse:

u0 ≤ 0 if 0 < θ <
π

2
(16)

u0 ≥ 0 if
π

2
< θ ≤ π, (17)

whereu0 → ±∞ asθ → π
2

.
• The focal lengthf will always be real, because the term

under the radical in (11) is guaranteed to be positive. This
can be seen by substituting (8)-(10) into the expression
−u0u1 > v2

0 , which leads tosin2 φ < 1, which is always
true.

We will now consider three different scenarios for calibration
using both vanishing points.

1) Two vanishing points and known camera height (VVH):
Often the height of the camera is already known, e.g., it was
measured at installation time. When a camera pans, tilts, and
zooms, its height above the ground does not change. The
simplest scenario therefore is to measure the two vanishing
points (u0, v0) and (u1, v0) and then compute the parameters
f , θ, and φ using (11)-(13). Sinceh is already known, the
calibration is complete.

2) Two vanishing points and known width (VVW):If,
however, the heighth is unknown, it can be computed using
a single known distance in the road perpendicular to the

direction of traffic flow. To develop the solution, note from
(6) that for any two points in the road plane having the same
coordinates along they axis, their distance∆x in the world is
related to the difference∆u in the image coordinates of their
projections by

∆u =
f∆x

y cosφ+ h sinφ
. (18)

Solving for h yields

h =
1

sinφ

(

f
∆x

∆u
− y cosφ

)

. (19)

Now let us consider the special case of a width measured
on theu axis in the image. By substitutingv = 0 in (7) and
solving for y, we obtain

y|v=0
= h cotφ. (20)

From this result, we see that the optical axis intersects the
road plane at the pointr = (0, h cotφ, 0), shown in Figure 1.
Substituting into (19) yields an expression for the camera
height

h = f sinφ
∆x

∆u

∣
∣
∣
∣
v=0

(21)

given a known distance∆x of a line segment on the road at
y = h cotφ and the image distance∆u of the corresponding
projection onto the image along the rowv = 0.

As shown in Figure 2, a widthw perpendicular to the traffic
flow produces a distance∆x = w sec θ along any line parallel
to thex axis. Typical values that can be measured are the width
of a vehicle or the lane width. If either of these is known, and
if the corresponding image measurement∆u can be made,
then the heighth can be computed using

h =
fw sinφ

δ cos θ
, (22)
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whereδ = ∆u|v=0
is the horizontal length of the projected

line segment in the image along thev = 0 line. As before, the
parametersf , θ, andφ are computed using (11)-(13).

Keep in mind that the two widths are used in slightly
different ways. Theδ corresponding to the road width can
be measured from the intersection of the lane lines with the
v = 0 axis in the image. However, theδ corresponding to the
vehicle width is obtained by projecting the vehicle width onto
the v = 0 axis using the first vanishing point(u0, v0).

3) Two vanishing points and known length (VVL):Suppose
that instead of knowing the width of a line segment perpendic-
ular to the road, we know the length of a line segment parallel
to the road. To incorporate length information, we will use the
v coordinates of the projection. To do this, we first rearrange
(6) and (7) to get

x =
hu secφ

v + f tanφ
(23)

y =
h(f − v tanφ)

v + f tanφ
. (24)

Note that y is independent ofu, because the roll angle is
zero. Now suppose there is a line segment on the road plane
parallel to the direction of traffic flow with length̀, as shown
in Figure 2. Typically this would be either the distance between
pavement markings or the length of a vehicle. The front point
lies at (·, yf , 0) and projects onto the image at(·, vf ), where
the dot indicates that the value is irrelevant to the computation.
The back point lies at(·, yb, 0), whereyb = yf + ` cos θ, and
projects onto the image at(·, vb).

Substituting into (24) yields

yf =
h(f − vf tanφ)

vf + f tanφ
(25)

yf =
h(f − vb tanφ)

vb + f tanφ
− ` cos θ . (26)

Equating these two expressions, substitutingtanφ = −v0/f
from (9), and solving forh yields an expression for the height:

h =
fκ` cos θ

f2 + v2
0

, (27)

whereκ = (vf − v0)(vb − v0)/(vf − vb). Again, (11)-(13) are
used to computef , θ, andφ.

