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Abstract— We present a system for automatically extracting
and classifying items in a pile of laundry. Using only visual
sensors, the robot identifies and extracts items sequentially
from the pile. When an item has been removed and isolated, a
model is captured of the shape and appearance of the object,
which is then compared against a database of known items. The
classification procedure relies upon silhouettes, edges, and other
low-level image measurements of the articles of clothing. The
contributions of this paper are a novel method for extracting
articles of clothing from a pile of laundry and a novel method
of classifying clothing using interactive perception. Experiments
demonstrate the ability of the system to efficiently classify and
label into one of six categories (pants, shorts, short-sleeve shirt,
long-sleeve shirt, socks, or underwear). These results show that,
on average, classification rates using robot interaction are 59%
higher than those that do not use interaction.

I. INTRODUCTION

Laundry is a daily routine throughout the world for people

of all walks of life. While this routine was changed signif-

icantly more than a century ago when the tasks of washing

and drying were automated by modern-day appliances, the

remaining tasks of sorting and folding clothes are still per-

formed manually even today as they have been for thousands

of years. Nevertheless, with the recent explosion of interest

and development in household service robots, there is a

realistic possibility that these remaining parts of the laundry

process may be automated within the coming generations.

Manipulating and interacting with non-rigid objects re-

mains a largely unsolved problem for robotics, with most

research focused upon rigid objects [1]. However, some work

in this area is beginning to emerge [2], such as motion plan-

ning algorithms for deformable linear objects (DLOs) like

ropes, cables, and sutures [3] [4]; or Probabilistic RoadMap

(PRM) planners to plan paths for a flexible surface patch [5]

or deformable object [6]; or recursive learning approaches

[7] or range sensors to sense and model deformable surfaces

[8] [9]. Other research has focused upon the problem of

manipulating fabric, particularly for textile applications. For

example, accurate CAD-like models of textiles allow the

computation of tangential stresses for laying, folding, and

flattening textiles using vision and force sensing [10] [11]

[12].

The problem of automating laundry in particular has re-

ceived increasing attention lately. Researchers focused upon

service robot applications have developed systems for grasp-

ing clothes [13], [14], folding clothes [15] [16], and tracing

edges [17] [18]. Keio University’s “Foldy” mobile robot has

demonstrated the ability to fold a shirt based on high-level

Fig. 1. The proposed setting for interactive perception. A robotic arm
interacts with a pile of unknown objects (laundry) to isolate the individual
items one at a time and to learn each object’s characteristics. The system
then classifies the item automatically by comparing the appearance and
shape of the object with those of a learned database. Sensory information
is provided by a pair of overhead stereo cameras and a side-facing camera
(not shown).

user input.1 Similar research at other universities aimed at

folding manipulation has made progress on folding origami

[19], T-shirts,2 and towels [18]. Others have developed

cardboard machines to fold T-shirts.3 These existing systems

all assume that an individual article of clothing has been

isolated and laid flat on a surface prior to manipulation.

In this paper, we present a system based on interactive

perception for automatically sorting laundry. See Figure 1.

In contrast to previous work, our system operates on an

unorganized, unflattened pile of laundry for the purpose of

isolating and classifying each individual item. The first task,

namely isolating an individual article of clothing, involves

identifying and extracting an item from the pile, one at a

time, without disturbing the rest of the clothes in the pile.

The second task, namely classifying an item, requires using

visual-based shape and appearance information to classify

the item into one of several prespecified categories (pants,

shorts, short-sleeve shirt, long-sleeve shirt, socks, or under-

wear). Our approach relies upon a combination of graph-

based image segmentation, stereo matching, and low-level

image comparisons in order to accomplish these objectives.

