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Abstract. We propose a minimalistic corridor representation consisting of the
orientation line (center) and the wall-floor boundaries (lateral limit). The repre-
sentation is extracted from low-resolution images using a novel combinationof
information theoretic measures and gradient cues. Our study investigates the im-
pact of image resolution upon the accuracy of extracting such a geometry, show-
ing that accurate centerline and wall-floor boundaries can be estimated even in
texture-poor environments with images as small as16 × 12. In a database of 7
unique corridor sequences for orientation measurements, less than 2%additional
error was observed as the resolution of the image decreased by 99%. One of the
advantages of working at such resolutions is that the algorithm operates at hun-
dreds of frames per second, or equivalently requires only a small percentage of
the CPU.
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1 Introduction

Psychological studies have shown that while driving or walking human beings tend to
focus their eye gaze on the direction of the goal and also along tangent points in road-
ways/hallways to steer toward. Land and Tatler in their classic paper [5] speak of the
tendency of race car drivers to steer along the direction of the goal while allowing the
bend points (tangent points) to hold their gaze intermittently to judge the future steer-
ing angle. In indoor environments, this phenomenon looselytranslates into pedestrians
having a tendency to look near wall-floor boundaries when nearing a corner.

While working on visual sensing for robot navigation/exploration, the question of
what resolution is sufficient for basic navigation tasks is an inherent question. Psy-
chological studies have shown that the human visual system does not require high-
resolution images to ascertain information about the environment for basic navigation.
The “selective degradation hypothesis”, developed by Leibowitz [7], states that some
visual abilities such as vehicle steering and speed controlremain relatively easy despite
loss in visual acuity and color vision. Torralbaet al. [13, 14] in their recent work have
presented convincing psychovisual evidence that32 × 24 bit images are sufficient for
humans to successfully performs basic scene classification, object segmentation, and
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identification. The work of Tovaret al. [15] and O’Kane and LaValle [11] focuses on
identifying simple and generic solutions to basic robot exploration/navigations tasks,
with emphasis on minimalistic representations.

320× 240 160× 120 64× 48 32× 24 16× 12

Fig. 1. A typical corridor image at five different resolutions. Even at32 × 24 resolution, it is
easy to see the structure of the corridor. For display purposes, the downsampled images were
upsampled to ensure that they are all at the same size.

Motivated by this idea, we describe a system to develop a minimalistic structural
representation of an indoor corridor for basic navigation tasks by a mobile robot. We
also show that the recovered critical steering informationdoes not degrade significantly
with reduction in resolution. The corridor is represented by three lines: the center of the
corridor, the left wall-floor boundary, and the right wall-floor boundary. While in theory
the center line is redundant (it is simply the vertical line passing through the intersection
of the two wall-floor boundary lines), it is helpful to keep itdistinct, particularly when
the robot is not looking straight down the corridor. To detect this representation, we
combine and extend two previous approaches. In previous work, Murali and Birchfield
presented the use of ceiling lights for determining the center of the corridor using low-
resolution techniques [10]. We extend this work by using other metrics like maximum
entropy and maximum symmetry to estimate the center of the corridor when ceiling
lights are not visible. Li and Birchfield [8] deveoped a method for extracting wall-floor
boundaries for indoor environments that is much more computationally efficient than
previous approaches to perform geometric reasoning on images [4, 6]. We extend this
work by detecting wall-floor boundaries of typical indoor office environments using
low-resolution images. Fig. 1 shows a typical indoor corridor image varying from high
resolution to low resolution, from which it can be seen that structural information in the
scene is visually discernible even at very low resolutions.

2 Orientation Line Estimation

We model the structure of a corridor by three lines in the image. A vertical line indicates
the orientation line, or centerline, of the corridor, whichpasses through the vanishing
point. The wall-floor boundary is then captured by two diagonal lines that meet at the
same point on the orientation line. (As mentioned above, thevertical line is redundant
in theory but helps in the case when both diagonal lines are not visible.) Our approach
consists of two steps: First we estimate the orientation line in the image by combining
multiple cues, then we estimate the wall-floor boundary.

In this section we describe the orientation line estimation. Our approach is adapted
from the work done by Murali and Birchfield [10], which uses the median of bright
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pixels (ceiling lights), maximum entropy, and maximum symmetry measures in the
corridor image to determine its center and therefore the orientation. This approach has
several advantages over existing techniques: It is simple,computationally efficient, and
yields good results even for low-resolution images.

2.1 Median of bright pixels

The ceiling lights, which are usually symmetric with respect to the main corridor axis,
provide an important cue. When lights are not in the center of the corridor, we can use
thek-means algorithm to overcome this difficulty, wherek = 2. The median horizon-
tal position of the brighter of the two regions is calculated, yielding an estimate of the
center position. In order to overcome specular reflections of the walls, we use Ullman’s
formula for local contrast [16]. The horizontal coordinateis transformed to an angle
by applying the same scalar factor using the equationfl(I) = ψ(med{x : (x, y) ∈
Rbright}), whereI is the image,Rbright is the set of bright pixels, med is the median,
andψ = αx converts from pixels to degrees, where the factorα is determined em-
pirically. Sample results of orientation line estimation using bright pixels are shown in
Fig. 2.
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Fig. 2. Variation of bright pixels and corresponding orientation estimate in corridor images with
resolution of32× 24.

2.2 Maximum Entropy

Empirically, entropy is maximum when the camera is pointingdown the corridor [10].
The reason for this perhaps surprising result is that such anorientation causes scene
surfaces from a variety of depths to be visible, yielding an increase of image information
at this orientation. A similar observation has been noted byother researchers in the
context of using omnidirectional images [2, 3]. We divide the image into overlapping
vertical slices and computing the graylevel entropy of the image pixels in each slice.
The maximum entropy along the horizontal axis is then used toestimate the orientation.
Sample results of orientation line estimation using entropy are shown in Fig. 3.