B. One vanishing point

While estimating the vanishing point(u0, v0) in the direc-
tion of traffic flow is generally straightforward, it is often
quite difficult to obtain an accurate estimate of the vanishing
point (u1, v1) in the perpendicular direction. Worse, when
u1 = ∞ (which occurs whenθ = 0), the three approaches just
described will not work because (11) is rendered useless. Asa
result, we seek a calibration solution that does not requirethe
latter vanishing point. From (12) and (13), it is straightforward

to obtain the following:

sinφ =
−v0

√

f2 + v2
0

(28)

cosφ =
f

√

f2 + v2
0

(29)

sin2 θ =
u2

0

f2 + u2
0 + v2

0

(30)

cos2 θ =
f2 + v2

0

f2 + u2
0 + v2

0

. (31)

We will now use these equations to derive three additional
scenarios.

1) One vanishing point, known width, and camera height
(VWH): Squaring both sides of (22), substituting (28) and
(31), and rearranging yields a fourth-order equation inf :

(1 − k2
W )f4 +

[
2v2

0 − k2
W (u2

0 + v2
0)

]
f2 + v4

0 = 0, (32)

where kW = wv0/hδ. Thus, with a single vanishing point,
the height of the camera, and a known width, we can solve
this equation to get the square of the focal length. When the
equation yields exactly one positive root,f can be determined
uniquely.

Otherwise, when the equation yields two positive values for
f2, there is an ambiguity in determiningf . This ambiguity will
be analyzed in more detail in the next section. Note that in the
special case thatu0 = 0, the ambiguity disappears, because
(32) reduces to

[(
1 − k2

W

)
f2 + v2

0

] (
f2 + v2

0

)
= 0. (33)

Since the right factor can never be zero for a real camera, the
left factor must be zero. Rearranging therefore yields a unique
solution forf in this case:

f =

√

−v2
0

1 − k2
W

. (34)

Note that this expression could also be derived by squaring
both sides of (22) and substituting (28), noting thatu0 = 0
implies cos θ = 1 from (31).

Oncef is found, the parametersφ andθ are computed using
(12)-(13).

2) One vanishing point, known length and camera height
(VLH): Now suppose that instead of a known width, we have
a known length. This information can be exploited in a similar
manner by squaring both sides of (27), substituting (31), and
rearranging to obtain another fourth-order equation inf :

f4 +
[
u2

0 + 2v2
0 − k2

L

]
f2 + (u2

0 + v2
0)v2

0 = 0, (35)

where kL = κ`/h. This equation always has two positive
roots, leading to two possible values for the focal length, as
we shall see. Once the correctf is selected, (12)-(13) can be
used to findφ andθ.

3) One vanishing point, known width and length (VWL):
Now suppose that both a width and length are known, but the
height of the camera is unknown. By equating (22) and (27),
we derive yet another fourth order equation inf :

f4 +
[
2(u2

0 + v2
0) − k2

V

]
f2 +

(
u2

0 + v2
0

)2 − k2
V v

2
0 = 0, (36)
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(a) Measurements in the world coordinate system (b) Corresponding measurements in the image plane

Fig. 2. Measurements in the road and image planes used by the various calibration methods.

wherekV = δκ`/wv0. These two image measurements can
therefore be used to overcome the unknown world measure-
ment, but as with the case of VWH we are left with an
ambiguity because in some cases there will be two possible
solutions for f . The ambiguity disappears whenu0 = 0,
yielding a unique solution forf :

f =
√

k2
V − v2

0 , (37)

which is derived by equating (22) and (27) and substituting
cos θ = 1.

III. S INGLE VANISHING POINT AMBIGUITY

All three scenarios involving a single vanishing point require
solving an equation of the form

am2 + bm+ c = 0 (38)

for m = f2. This equation yields a single real solution for
f =

√
m when ac < 0. To see this, let us define the two

solutions to the equation as

m+ =
−b+

√
b2 − 4ac

2a
(39)

m− =
−b−

√
b2 − 4ac

2a
. (40)

When sgn(m+) 6= sgn(m−), i.e., m+m− < 0, then there
is a single real solution. Note that ifa > 0 and b > 0, then
m+ > 0 as long asc < 0, andm− < 0 regardless ofc. Similar
analysis for the other choices of sign fora andb reveals that
in all casesac < 0 indicates a single real solution.

Let us apply thisac < 0 constraint to the three scenarios.
In the case of VWH,(1 − k2

W )v4
0 < 0 leads tok2

W > 1.
Substitutingv0 from (12) andδ from (22) into the definition
kW = wv0

hδ
yields

kW =
cos θ

cosφ
. (41)

Therefore,k2
W > 1 when θ < φ if θ is acute, orπ − θ < φ

if θ is obtuse. When this occurs,a < 0, som+ < m−. Since

only one of these must be positive for there to be a single real
solution,f =

√
m− must be the correct value.

