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 1 

ABSTRACT 2 

Because of a recent federal initiative, states are now required (as of June 2008) to collect and 3 

submit motorcycle VMT data to the FHWA.  These data are needed to obtain better counts of 4 

motorcycles to evaluate their impact on crashes and traffic flow.  However, there is concern 5 

about the quality of data submitted.  Many states have identified problems with using automatic 6 

traffic recorders to account for motorcycle traffic.  Existing sensors exhibit difficulties in 7 

counting motorcycles that travel side by side or close behind each other, they have difficulty in 8 

distinguishing larger motorcycles from passenger vehicles, and magnetic counters in particular 9 

do not sense motorcycles that do not pass over or travel close enough to the sensor. 10 

Alternatively, some states conduct manual classification counts, but these efforts are labor 11 

intensive and lead to sparse data.  A further complication is that classification counts are 12 

frequently conducted during the week and therefore do not capture weekend motorcycle traffic 13 

numbers.  This paper evaluates a video based traffic monitoring system developed at Clemson 14 

University that is capable of classifying vehicles including motorcycles.  The processor uses 15 

vehicle tracking rather than virtual detection as a means to collect vehicle count, speed, and 16 

classification data.  Motorcycles are classified using an algorithm that calculates a vehicle’s 17 

length, width, and height through a series of frames. The system is evaluated using traffic data 18 

containing more than 2000 motorcycles collected at two locations in Myrtle Beach, South 19 

Carolina during a motorcycle rally.  The difference between actual and system motorcycle counts 20 

ranged from 0.6% to just over 6% depending on direction and location.  The difference for all 21 

vehicles ranged from 0.25% to 3.6%.  The system successfully classifies motorcycles traveling in 22 

close pairs and in small groups, while it experiences difficulty in cases of severe occlusion.  23 

 24 

INTRODUCTION 25 

 26 

There has been a recent initiative to obtain better counts of motorcycles to evaluate their impact 27 

on crashes and traffic flow (1).   Historically, the effort to improve motorcycle detection focused 28 

on traffic signal actuation.  Counting motorcycles was a low priority or virtually ignored.  As a 29 

result, there has been little effort by industry to address the issue of classifying motorcycles.  30 

Thus, most commercially available systems are unable to accurately capture motorcycle 31 

traffic. The main reasons why motorcycles are difficult to count is their light axle weight, low 32 

metal mass, and single wheel track.   The problem is further exacerbated when motorcyclists ride 33 

in groups. The design of most traffic monitoring equipment assumes that vehicles travel in single 34 

file and use the entire lane. This is not always true for motorcycles.  Rather, it is common for 35 

motorcyclists to ride closely spaced in pairs or staggered formations.  These formations will 36 

confuse most traffic monitoring devices.   37 

Data from the NHTSA’s Fatality Analysis Reporting System (FARS) indicate disturbing 38 

trends in motorcycle safety.  In 2006, motorcycle rider fatalities increased for the ninth 39 

consecutive year.  In that period, fatalities more than doubled, significantly outpacing increases 40 

in motorcycle registrations (2). In order to assess motorcycle safety it is necessary to know the 41 

number of crashes as well as the corresponding exposure to determine a fatality rate.  One of the 42 

key indicators of exposure is motorcycle vehicle miles traveled (VMT) obtained from volume 43 

counts and segment lengths. In recognition of the need for accurate motorcycle VMT data, the 44 

Federal Highway Administration (FHWA) now requires mandatory reporting of motorcycle 45 

travel as part of the Highway Performance Monitoring System (HPMS). However, a report 46 
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published in September 2008 that was prepared by the Highway Performance Monitoring System 1 

(HPMS) indicated the quality of reported travel data for motorcycles is questionable due to the 2 

inability and inconsistency of current traffic monitoring equipment to detect and classify 3 

motorcycles accurately (1). 4 

In this paper, we evaluate a vision-based tracking system that can count and classify 5 

vehicles including motorcycles.  To evaluate the system in the presence of high motorcycle 6 

traffic traveling in a variety of formations, video data was collected during a motorcycle rally in 7 