The proposed method can be seen as a particular application

of the paradigm of interactive perception, also known as

manipulation-guided sensing, in which the manipulation is

used to guide the sensing in order to gather information not

obtainable through passive sensing alone [20] [21] [22] [23]

[24]. In other words, deliberate actions change the state of the

world in a way that simplifies perception and consequently

1http://inventorspot.com/articles/laundryfolding robot learns job 34327
2http://www.cs.dartmouth.edu/˜robotics/movies/mpb-movie-09-shirt-

folding.mov
3http://www.metacafe.com/watch/1165247/clothes folding machine
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Fig. 2. Overview of our system for vision-guided extraction of items from
a pile of laundry.

future interactions.

II. APPROACH

Our laundry-handling system involves two parts: isolating

items from a pile of laundry and classifying isolated items.

These two parts are described in detail in this section.

A. Isolating items

To isolate an item from the pile, an overhead image is first

segmented, and the closest foreground segment (measured

using stereo disparity) is selected. Chamfering is used to

determine the grasp point which is then used to extract the

item from the pile in an fully automatic way using interactive

perception. An overview of the process is shown in Figure 2.

1) Graph-based segmentation: The first step is to segment

one of the overhead images into different regions. We use

Felzenswalb and Huttenlocher’s graph-based segmentation

algorithm [25] because of its straightforward implementation,

effective results, and efficient computation. This algorithm

uses a variation of Kruskal’s minimum-spanning-tree algo-

rithm to iteratively cluster pixels in decreasing order of their

similarity in appearance. An adaptive estimate of the internal

similarity of the clusters is used to determine whether to

continue clustering. Figure 3 shows the results of graph-

based segmentation on an example 320 × 240 RGB color

image taken in our lab using the default value for the scale

parameter (k = 500). As can be seen, the segmentation pro-

vides a reasonable representation of the layout of the items

in the pile. From this result, we determine the foreground

regions as those that do not touch the boundary of the image.

2) Stereo matching: Since our goal is to remove a single

piece of clothing without disturbing the remaining items in

the pile, the next step in the process is to determine which

Fig. 3. LEFT: An image taken by one of the overhead cameras in our setup.
RIGHT: The results of applying the graph-based segmentation algorithm.
Despite the over-segmentation, the results provide a sufficient representation
for grasping an article of clothing.

item is on top of the pile. While there are many monocular

image cues that can provide a hint as to which object is

on top, such as the size of the object, its concavity, T-

junctions, and so forth, we rely upon stereo matching due to

its efficiency, ease of implementation, and robustness. Stereo

matching is the process in visual perception leading to the

sensation of depth from two slightly different projections of

an environment [26]. With rectified cameras, the difference

in image coordinates between two corresponding points

(the horizontal disparity) is inversely proportional to the

distance from the camera to the point. We implemented an

11 × 11 window-based sum-of-absolute differences (SAD)

stereo algorithm for its computational efficiency, utilizing

MMX/SSE2 SIMD operations and a running sum sliding

window to increase the speed of computation.

Due to misalignment of the cameras, reflections in the

scene (non-Lambertian surfaces), and occlusion, the resulting

disparity image is noisy. To reduce the effects of this noise,

we employ a left-right consistency check [27] to retain

only those disparities that are consistent in both directions.

Photometric inconsistency between the cameras is handled

by converting to grayscale, followed by adjusting the gain of

one image to match the other. After computing the disparities

in this manner, the relative height of each segmented region

is determined by the average disparity of all the pixels in the

region. Among the foreground regions exceeding a minimum

size (0.04% of the image), the one with the largest average

disparity is then estimated as the item on top of the pile.

3) Determining the grasp point: Once the top item has

been determined, the next step is to determine the grasp point

of the item. We cannot use the approach of Saxena et al. [28]

due to the use of non-rigid and irregularly shaped objects.

Instead, we calculate the 2D grasp point as the geometric

center of the object, defined as the location whose distance

to the region boundary is maximum. This point, which can

be computed efficiently using chamfering [29], is much more

reliable than the centroid of the region, particularly when the

region contains concavities which is not uncommon in our

scenarios. Figure 5 shows an example of the grasp point

found by the maximum chamfer distance for an article of

clothing. Note that only one grasp point is found due to the

limitation of using a single robotic manipulator.