In the case of VLH,a = 1 andc = (u2
0 +v2

0)v
2
0 . Therefore,

ac > 0 always, and there is never a single real solution forf .
In the case of VWL, the condition is(u2

0 + v2
0)2 < k2

V v
2
0 .

From (22) and (27), we determine thatkV = v0

sin φ cos2 θ
.

Substituting this equation and (14) leads to
(

sin2 θ

sinφ
+ cos2 θ sinφ

)2

< 1. (42)

Sincea > 0 always, we know thatm+ > m−, and therefore
f =

√
m+ is the correct solution.

Note from these equations that whether the quadratic equa-
tion can be solved for a unique focal length depends entirely
upon the anglesφ and θ, without regard to the other param-
eters of the system. To visualize these expressions, Figure3
illustrates the solutions of three scenarios for differentvalues
of φ andθ. In all cases the black region indicates that a unique
solution forf exists becausem+m− < 0. Note that for VWH
the boundary of the black region isφ = θ, for VWL it is
described by (42), and for VLH it does not exist.

The figure also shows whetherm+ is the correct solution
(gray region) orm− is the correct solution (white region) when
the equation yields two positive roots form. The boundary
between the gray and white regions can be determined analyt-
ically by solvingb2 = 4ac for the different scenarios, leading
to the following curves which are shown in the figure:

(
sin θ

sinφ cosφ
+

cos2 θ sinφ

sin θ cosφ

)2

= 4 (VWH) (43)

(4 cos2θ sin2
φ +2 sin2

θ − sin4
θ cos2φ) cos2φ = 1 (VLH) (44)

tan2 θ = 1. (VWL) (45)

Sincem+ = m− along the gray/white boundary, it would
be tempting to assume that the ambiguity is not important
there. Unfortunately, while the error from choosing the wrong
solution is theoretically zero, the sensitivity of the methods
to measurement errors increases significantly near theb2 =
4ac curve. Some intuition for this behavior may be gained
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(a) VWH (b) VLH (c) VWL

Fig. 3. Using a single vanishing point requires solving a quadratic equation form = f2. Depending on the pan (θ) and tilt (φ) angles, the equation can
sometimes be solved uniquely forf because exactly one root form is positive (black region). Otherwise, both solutions are positive and an ambiguity exists,
in which case eitherm+ yields the correct solution (gray region) orm− yields the correct solution (white region). In the black region for VWH, the correct
solution ism−, while for VWL it is m+. All three plots form a mirror reflection aboutθ = 90◦ for obtuse pan angles.

by noticing that when the solution in either (39) or (40)
is differentiated with respect to one of the coefficients, the
term

√
b2 − 4ac ends up in the denominator, thus leading to

theoretically infinite sensitivity along the curve.
To summarize, if sgn(m+) 6= sgn(m−), then we simply

selectf =
√
m+ if m+ > 0 or f =

√
m− if m− > 0.

Otherwise, if bothm+ andm− are positive, then there is an
ambiguity, in which case it is impossible without additional
information to say whetherm+ or m− is the correct solution.
We suggest overcoming this ambiguity by either using the
distance to the road described in the next section, the over-
constrained method introduced in Section V, or the heuristic
introduced in Section VII-B.

IV. U SING DISTANCE FROM THE ROAD

Often the perpendicular distanced from the camera to the
edge of the road, in the road plane, is known. From Figure 2
the following relationships are evident:

y4 = d csc θ (46)

y2 = h cotφ (47)

tan θ =
x2

y4 − y2
. (48)

While this parameter is not part of the camera model itself, as
seen in (5), its availability leads to four additional scenarios
for calibration.

A. Two vanishing points, known distance to the road (VVD)

Using (46)-(48) and substitutingu = u2, x = x2 andy = y2
in (6) yields an expression for the height in terms ofd:

h =
fd tanφ

u2 secφ cos θ + f sin θ
. (49)

Using two vanishing points, we already knowf , φ, andθ from
(11)-(13). Therefore, this expression completes the calibration
if d is known. Note that this approach, as with the other
techniques that use two vanishing points, cannot be used when
θ = 0 becauseu1 = ∞.

Additionally, (49) can be used to overcome the ambiguity
of the single-vanishing point techniques already discussed
(VWH, VLH, and VWL), if d is known. Of the two solutions,
the one that satisfies this equation is the correct solution.

B. One vanishing point, known width and distance (VWD)

Equating (22) with (49) and rearranging yields:

f tan θ cosφ =
δd

w
− u2. (50)

From (8) and (29) we have

tan θ cosφ =
−u0f

f2 + v2
0

. (51)

Substituting into (50) and solving forf yields

f =

√

kDv2
0

1 − kD

, (52)

wherekD = (wu2 − δd)/wuo. Thus, given a single vanishing
point, a known width in the world, and the distanced, this
equation allows us to computef , from which φ and θ are
determined as before. The heighth can then be computed
using either (22) or (49).