Myrtle Beach, South Carolina in May, 2008.  A review of literature indicates that this may be the 8 

first such attempt to collect motorcycle count data at a major motorcycle rally in an automated 9 

fashion. Manual data collection of motorcycle data has been historically collected at several 10 

rallies including Sturgis, South Dakota.  Automated counts have been conducted at several rallies 11 

but only to get total vehicle volumes.  For example, Sturgis has been using automated counters to 12 

collect vehicle volume data during all motorcycle rallies since 1990 (3). 13 

 14 

TRAFFIC DATA COLLECTION AND MOTORCYCLES 15 

 16 

The 2001 edition of the Traffic Monitoring Guide (TMG) promoted increased traffic monitoring 17 

by vehicle class (4). It recommended that a vehicle classification counting program should 18 

include both extensive, geographically distributed, short duration counts and a smaller set of 19 

permanent, continuous counters.  However, the emphasis in the TMG was on monitoring truck 20 

movements and the special considerations that apply to monitoring motorcycles were not 21 

covered.  A supplement was added in 2008 to address this deficiency.  The supplement includes 22 

suggested guidelines for using permanent counters to determine how typical motorcycle travel 23 

varies by day of the week and season of the year. The supplement indicates that these counters 24 

“are the backbone of the vehicle classification program and should be maintained to a high 25 

degree of accuracy” (5).  As with traditional traffic volume counting, continuous classifiers must 26 

be supplemented by classification coverage counts.  Factors are developed from the permanent 27 

counters to adjust coverage counts based on day of week, month of year, etc.  28 

Coverage counts are usually monitored during weekdays while a large portion of 29 

motorcycle travel may take place on weekends.  To better estimate the annual average travel by 30 

motorcycles on the roads, the TMG Supplement recommends that States develop a process that 31 

factors short duration motorcycle counts, as well as the other vehicle classes. Without 32 

adjustment, short duration classification counts yield biased estimates (5). 33 

Sufficient locations must be monitored to meet HPMS requirements. Motorcycle travel is 34 

reported under the HPMS summary travel as a proportion of total travel by roadway functional 35 

class.  36 

 37 

Detection Devices 38 

 39 

Axle, visual, and presence sensors are most frequently used for collecting vehicle class volume 40 

information and each use a different mechanism for classifying vehicles.  Within each of these 41 

three broad categories is a number of sensors with different capabilities, levels of accuracy, 42 

performance capabilities within different operating environments, and output characteristics. 43 

Virtually all sensors have problems with motorcycles traveling in groups in various formations. 44 

For detailed evaluations of different sensors, see (6,7,8).  A brief summary of selected sensors is 45 

provided here. Video detection of motorcycles is covered later. 46 
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 1 

Loop detectors 2 

A number of studies have shown that loop detectors are amongst the most reliable traffic 3 

monitoring devices.  However, motorcycles are somewhat elusive to loop detectors because of 4 

their low metal mass and narrow footprint. Adjusting detector sensitivity to improve motorcycle 5 

detection may lead to crosstalk with trucks in nearby lanes. Further, loop detectors must be 6 

installed in pairs; otherwise variable vehicle speeds will affect classification data.   7 

 8 

Road Tubes   9 

Road tubes are relatively inexpensive and provide short, sharp signals but may have a problem 10 

with groups of motorcycles. A single tube is not sufficient for collecting classification data. 11 