4) Extracting the item: Once the grasp point has been

found, the robot arm is moved over the pile of laundry so that
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Fig. 4. TOP: A stereo pair of images taken by the overhead cameras in our
setup, showing the large amount of photometric inconsistency. BOTTOM:
The disparity image obtained by SAD matching with the left-right disparity
check (left), and the result after masking with the foreground and removing
small regions (right).

Fig. 5. LEFT: The binary region associated with an article of clothing
(orange shirt), with the grasp point (red dot) computed as the location that
maximizes the chamfer distance. RIGHT: The chamfer distance of each
interior point to the clothing boundary.

the end effector is positioned above the grasp point. The arm

then engages in a procedure that we refer to as bobbing. The

arm is lowered to just above the estimated height of the item,

then end effector is closed, the arm is raised and moved to the

side. During this process the presence of the arm occludes

the scene, making the images of the overhead cameras

uninformative. Therefore, after completion of the process,

the images before and after are compared to determine

whether the desired item was extracted from the pile. Simple

frame differencing with a threshold is used to make this

decision. If it is determined that no item was extracted, then

the procedure is repeated, this time with the end effector

reaching down further. The process is repeated successively

at increasing distances until either the item is removed or

the end effector reaches the minimum height above the table

(to avoid collision). If all attempts are unsuccessful, then

the robot arm is returned to the home position, and the

entire process begins again; in our experiments the robot

was always successful using no more than two bobbing

procedures. The entire procedure for extracting a single item

is repeated until no more objects remain in the pile, which

is determined via a threshold on the minimum size of the

foreground regions in the segmented image (0.5% of the

Fig. 6. The front (top) and side (bottom) views of an isolated article of
clothing to be classified (orange shirt). In each case, the original image is
shown on the left, while the binary silhouette is shown on the right.

image).

Note that this bobbing procedure is a form of interactive

perception. Because our sensors are not accurate enough to

precisely compute the distance to the object, and because our

gripper is not guaranteed to be oriented in the correct direc-

tion, it is virtually impossible to ensure success on the very

first try. Moreover, our particular robot is not equipped with

a force sensor, thereby increasing the difficulty of sensing

the environment. To overcome this limitation in sensing, an

interactive sensing (yet fully automatic) approach is adopted

in which repeated interactions with the environment are used

to simplify the problem of sensing.

B. Classifying items

Once the robot removes and isolates an article of clothing

from the pile, the arm lifts and swings so that the article

hangs freely without touching the table or ground. This

open area is monitored by a third side-facing camera that

captures both a “frontal view” and a “side view” image of

the article, using the robot to rotate 90 degrees about the

vertical axis between images. These two views are subtracted

from a background image to obtain two binary silhouettes

of the clothing. Figure 6 illustrates an example of the two

views of an isolated article of clothing along with its binary

silhouettes. Note that the terms “frontal” and “side” are

arbitrary designations, since the robot grasps each object

somewhat at random. What is important is that these two

silhouttes represent the object’s shape from two orthogonal

directions (and, by symmetry, from the other two orthogonal

directions by a mirror flip).

Features are extracted from the frontal and side images

of the article of clothing in order to compare with other

previously labeled images of clothing. Let IQ be one of these

two query images (either frontal or side), and let ID be an

image in the database. These images are compared using four
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different features to yield a match score:

Φ(IQ, ID) =
N∑

i=1

wi ·
1

mi

fi(IQ, ID), (1)

where N = 4 is the number of features, wi is the weighting

associated with each feature, and the features are given by

• f1(IQ, ID) = |aQ−aD|, the absolute difference in area

between the two silhouettes, where aQ is the number of

pixels in the query binary silhouette, and similarly for

aD;

• f2(IQ, ID) = |eQ − eD|, the absolute difference in

eccentricity between the two silhouettes, where 0 ≤
eQ ≤ 1 is the eccentricity of the query binary silhouette,

and similarly for eD;

• f3(IQ, ID) = H(BEQ, BED), the Hausdorff distance

between the edges of the two binary silhouettes;

• f4(IQ, ID) = H(CEQ, CED), the Hausdorff distance

between the Canny edges of the original grayscale

images.