Note that this approach also does not work whenθ = 0,
because (22) and (49) lead to a cancellation off :

h = f sinφ
w

δ
= f sinφ

d

u2

⇒ wu2 = dδ.

As a result,kD = 0/0 is indeterminate, rendering (52) useless.
In other words, whenθ = 0 the information provided by the
width w and the distanced are the same, thus makingh or `
necessary to solve forf .

C. One vanishing point, known height and distance (VHD)

Rearranging (49) and substituting from (9) yields

f sin θ + u2 secφ cos θ =
−dv0
h

,

which, after substitutingsecφ = −u0

f tan θ
from (8), becomes

f2 sin2 θ − u0u2 cos2 θ =
−dv0f
h

sin θ. (53)

Squaring both sides and using (30) and (31) leads to a fourth-
order equation inf :

[
(u2 − u0)

2

v2
0

− d2

h2

]

f4 (54)

+

[

2(u2 − u0)u2 −
d2(u2

0 + v2
0)

h2

]

f2 + u2
2v

2
0 = 0.
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Fig. 4. The solutions for VHD follow a similar trend to those ofVWH in Figure 3. In all casesd = 30 feet, andh ∈ {21, 30, 45} feet, leading to
µ ∈ {0.7, 1.0, 1.5}.

Thus with a single vanishing point, known height and distance,
this equation can be solved forf2. However, like before, this
approach leads to an ambiguity if both roots are positive.

Unlike the previous cases of ambiguity (VWH, VLH,
VWL), the ambiguity of VHD also depends upon the ratio
µ = h/d. Figure 4 shows the behavior of the solutions of
(54) as a function ofφ and θ for three different values ofµ.
Note that the location and shape of the regions remain largely
unaffected by even substantial changes inµ. To determine the
unambiguous black region, note that as in the previous cases
involving a single vanishing point, VHD yields a single real
solution whenac < 0, or

d2

h2
>

(u2 − u0)
2

v2
0

. (55)

Solving (49) foru2 and substituting, along with (8) and (9),
yields an expression for the unambiguous region:

cos θ − cosφ > µ sin θ sinφ. (56)

Similarly, the boundary between the gray and white regions
in the figure is given byb2 = 4ac, which leads to

4(cosφ +µ sinφ sinθ)ψφ,θ − ψ2
φ,θ = 4 cos2θ, (57)

where

ψφ,θ =
sin2

θ +sin2
φ cos2θ

sinφ cosφ(sinφ −µ sinθ cosφ)
. (58)

D. One vanishing point, known length and distance (VLD)

Equating (27) and (49) yields, after some manipulation, a
sixth-order equation inf :

f6 + [2u2
0 + 3v2

0 − γ2

v2
0

(u0 − u2)
2]f4 (59)

+ [(u2
0 + v2

0)2 + 2v2
0(u2

0 + v2
0) + 2γ2u2(u0 − u2)]f

2

+ [v2
0(u2

0 + v2
0)

2 − γ2v2
0u

2
2] = 0,

whereγ = κ`/d. This is the worst ambiguity of all, yielding
up to three solutions forf . As a result, in our experiments we
exclude this technique.

V. OVERCONSTRAINED METHOD

Sometimes more measurements are available than are
needed by any method described so far. For example, in
addition to the required quantities of VWL, we might also
know the height and the distance to the road, and, in fact,
we might even have multiple known lengths or widths in the
image. To take advantage of such additional information, we
propose an overconstrained (OC) method that minimizes an
energy functional composed of the known distance to the road
d̄, known height̄h, and known measurements (e.g., lengths or
widths) in the road planēωi. That is, we find

arg min
f,h,φ

λd

∣
∣d− d̄

∣
∣ + λh

∣
∣h− h̄

∣
∣ + λω

n∑

i=1

|ωi − ω̄i| , (60)

wheren is the number of known measurements in the road
plane, andλd, λh, and λω are scaling factors that weigh
the importance of the different terms. (We setλd = λh =
λω = 1.) Since the functional can include any number of
measurements in the road plane, it is possible to achieve
even greater redundancy by using image distances of multiple
vehicles, along with a priori distributions of known lengths and
widths of vehicles, with the lengths perhaps categorized bythe
type of vehicle. At any rate, the functional is minimized by ap-
plying Levenberg-Marquardt non-linear optimization starting
from the parameters given by VWL (or any other method).
In the case of ambiguity, all sets of parameters are used as
starting points. In this way, this approach can not only improve
the quality of the final solution, but it can also overcome the
ambiguity.