 12 

Side Looking Radar 13 

Side looking radar provides length-based classification but usually can only classify long 14 

vehicles.  They do not work with stopped vehicles and thus perform poorly in oversaturated 15 

conditions.  16 

 17 

Small Footprint Sensors 18 

Sensors that cover a small area such as magnetometers have problems detecting motorcycles or 19 

groups of motorcycles.  Motorcyclists may actually seek to avoid even the smallest of objects 20 

that they notice in the roadway.  Further, magnetometers are typically placed in the center of a 21 

lane.  Motorcyclists tend to drive closer to lane lines to avoid oil buildup that is most common in 22 

the center of a lane.   23 

 24 

Axle Sensors 25 

For axle sensors which are staggered, a motorcycle will usually hit one sensor but not both; the 26 

system will likely record this as a vehicle with a missing axle detection and therefore classify it 27 

as a passenger car by default. 28 

 29 

Problems with Length Based Classification 30 

 31 

Most traffic monitoring sensors use length-based classification either by measuring the length of 32 

the vehicle or the axle spacing.  Some axle sensors can use vehicle weight to classify vehicles.  33 

Vehicle length classification can give erroneous results because some cars are not much longer 34 

than the average motorcycle.  Recent vehicle trends have made this even more commonplace as 35 

European “city cars” such as the Smartcar Foretwo gain popularity in the United States.  Further, 36 

the average motorcycle size is larger than ever before.   And custom choppers with extended 37 

front forks can reach lengths that exceed some subcompacts.  Because a motorcycle’s wheel base 38 

is not much shorter than its length, the average motorcycle wheelbase is within 10 inches of 39 

many subcompacts.  Thus axle counters are especially prone to length-base classification errors. 40 

 41 

 42 

PREVIOUS WORK ON MOTORCYCLE VIDEO DETECTION 43 

 44 

Most commercial video-based vehicle detection systems use length-based classification 45 

measuring presence using virtual detection.  Some systems that use tracking can do more robust 46 
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classification.  While there has been significant recent work on video detection using tracking, 1 

very little work has been done that specifically addresses motorcycle video detection.   2 

Duan et al. present a real-time on-road lane change assistant that can identify 3 

motorcycles.  Vehicle classification is done through a series of steps.  The first step is hypothesis 4 

generation that aims to find the bounded boxes of candidate vehicles in an image for further 5 

processing.   The system uses a knowledge-based approach to generate hypotheses of vehicle and 6 

motorcycle locations using prior knowledge, In general, the information used to detect vehicles 7 

during the daytime includes symmetry, color, shadow, geometric features.  In this work, the 8 

output of the hypothesis step is a set of regions of interest which are then further analyzed in the 9 

hypothesis verification step.  Verification is done using Support Vector Machines (SVMs).  The 10 

images used for off-line training were taken of different daytime scenes.  A field test on different 11 

road functional classes provided motorcycle detection rates of over 90%.  No mention was made 12 

of extending this system to traffic monitoring (9). 13 

Chiu et al. proposes a vision-based motorcycle monitoring system to detect and track 14 

motorcycles for data collection purposes. The system proposes an occlusion detection and 15 

segmentation method. The method uses the visual length, visual width, and pixel ratio to detect 16 

classes of motorcycle occlusions and segment the motorcycle from each occlusive class. A 17 

helmet detection algorithm verifies motorcycles.  One drawback of the system is that it assumes 18 

all riders wear motorcycle helmets, which is not the case in the U.S.  Experiments obtained by 19 

using complex road scenes are reported.  The system provided a recognition rate of 95% for a 20 

field study that included 42 motorcycles (10). 21 

 22 

CLEMSON ALGORITHM OVERVIEW 23 

 24 

The block diagram in Figure 1 gives an overview of the algorithm.  For each input image frame a 25 

foreground mask is computed using the method of background subtraction.  Feature points are 26 

tracked in the image using the Kanade-Lucas-Tomasi feature tracker, and a subset of these 27 

feature points (which we call stable features) is identified using calibration parameters and the 28 

foreground mask (11).  Grouping of the stable features yields vehicle detections which are 29 

classified based on estimated dimensions.  Tracking of vehicles is achieved by correspondence 30 

and matching between detections over multiple frames.  Note that except for vehicle 31 

classification, the rest of the algorithm presented here is similar to our previous work (12) which 32 

contains a more detailed description of all the processing steps.   33 

 34 

 35 



Kanhere, Birchfield, Sarasua, and Khoeini 

 6

 1 
 2 

FIGURE 1 Algorithm Block Diagram 3 

 4 

 5 

Calibration 6 

 7 

The algorithm makes extensive use of calibration parameters which are used for mapping 8 