To ensure proper weighting, each value mi is the 95th

percentile of fi among all the images in the database (robust

maximum).

Although color information would be a helpful cue for

identifying particular items of clothing, it was not used in

this work because color varies so widely within clothing

categories. After calculating the match scores, the nearest

neighbor algorithm (1-NN) was used to assign a category to

the article of clothing. The 1-NN algorithm finds the category

associated with the silhouette in the database whose match

score to the test silhouette is minimum.

As will be seen in the experimental results, the accuracy

of the above procedure is rather poor. This is due to the

impoverished sensing that occurs when an article of clothing

hangs freely from a single grasp point. To overcome this

limitation, we use interactive perception. The process of

capturing front and side views of an item is repeated ten

times. In each iteration, the robot drops the item on the table,

and the item is extracted again in a manner similar to that

described above. The randomness of the dropping results in

a new grasp point that, in general, bears little relationship to

previous grasp points. These multiple grasp points provide

the system with multiple front and side views of the article of

clothing, thereby greatly increasing the chance of accurately

classification.

III. EXPERIMENTAL RESULTS

The proposed approach was applied in a laundry scenario

to test its ability to perform practical interactive perception

using a PUMA 500 robotic arm. In each experiment, a pile of

laundry rested upon a flat, uniform background. The articles

of clothing in the pile consisted of five short sleeve shirts,

five long sleeve shirts, five pairs of pants (trousers), five

shorts, five socks, and five pairs of underwear. The articles

themselves, their type, and their number were unknown to

the system beforehand.4

4Due to the physical limitations of the workspace, we used children’s
clothing. This introduces an overall scaling factor to the sensory data.

A. Extraction Experiment

Figure 7 shows the results of the system after different

steps of the extraction and isolation procedure. The system

removes items from the pile one at a time by identifying

a grasp point in the closest region, then deploying the arm

to that location, bobbing for the item, and moving the item

to another part of the workspace. Once the item has been

extracted and isolated, the system interacts with it by rotating

about a vertical axis in order to gain both front and side views

of the item using the side-facing camera. Two 2D silhouettes

of the item are created for each grasp point; by repeating

this process ten times, 20 silhouettes are obtained for each

item (ten front views and ten side views). The procedure

successfully removed all items from the pile one at a time.

B. Classification Experiments

With 6 categories, 5 items per category, and 20 images

per item, the database collected by the extraction / isolation

procedure consists of 600 images. This database was labeled

in a supervised learning manner so that the corresponding

category of each image was known. Eight tests were used to

compare the training and test images:

test name w1 w2 w3 w4

Area 1 0 0 0

Eccentricity 0 1 0 0

Binary Edges 0 0 1 0

Canny Edges 0 0 0 1

Combo A 1 1 0 0

Combo B 1 1 0 1

Combo C 0 1 0 1

Combo D 1 0 0 1

We conducted two experiments: leave-one-out classifica-

tion and train-and-test classification. In leave-one-out clas-

sification, each of the 600 images was compared with the

remaining 599 images in the database. If the nearest neighbor

among these 599 was in the same category as the image,

then the classification was considered a success, otherwise

a failure. Results for all 100 images for each category were

combined to yield a classification rate for that category, and

the procedure was repeated for all eight tests. The results,

shown in Figure 8, reveal that most categories were either

classified, on average, well (near or above 50%) or poorly

(near or below 30%), with the best results achieved by the

Combo A and Combo B tests.