Note that the optimization finds the parameter values that
minimize the distance measurement error, perhaps at the
expense of increasing the error in the estimated parameters
themselves. This is a desirable outcome, however, since the
primary goal of camera calibration is to measure distances
in the road plane. In contrast, generic camera calibration
approaches generally minimize image reprojection error using
some sort of bundle adjustment.

VI. TAXONOMY APPLIED TO EXISTING METHODS

Over the years various traffic researchers have proposed
methods for camera calibration, both manual and automatic.
Table I illustrates how these methods fit into our taxonomy.
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Note that the table does not include simplified calibration
methods that do not yield the camera parameters [2], [3].

A number of authors have proposed solutions that fall
within the category of VVW, which has been by far the most
popular method to date. Lai and Yung [12] and Schoepflin
and Dailey [14] both describe automatic methods for finding
the lane boundaries and a line perpendicular to these lines
(i.e., perpendicular to the direction of traffic flow). The lane
boundaries are used to compute the first vanishing point,
while the assumption of zero roll angle is used to estimate
the second vanishing point from the perpendicular line. In
our previous work we used this same formulation for both
manual [10] and automatic [11] calibration. Once calibration
has been performed, Schoepflin and Dailey [14] mention that
the calculatedh and d can be used to recalibrate after PTZ
movement using a single vanishing point (VHD), though no
results are shown.

The zero roll angle assumption is not invoked by Fung et al.
[5], who require the user to click on four points corresponding
to a rectangle in the road and then compute the two vanishing
points from the two sets of parallel lines. Similarly, Zhaoxue
and Pengfei [24] propose a particularly interesting methodfor
overcoming a non-zero roll angle. They obtain the vanishing
line by geometric construction using three parallel lines of
equal intervals (e.g., the boundaries of two adjacent laneswith
equal widths). Both of these approaches can be classified as
VVW.

To avoid the difficulty of estimating the second vanishing
point, several researchers have proposed single-vanishing point
solutions. Gupte et al. [7] describe an interactive user interface
in which the camera parameters are solved using an iterative
nonlinear minimization technique assuming known quantities
similar to those required by VWL. He and Yung [8] analyze
the problem of ill-conditioned vanishing points (i.e., parallel
lines in the world appearing parallel in the image, which is
often the case for the second vanishing point). Their approach
assumes that two sets of parallel world lines are known in the
image, one pointing along the direction of traffic flow and the
other perpendicular. If either set is nearly parallel in theimage
then the other set is used to find the other vanishing point in a
manner similar to VWL, but if neither set is nearly parallel in
the image then their method reduces to the VVW approach of
Fung et al. [5]. We borrow much of our notation from Song
et al. [15], who estimate the vanishing point automatically
using edge detection to find the lane markings in the static
background image, from which the calibration parameters are
determined using VWH. Their paper is especially relevant
because it not only introduces the second-order equation for
m but also explicitly mentions that they used to overcome
the ambiguity in the solution.

Some previous methods require prior knowledge of camera
parameters. For example, in the early work of Bas and Crisman
[1], both the height and the tilt angle of the camera are
assumed known beforehand. The vanishing point is computed
from two parallel lines manually drawn in the image along the
lane boundaries. From these quantities, the other parameters
can easily be estimated using (11)-(13). Similarly, the method
of Wu et al. [20] requires the focal length to be known

beforehand. Using two parallel lines found automatically in
the image by edge detection, along with a known width, the
other parameters can be found using (11)-(13) and (22). These
methods, neither of which allows for non-zero roll angle, could
be included in the table by expanding our taxonomy to include
VHΦ and VWF, respectively.

A recent solution presented by Zhang et al. [22] relies
on estimating vanishing points in three orthogonal directions,
using pedestrians to obtain the vertical vanishing point. This
work is reminiscent of the well-cited work of Wang and Tsai
[19], which also use three vanishing points albeit in the plane.
By solving for the complete camera calibration matrix, the
approach of [22] solves for the principal point and roll angle,
in what could be termed VVVH, since the height of the camera
is known.

VII. E XPERIMENTAL RESULTS

The various calibration methods of our taxonomy were
evaluated using both simulations and real experiments.