between the road and the image coordinate systems.  Unlike simple plane-to-plane mapping, the 9 

calibration parameters yield a perspective projection matrix which relates the pixel-height of 10 

vehicles measured in the image to real world units such as feet or meters. The six-click 11 

calibration procedure can be performed easily by defining edges of the road and a line 12 

corresponding to a known length measured along the length of the road.  As shown in Figure 2, a 13 

detection zone is automatically computed using the known width of the road and the three lines 14 

just mentioned.  15 

 16 

Background subtraction 17 

 18 

Before vehicles can be detected, the algorithm needs an image of the scene without any moving 19 

objects present in it (background image). This image can be easily generated by averaging 20 

consecutive frames of the video. Typically in free-flowing traffic, 5 to 10 seconds of video is 21 

sufficient to generate a usable background image.  When the new input frame is read from the 22 

camera, the current estimate of the background image is subtracted from the input image 23 

followed by a thresholding operation on the difference image to yield a foreground mask.  To 24 

handle lighting changes, at the end of processing each input image the foreground mask is used 25 

to adaptively update the background image (pixels labeled as background adapt at a faster rate to 26 

the new values compared to the pixels in the foreground). 27 

 28 

 29 

Input frame
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Stable feature groups
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 1 

 2 

 3 

 4 

 5 

               6 
  7 

FIGURE 2 “Six-click” calibration procedure using lane lines  8 

 9 

Identification and grouping of stable features 10 

 11 

Feature points are selected and tracked as described in (11) using the OpenCV implementation 12 

(13,14).  To minimize the false detections caused by spillovers and shadows we select a subset of 13 

the tracked features which we refer to as stable features.  Stable features are the feature points 14 

which are close to the base of a vehicle and which lie on the front or the back side of vehicles 15 

(front side for the vehicles approaching the camera and back side for the vehicles receding from 16 

the camera).  Stable features are identified using their estimated height and local slope (in world 17 

coordinates) by projecting them on the base of the corresponding blob in the foreground mask.  18 

The test for selecting stable features is described thoroughly in (12).  Once the stable features are 19 

identified they are grouped together by lane using region growing.  Since we use the road 20 

coordinates for the stable features (rather than image coordinates), their top-view projection 21 

results in clusters of feature points corresponding to vehicles in the scene (all the stable features 22 

corresponding to the front or the back side of a vehicle will be projected very close to each 23 

other).  Groups having an insufficient number of stable features (less than five stable features in 24 

our case) are discarded to suppress spurious detections.  25 

 26 

 27 

Classification 28 

 29 

       30 
 31 

FIGURE 3  Measuring the width (middle) and length (right) of tracked vehicles (left) 32 
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Once a vehicle is tracked for a certain minimum number of frames (five frames in our 1 

experiments), it is classified in each subsequent frame.  Figure 3 shows an SUV in the slow lane 2 

and two motorcycles in the fast lane.  The image in the middle and the one on the right show the 3 

process of measuring widths and lengths, respectively, of detected vehicles (the motorcycle in 4 

the back has not been tracked for a sufficient number of frames as a result its width and length 5 

are not measured in this frame).  The gray rectangles indicate the locations of the front-center of 6 

vehicles estimated by the algorithm.  Pixel-width and pixel-length are measured for each vehicle 7 

in the foreground mask as shown in the figure.  The orientations of the lines along which the 8 

dimensions are measured are readily computed using the calibration parameters.  The same 9 

calibration parameters are also used to convert the image measurements into world units (e.g. 10 

feet).  The conversion to world units is important because although pixel measurements would 11 

vary with the location of vehicles in the image, the corresponding measurements in world units 12 

would be same regardless of vehicle location (assuming perfect camera calibration).  A vehicle is 13 

assigned a class (motorcycle, passenger car, single unit truck or multi-unit trailer) based on the 14 

proximity of the vehicle's measured dimensions with the average dimensions of each class.  In 15 

practice, factors such as noise in the image and calibration errors may yield different 16 

measurements over consecutive frames.  A decision about a vehicle's classification is made in 17 

each frame by a voting mechanism using its classification in all previous frames.  18 