In train-and-test classification, three articles of clothing

from each category were selected for the training set and the

remaining two articles were used for the test set. Therefore,

each image was compared with the 360 images in the training

set, and the category of the nearest neighbor among these

images was compared with the category of the image to

determine success or failure. Results for all 40 test images

for each category were combined to yield a classification

rate for that category, and the procedure was repeated for

all eight tests. The results, shown in Figure 9, show results

that are significantly worse than those of the leave-one-out

experiment, due to the reduced amount of data used for
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Image

Segmentation

Grasp Point

Object Isolated

Front View

Side View

Fig. 7. The extraction and isolation process. From top to bottom: The image taken by one of the downward-facing stereo cameras, the result of graph-based
segmentation, the object found along with its grasp point (red dot), the image taken by the side-facing camera, and the binary silhouettes of the front and
side views of the isolated object. Time flows from left to right, showing the progress as each individual article of clothing is removed from the pile and
examined.

training. We should emphasize that classifying an unknown

article of clothing (hanging from a single, arbitrary grasp

point) from a single image is extremely difficult even for a

human viewer.

C. Interaction vs. Non-interaction

One of the goals of this work was to determine the

usefulness of interactive perception in a clothing classifi-

cation context. The process of interacting with each article

of clothing provided the system with multiple views using

various grasp locations, allowing the system to collect 20

total images of each object. Therefore, in the next experiment

we compared features from all 20 images of each object with

the remaining images in the database. The procedure was as

follows. The query article of clothing was compared with

all articles in the database, and the category of the closest

matching article was considered to be the category of the

query article. Two articles were compared by examining the

400 match scores between their pairs of images (20 images

per article). For each of the 20 images of the query article, the

1-NN among the other 20 images was found; these 20 match

scores were then added to yield the distance between the two

articles. This procedure corresponds to a manipulator picking

up and dropping an object multiple times to get multiple

views of it in order to better classify it. The results, shown in

Figure 10, are indeed significantly higher than those obtained

without interactive perception. In fact, Combo A achieved
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Fig. 8. Leave-one-out classification results for all six categories using eight
different tests.
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Fig. 9. Train-and-test classification results for all six categories using eight
different tests.

100% classification on all categories using this method.

For comparison, the classification rates for all categories

for the four different combination tests are shown in Figure

11, illustrating the difference between using a single view

versus using all 20 views of an object. For Combo A, the

average classification rate using a single image is 62.83%,

while the average classification rate using all 20 images is

100%. These results show that, on average, classification

rates using robot interaction are 59% higher than those that

do not use interaction.

IV. CONCLUSION

We have proposed an approach to interactive perception

in which a pile of laundry is sifted by an autonomous robot

system in order to classify and label each item. The algorithm

is shown empirically to provide a practical way to extract

items out of a cluttered area one at a time with minimal

disturbance to the other objects. This system uses a single

color camera to segment the various items within the scene

and calculate a location for the robot arm to grasp the next

object for extraction. A stereo pair of cameras is used to
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Fig. 10. Classification results for all 30 objects using all 20 images for
comparison.
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Fig. 11. Classification results for all 30 objects using all 20 images for
comparison using the combination tests.

calculate depth in order to identify the closest item (i.e., the

object on top of the pile). The system takes approximately

one minute per article of clothing for the combined steps of

location, grasp point identification, extraction, and classifi-

cation of the item.

Several directions for future research can be explored

in this novel area of interactive perception in cluttered

environments. First, additional interaction and labeling tech-

niques could be used to improve the ability of the system

to determine which characteristics of an object make it

distinguishable from other objects. Secondly, the learning

process could be improved by enabling the system to learn

about categories of clothing for which it has not been trained.

A third improvement could be to identify the owner of an

article of clothing which has been seen before, in order

to stack the articles according to the person expected to

wear them. Another modification would be to address the
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problem of classifying bright versus dark clothes prior to

loading the laundry into the washing machine. Finally, the

modeling of the items could incorporate 3D information

in order to provide a more accurate representation of the

front and side views that describe the overall shape of the

object. We believe that all of these areas are promising future

extensions of this research.
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