A. Simulations

A simulated camera satisfying the assumptions described
in the beginning of Section II was placed near a simulated
straight, flat stretch of road. The camera was placed at three
different heights (30, 40 and 50 feet) above the road, and
at three different distances from the edge of the road (40,
20, and -20 feet), where the third distance indicates that the
camera was in the middle of the road. The tilt and pan angles
of the camera were changed from10◦ to 60◦ and 0◦ to
50◦, respectively, in10◦ increments. Three focal lengths were
selected (250, 300, and500 pixels), leading to an exploration
space consisting of972 configurations (3 focal lengths× 3
heights× 3 distances× 6 tilt angles× 6 pan angles).

For each of these configurations we conducted 2000 simula-
tions with noisy measurements to analyze the effect of erroron
the estimated camera parameters. Both image and world mea-
surements were perturbed by adding random Gaussian noise.
More precisely, we set̃q = q + ξ, where q and q̃ represent
the original and perturbed measurements, respectively, and
ξ ∼ N (0, σ2) is a zero-mean normal random variable with
varianceσ2.

Prior to the simulation, a set of line segments in the
road plane was randomly generated within the field of view,
and a ground truth simulated camera was used to yield the
corresponding image coordinates for each line segment. These
values were used to test the accuracy of the parameter estima-
tion as follows. After a given method was used to estimate the
camera parameters from the noisy measurements, the image
coordinates of the line segments were backprojected onto the
road plane using the estimated parameters. The estimated
distance along each line segment was compared with the
corresponding ground truth distance, and the mean absolute
error in these estimated distances was used to quantify the
accuracy of the method.

Note that our evaluation is directly based upon measure-
ments in the road plane. This decision is due to the specific
application being considered, in which the purpose of the
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Previous work Method Known quantities Non-zero roll?
Lai and Yung [12] VVW Two parallel lines, one perpendicular line, and lane width No
Schoepflin and Dailey [14] VVW Multiple parallel lines, one perpendicular line, and lane width No
Kanhere et al. [10] VVW Two parallel lines, one perpendicular line, and lane width No
Kanhere et al. [11] VVW Two parallel lines, one perpendicular line, and vehicle width No
Fung et al. [5] VVW Rectangular pattern of known width Yes
Zhaoxue and Pengfei [24] VVW Three parallel lines with identical known widths, and perpendicular line Yes
Gupte et al. [7] VWL Two parallel lines, lane width, distance between lane markings Yes
He and Yung [8] VWL Rectangular pattern of known width and length Yes
Song et al. [15] VWH Lane width and height of the camera No

TABLE I

PREVIOUS WORK CATEGORIZED USING THE PROPOSED TAXONOMY OF CALIBRATION METHODS. THE LAST COLUMN INDICATES WHETHER EACH

METHOD ALLOWS FOR A NON-ZERO ROLL ANGLE.

camera is solely to obtain speeds and other information with
respect to the road. Our approach is in contrast to evaluations
of generic camera calibration methods based upon image mea-
surements, such as [6], [25], where the primary focus is upon
recovering internal camera parameters of fixed-focal length
cameras. Other researchers [4], [9], [16] compare generic
calibration techniques using sophisticated equipment such as
laser range finders or structured light systems. Such equipment
would be difficult to apply in the application considered dueto
the dynamic nature of the scene and the outdoor illumination
levels.

Figures 5 and 6 show simulation results for four different
angles for the valuesf = 500 pixels, d = 20 feet, and
h = 50 feet. Notice from these figures that, in general, the
sensitivity to measurement errors decreases significantlyas
the tilt angleφ increases to a moderate value. Note that the
methods based on length (specifically VVL, VWL, and VLH)
outperformed the other methods, and that the two-vanishing-
point methods were generally more accurate than those using
a single vanishing point. The other simulations, which are
omitted due to space limitations, exhibit similar qualitative
trends as those shown in these figures. To give the reader an
idea of this stability, Figure 7 shows the results when the focal
length and ratioµ = h/d is changed. The results in the left and
right columns are nearly the same as those in the bottom-right
plots of Figures 5 and 6, respectively.

B. Experiments

The calibration methods were evaluated on real images for
four test setups at three locations. Setups 1 and 2 were captured
by a permanently mounted PTZ camera, which provided the
ground truth tilt angle using its internal encoders. Setups3 and
4 were captured by a portable camera without the capability
of providing ground truth tilt. For both cameras, the ground
truth focal lengths were computed using the planar calibration
method of Zhang [23]. All other ground truth values were
acquired using a tape measure, and all image measurements
were obtained manually by clicking on the image to avoid
image processing errors. We would like to emphasize that the
distance measurements (ω) used in the overconstrained (OC)
solution were different from the test distances used to evaluate
the calibration accuracy.