Figure 3 also illustrates a limitation of other approaches of vehicle tracking which rely 19 

only on tracking blobs in the foreground mask.  Such simple approaches would fail to identify 20 

the SUV and the motorcycle in the front as two separate objects and would instead group them 21 

into a single object.  In contrast, the approach based on feature tracking correctly identifies them 22 

as two separate vehicles. 23 

 24 

Correspondence and matching 25 

 26 

Vehicles in the current frame are detected and classified as described above.  Existing vehicles 27 

(initialized and tracked before current frame) are then matched with the new detections based on 28 

their proximity in road coordinates.  New detections which are not matched with any of the 29 

existing vehicles are initialized as new vehicles to be tracked.  Any vehicle for which a detection 30 

match is not found is flagged as missing, and its location is estimated using the velocity of 31 

features corresponding to it.  A vehicle is discarded as a false detection if it is flagged as missing 32 

consecutively for a certain number of frames (five frames in our experiments).  33 

 34 

FIELD EVALUATION AND EXPERIMENTAL RESULTS 35 

 36 

The algorithm was tested and evaluated using video data collected during Myrtle Beach Bike 37 

Week in May, 2008.  Video was collected at two sites.       38 

 39 

Site 1:  U.S. 17 in Garden City 40 

 41 

The initial site was U.S. 17 Business south of Myrtle Beach in Garden City, South Carolina.  The 42 

video data for this site was collected on May 17, 2008 for 45 minutes beginning at 1:00 PM.  43 

This is a 4 lane divided highway at this location.   The camera was mounted at a height of 29 feet 44 

above the roadway pavement in the median.  The camera was pointed along the median so that 45 

data for both travel directions could be collected simultaneously with one camera.  The frame 46 
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rate was 30 frames per second at a resolution of 640 x 480. The algorithm was set to process 1 

downsampled 320 x 240 images at 15 frames per second.  2 

Ground truth counts were obtained by manually observing the video and recording traffic 3 

data in 5 minute intervals.  Because the focus of this evaluation was on the ability of the system 4 

to count motorcycles, vehicles were either classified as motorcycles or non-motorcycles which 5 

includes passenger cars (PC) and heavy vehicles (HV).  During the 45 minute period, 2667 6 

vehicles traveled the 4-lane highway of which nearly 1500 were motorcycles. The recorded 7 

video was processed in real-time in July, 2009.   The initial attempt to process the video with the 8 

algorithm indicated that the system was only able to correctly identify less than 80% of the 9 

motorcycles.   A closer look at the processed video revealed that misclassified or miscounted 10 

motorcycles were mainly due to motorcycles traveling in pairs, tight formation, or were partially 11 

occluded. 12 

 To address these problems, some adjustments were made to calibration parameters and 13 

the detection zones and modifications were made to the tracking threshold.  The tracking 14 

threshold ignores any objects that are not tracked for a certain number of frames.  The initial 15 

threshold was found to be too conservative. These changes resulted in significant improvement 16 

when the video was reprocessed.  For aggregate totals, the system was over 99% accurate for 17 

both motorcycles and non-motorcycles. This number is somewhat misleading because 18 

motorcycles were over-counted in the departing direction and under-counted in the approaching 19 

direction.  Nevertheless, the percent differences were within +/- 5% depending on vehicle type 20 

and direction of travel.  A summary of the results for the Garden City site is shown in Table 1.  21 

Additional results are illustrated in Figures 4, 5, and 6.  Figure 4 shows a graph of cumulative 22 

motorcycle volumes versus time.  The manual and processed motorcycle volumes show little 23 

variation regardless of time interval.  The graph in Figure 5 shows that the percent difference 24 

between manual and processed motorcycles volume were less than 10% for all nine 5-minute 25 

intervals and exceed 5% in two of nine intervals.     Figure 6 shows a graph of actual versus 26 

modeled volumes (sum of both directions).  Using regression, models were developed  that fit 27 

the data very well.  Ideally, the slope of the regression line should be close to 1.  This was nearly 28 

the case.  The results of the regressions are shown in Table 2.  The R
2
 value was greater than 29 