The results of the various methods are presented in Table II.
In addition to the camera parameters, the table shows the
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Fig. 5. Simulation results of the two-vanishing-point methods. VVL is the
least sensitive to measurement noise.
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Fig. 6. Simulation results of the single-vanishing-point methods. VWL and
VLH are the least sensitive to measurement noise.
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Fig. 7. Simulation results for the two-vanishing-point methods (left column)
and the single-vanishing-point methods (right column) for different values of
f andµ = h/d. Note that the sensitivity of the methods is not significantly
affected.

accuracy of each method’s ability to estimate test distance
measurements in the road. The test errors are then graphically
illustrated in the plots of Figure 8. These results show that
methods based on using two vanishing points (VVH, VVW,
VVL, and VVD) and/or using a measurement of known length
(VVL, VLH, and VWL) outperformed the other methods, pro-
ducing errors less than 10%. In contrast, the single-vanishing
point methods without a known length (VWH, VWD, and
VHD) performed poorly, producing errors of approximately
10–20%. Note that even though VVD performs comparably
to the single-vanishing point techniques, it is noticeablyworse
than any other two-vanishing point technique, thus showing
that distance to the road is not a reliable measurement for
calibration. These observations are consistent with the simu-
lations above.

These results were obtained by first compensating for the
non-zero roll angle in Setups 3 and 4, which was achieved by
a simple image rotation. Regarding the other assumptions in
the camera model, the unity aspect ratio and zero skew angle
assumption hold true for nearly all modern cameras and there-
fore incur little risk. While the principal point can often be
far from the image center, we have found that this assumption
nevertheless does not significantly affect the results, causing
errors to increase by no more than approximately 2%.

We should mention that while performing calibration with
real images, the quadratic equation inm occasionally resulted
in two positive solutions (resulting in two sets of parameters
satisfying all respective equations). These cases are indicated
by an asterisk (∗) next to the estimated focal length in Table II.
To resolve this ambiguity, we always selectedm+ as the
solution when this occurred. This choice was based on the
assumption that typically both the pan and tilt angles are not
excessively large. Within the range0◦ < θ < 45◦, m+ is
guaranteed to be the correct solution for VWL, as seen in
Figure 3. Similarly, if bothφ andθ are no greater than38.17◦,
thenm+ is also guaranteed to be the correct solution for VLH;

this value comes from intersecting theb2 = 4ac (gray/white)
curve with theφ = θ line. With VWH and VHD, there is only
a slight chance ofm+ being the wrong solution (see the white
sliver in Figures 3 and 4).

To test the validity of our choice ofm+ to overcome the
ambiguity when both roots are positive, we used additional
information about known quantities collected for these four
setups. In the case of VWH, VLH, and VWL we used the
known distanced to the road, whereas in the case of VHD
we used a known lengthl. In all cases we found that the
parameter value computed usingm+ was indeed closer to
the true value than the alternative value computed usingm−.
While this is not a guarantee that the “selectm+ when in
doubt” heuristic will work in all situations, it nevertheless
confirms its correctness in these setups, and it indicates that
this heuristic may be useful in other configurations as well.

VIII. C ONCLUSION

As vision-based traffic monitoring and data collection be-
come more widespread, it will be important to accurately
calibrate roadside cameras to compute vehicle speeds and
classes. Generic camera calibration techniques do not readily
apply to this scenario due to the lack of a calibration grid and
the dominance of a single plane. While many researchers have
addressed the problem of camera calibration in the context
of traffic applications, there has been no attempt to date to
evaluate the different approaches. In this paper we have pro-
posed a taxonomy of roadside calibration approaches to better
facilitate discussion of the relative merits of the approaches,
as well as the conditions under which they are expected to
work. In developing this taxonomy, we have introduced several
new methods that have not been considered in previous work
(VVH, VVL, VLH, VVD, VWD, and VHD), in addition to
three that have (VVW, VWH, and VWL). We also introduced
an overconstrained approach that not only reduces error but
also overcomes the important but oft-neglected ambiguity that
is inherent with single-vanishing point solutions. We then
compared the methods using both simulations and real image
data to evaluate their accuracy under different scenarios.In
general, the methods that use a known length outperform
the other methods, and all methods perform better when the
camera is tilted at least a moderate amount. One important
conclusion of this study is that the most popular method to
date, VVW, does not perform well at estimating lengths in the
road.

In this paper we have focused solely upon the geomet-
ric relationships between the various quantities, withoutad-
dressing the vast number of image processing techniques
for automatically obtaining them. Our purpose in doing this
was to determine the efficacy of roadside camera calibration
itself without regard to the errors of any particular image
processing algorithm. Even with very accurate measurements,
we conclude that camera calibration is a delicate and sensitive
process for which great care must be taken to ensure accurate
results.
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Setup Quantity GT VVH VVW VVL VVD VWH VLH VWL VWD VHD OC

Setup 1

f (pixels) 435 373.8 373.8 373.8 373.8 159.6 378.0∗ 348.9 182.4∗ 204.7∗ 319.1
h (feet) 28.5 28.5 30.5 28.8 25.4 28.5 28.5 30.5 29.6 28.5 28.7
d (feet) 20.5 22.3 23.9 22.6 20.5 18.0 22.4 23.7 20.5 20.5 20.5
φ (degrees) 14.5 13.9 13.9 13.9 13.9 30.1 13.8 14.9 26.9 24.4 14.7
θ (degrees) – 12.4 12.4 12.4 12.4 24.7 12.3 13.2 22.5 20.7 13.2
Test error – 6.9% 6.8% 6.5% 14.6% 32.2% 6.8% 5.1% 28.3% 28.2% 3.5%

Setup 2

f (pixels) 435 320.8 320.8 320.8 320.8 324.0 347.2∗ 312.6 243.8∗ 257.8∗ 312.6
h (feet) 28.5 28.5 30.0 29.6 26.0 28.5 28.5 29.9 29.3 28.5 29.9
d (feet) 20.5 22.8 23.9 23.7 20.5 22.8 23.4 23.7 20.5 20.5 20.5
φ (degrees) 24 26.4 26.4 26.4 26.4 26.1 24.6 26.9 33.1 31.7 26.9
θ (degrees) – 24.6 24.6 24.6 24.6 24.4 23.2 25.0 29.4 28.4 25.0
Test error – 4.8% 9.8% 8.4% 7.0% 5.0% 6.3% 9.3% 6.2% 3.0% 4.7%

Setup 3

f (pixels) 290 425.5 425.5 425.5 425.5 367.1 366.2∗ 296.5 268.5∗ 313.8∗ 360.1
h (feet) 32 32.0 35.9 28.5 26.6 32.0 32.0 37.1 37.4 32.0 40.5
d (feet) 10 14.9 16.7 13.2 10.0 13.9 14.0 14.2 10.0 10.0 10.0
φ (degrees) – 12.0 12.0 12.0 12.0 13.9 13.9 17.0 18.7 16.1 16.5
θ (degrees) – 19.9 19.9 19.9 19.9 22.5 22.6 26.9 29.0 25.7 26.9
Test error – 11.2% 14.6% 10.6% 15.6% 5.9% 6.0% 3.1% 5.1% 10.1% 2.8%

Setup 4

f (pixels) 290 314.4 314.4 314.4 314.4 705.5 355.6∗ 281.8∗ 226.9∗ 293.2∗ 325.9
h (feet) 32 32.0 36.6 34.8 30.7 32.0 32.0 37.2 38.9 32.0 39.7
d (feet) 20 26.5 30.3 28.9 20.0 32.2 27.9 29.2 20.0 20.0 20.0
φ (degrees) – 14.5 14.5 14.5 14.5 6.5 12.8 16.0 19.7 15.5 16.2
θ (degrees) – 29.3 29.3 29.3 29.3 14.4 26.5 31.9 37.1 30.9 31.9
Test error – 7.4% 6.0% 4.1% 10.9% 38.4% 6.4% 3.0% 4.9% 10.3% 2.5%

TABLE II

EXPERIMENTAL RESULTS ON REAL IMAGES OBTAINED WITH FOUR SETUPS (TWO DIFFERENT CAMERAS, THREE DIFFERENT LOCATIONS, AND VARIOUS

ANGLES). THE COLUMN GT CONTAINS GROUND TRUTH VALUES WHEN AVAILABLE. THE REMAINING COLUMNS CONTAIN THE VALUES ESTIMATED BY

THE VARIOUS METHODS, ALONG WITH THE MEAN PERCENTAGE ERROR OF THE TEST DISTANCES. ESTIMATED VALUES WITH LESS THAN 10% ERROR

ARE SHOWN IN BOLD. THE ASTERISK (∗) INDICATES THAT BOTH ROOTS WERE POSITIVE AND THEREFORE THE“ SELECTm+ WHEN IN DOUBT”

HEURISTIC WAS EMPLOYED.
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Fig. 8. Graphical illustration of the test-length errors ofTable II. Left: The errors of each method for the four different setups (the four bars are for Setups
1 to 4, from left to right). Right: Mean and standard deviation of the length-measurement error among the four setups, for each method.
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