.999 in all cases indicating that there was very little unexplained error in the models.   30 

While the model performed well, the authors believe that the results would have been 31 

improved even further if the camera focused on only one side rather than both sides at the same 32 

time.  This would improve the resolution of the detection area and much of the detection area 33 

would be seen by the center of the lens where there is the least amount of lens distortion.  34 

Excessive lens distortion can hinder the calculation of length, width, and height.   35 

The video was further analyzed to verify the results on a vehicle-by-vehicle basis to 36 

determine the cause of miscounted vehicles.  Figure 7 shows some images of vehicles being 37 

correctly classified even when motorcycles are riding in formation.  The system creates colored 38 

boxes around vehicles, where the color indicates classification:  blue for motorcycles, green for 39 

non-motorcycles and yellow for a pair of motorcycles riding side by side.  Figure 8 (a) shows an 40 

example of a vehicle that was not counted due to occlusion.  The algorithm usually identifies 41 

occluded vehicles that are traveling at the same speed by tracking and taking measurements for 42 

each frame.  As the perspective view changes, even partially occluded vehicles can be identified.  43 

Problems occur if the speeds of the vehicles vary slightly and one or more of the vehicles 44 

remains “similarly occluded” throughout the detection zone and is not distinguishable by the 45 
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algorithm.  Further, if the base of the occluded vehicle remains occluded throughout the 1 

detection zone, the processor may not find any stable features to track.  2 

Fairly significant over-counting of motorcycles occurred  in the departing direction when 3 

two motorcycles riding side by side were counted as 3 motorcycles as shown in Figure 8b.  4 

Unlike the case of vehicles approaching the camera where both motorcycles enter the start of the 5 

detection zone simultaneously, in case of vehicles departing from the camera, the way the 6 

detection zone is setup it expands beyond the image boundary.  As a result, when two 7 

motorcycles  travelling side by side enter the image, one the motorcycles-the one away from the 8 

camera is detected first.  When the other motorcycle closer to the camera fully enters the image, 9 

it gets detected.  Because the first motorcycle is already fully in view during the detection of the 10 

second motorcycle,  the combined width of the detection results in a side by side detection.  So 11 

for two motorcycles side by side, the algorithm will sometimes mistakenly count three 12 

motorcycles.   13 

Another reason for over-counting is when a car is sometimes detected as a pair of 14 

motorcycles.  This may occur when the car’s intensity is close to that of the road causing a 15 

fragmented foreground mask (foreground image of the car has a gap in the middle).  The 16 

processor will count the two sides of the car as two motorcycles. 17 

 18 

 19 

 20 

Table 1  Summary results of the Garden City Site 21 

 22 

 Approaching Departing Total 

MC Actual Counts 805 684 1489 

MC System Counts 784 714 1498 

MC Percent of Difference -2.61 4.38 0.6 

PC and HV Actual Counts 580 598 1178 

PC and HV System Counts 593 582 1175 

PC and HV Percent of Difference 2.24 -2.67 -0.25 

Total Actual Counts 1385 1282 2667 

Total System Counts 1377 1296 2673 

Total Percent of Difference -0.57 1.09 0.22 

 23 

 24 

 25 

 26 
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 1 
 2 

FIGURE 4  Graph of motorcycle cumulative counts vs time (both directions) 3 

 4 

 5 

 6 
 7 

 8 

FIGURE 5  Percent difference between actual and system counts (both directions) 9 

 10 
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 1 
 2 

FIGURE 6  Manual counts vs system counts (both directions) 3 

 4 

 5 

 6 

 7 

TABLE 2 Linear Regression Analysis Results  8 

 9 

  PC & HV MC All Vehicles 

Slope 1.0009 0.9861 0.9925 

R-Sq 1.0000 0.9998 1.0000 

 10 

 11 

 12 

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

A
ct

u
a

l 
C

o
u

n
ts

System Counts

Cum Actual Counts vs. System Counts

PC & HV

MC

All Vehicles



Kanhere, Birchfield, Sarasua, and Khoeini 

 13

 1 
 2 

FIGURE 7 Examples of correctly classified vehicles 3 

 4 

 5 

 6 

 7 
 8 

FIGURE 8 Examples of miscounted or incorrectly classified vehicles 9 

 10 

 11 

 12 

Site 2: Ocean Blvd, Myrtle Beach 13 

 14 

The second site was on Ocean Blvd in Myrtle Beach.  Ocean Blvd is lined with beachfront hotels 15 

and is a popular cruising venue during Bike Week.  Normally two-way, Ocean Blvd operates 16 

only in the southbound direction during much of Bike Week to facilitate emergency access and 17 

minimize traffic conflicts.  Data was collected for 45 minutes beginning at 4:00 in the afternoon 18 

on the Saturday, May 17, 2008.  The camera was mounted at 23 feet above the pavement. 19 

As for Site 1, control counts for site 2 were done manually in 5 minute intervals. During 20 

the 45 minute period, more than 1000 vehicles including 726 motorcycles were counted.  The 21 

results shown in Table 3 reveal that the aggregate manual counts for the 45 minute period were 22 

in relative agreement with the algorithms processed totals.  Figure 9 shows a graph of motorcycle 23 

counts and time for each 5 minute interval. The graph shows that the processor undercounted 24 

motorcycles for some intervals and over counted for others.  The undercounting was due in part 25 

to occlusion problems but also due to camera problems. The camera’s automatic adjustment due 26 

to varying light conditions caused some difficulties.  Sunlight reflected off of vehicles with large 27 

light colored roofs leading to some of the miscounting errors. Several vehicles were missed when 28 
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the camera would “recover” after the light colored vehicle would pass.  There were other types 1 

of errors as well.  Figure 10 (a) shows a 3-wheeled motorcycle being classified as a pair of 2 

motorcycles.  This is because it has similar features as a motorcycle but is much wider.  Figure 3 

10 (b) shows a missed motorcycle due to occlusion. 4 

 5 

TABLE 3  Summary results of the for the Myrtle Beach Site 6 
 7 

 Actual Counts System Result Dif (Percents) 

MC 726 681 -6.19 

PC and HV 333 321 -3.60 

Total 1059 1002 -5.38 

 8 
 9 
 10 

 11 
 12 

FIGURE 9 Graph of motorcycle counts vs time for each 5 minute interval 13 
 14 
 15 

 16 

 17 
FIGURE 10  Examples of miscounted motorcycles for site 2 18 
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 1 

 2 

CONCLUSION 3 

 4 

We have presented an analysis of an automated vehicle classification sensor that is capable of 5 

classifying motorcycles.  To our knowledge, it is the first such analysis involving a large data set 6 

with thousands of motorcycles.  The system was evaluated using traffic data collected at two 7 

locations in Myrtle Beach, South Carolina during a motorcycle rally.  The field studies show that 8 

the system can collect total volume data to within 4% of actual and motorcycle volumes 9 

approximately 6% of actual.  The system successfully classifies motorcycles in formations, such 10 

as close pairs or small groups.  It is worth noting that the algorithm processes the video data in 11 

real time, thus increasing the variety of transportation applications for which it could be used. 12 

 13 

There are situations where the algorithm fails, particularly when there is severe occlusion 14 

from a neighboring vehicle.  Future work will be aimed at improving the robustness of the 15 

system in these situations, as well as extending the work to handle motorcycles at nighttime and 16 

in low ambient lighting conditions. Furthermore, we plan to augment the algorithm by 17 

incorporating pattern-based and shape-based descriptors to better differentiate motorcycles in 18 

difficult and ambiguous situations. 19 

 20 
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