2.3 Symmetry by mutual information

Another important feature of corridors is symmetry. One easy way to find symmetry is
to compare the two regions using mutual information by calculating entropy. As with
entropy, for each horizontal coordinatex a column of pixelsC(x) is considered. The
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Fig. 3. Variation of entropy and corresponding orientation estimate in corridor images with reso-
lution of 32× 24.

column is divided in half along its vertical center into two columnsCL(x) andCR(x).
The normalized graylevel histograms of these two regions are used as the two proba-
bility mass functions (PMFs), and the mutual information between the two functions is
computed:

MI(x) =
∑

v∈V

∑

w∈V

p(v, w) log
p(v, w)

pL(v)pR(w)
, (1)

wherep(v, w) is the joint PMF of the intensities, andpL(v) andpR(w) are the PMFs
computed separately of the intensities of the two sides. As before, the orientation es-
timate is given byfs(I) = ψ(argmaxxMI(x)). Sample results of orientation line
estimation using mutual information are shown in Fig. 4.
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Fig. 4. Variation of symmetry and corresponding orientation estimate in corridor images with a
resolution of32× 24.

2.4 Combining the metrics

We combine the estimates as a weighted average:f(I) = αl(I)fl(I) + αh(I)fh(I) +
αs(I)fs(I). Because of the reliability of the bright pixels, we setαl = 0.8, αh = αs =
0.1. An example result obtained for different resolutions is shown in Fig. 5.

320× 240 160× 120 64× 48 32× 24 16× 12

Fig. 5. The orientation line estimate (vertical green line) for the images shown in Fig.1. The
results remain essentially unchanged from the original resolution down to aresolution of16×12.
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3 Wall-floor boundary

We use the idea of the floor segmentation method introduced byLi and Birchfield [8]
which has been shown to be fairly robust to reflections on the floor. For the seven dif-
ferent resolutions, we compute the minimum acceptance length of the horizontal line
segmentslh aslh = log ηd, whered =

√
w2 + h2 is the length of the diagonal of the

image,w andh are the width and height of the image, respectively,η = 5 is a scaling
factor, and log is the natural logarithm.

According to the floor segmentation method [8], there are three different scores
(structure score, homogeneous score, and bottom score) that contribute to the final
wall-floor boundary detection. When applying the method to different resolutions, we
noticed the structure score always shows the best accuracy,while the bottom score al-
ways fails when decreasing the resolution. Therefore, we adapt the weights for the three
scores according to the resolution so thatΦtotal(ℓh) is relatively high for line segments
near the wall-floor boundary. At the same time, when combining with the orientation
line, we compute the intersection of the orientation line and the wall-floor boundary,
which is considered as the vanishing point. Then we apply theline-fitting algorithm to
both half wall-floor boundaries separated by the vanishing point. Using the slopes and
the computed vanishing point, it is easy to find the two terminal points on the image
border. Finally, we connect the vanishing point, two terminal points, as well as the ori-
entation line and obtain the structure of the corridor. The sample results are shown in
Fig. 10 and the second row of Fig. 6.

320× 240 160× 120 64× 48 32× 24 16× 12

Fig. 6. TOP: The wall-floor boundary found by the algorithm described in [8] for thedifferent
resolution images of Fig. 1. The accuracy degrades slightly until the resolution of 32× 24, after
which the errors become more pronounced. BOTTOM: The three-line model estimate of the cor-
ridor found by combining the orientation line with the wall-floor boundary, onthe same images.
As before, the structure of the corridor remains intact even in the resolution of 32×24, with only
slight errors visible in16× 12.

4 Experimental Results

For orientation, we collected data for 4 different buildings, 8 unique corridors (1 training
+ 7 for testing). For every unique corridor, at equally spaced intervals along the corridor
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(4.5m), we rotated the robot from−20◦ to+20◦ and collected corresponding odometry
(heading), laser readings (span of−90◦ to +90◦) and images. We ran the entropy de-
tector, light detector, and symmetry detector on the imagesand compared with ground
truth (odometry and/or laser). Since a linear relationshipexists between the detected
pixel location corresponding to the center of the corridor and the robot orientation as
explained in previous sections, we use either the estimatefl or (fh + fs)/2.
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GT 320× 240 160× 120 64× 48 32× 24 16× 12

Fig. 7. Corridor structure reconstruction from the wall-floor boundary, displayed as a top-down
view. The first column in blue shows the ground truth location of the walls (Cartesian conversion
of polar laser readings), and the next 5 columns in red show the reconstruction results from the
wall-floor boundaries on different resolution images. Each row represents a different run of the
robot in the same corridor, with the robot placed at a different lateral position in the corridor for
each run.

For wall-floor boundary and corridor reconstruction, we collected data for 11 dis-
tinct corridors in 6 different buildings. We drove the robotthree times (middle, left,
right separated by 0.5 m) along each corridor and collected images along with their
corresponding laser readings (−90◦ to +90◦ sweep). The position of the orientation
line with respect to the wall-floor boundaries gives the lateral position in the corridor.
The distance between the two end-points in the wall-floor boundary yields the width
of the corridor (in pixels). We use a homography obtained during a calibration process
to transform to world coordinates. Several examples of the recovered corridor structure
are shown in Fig. 7. The robot’s position was determined using an image to top-down
view calibration procedure utilizing a homography betweena square pattern on the floor
of the corridor and the image of its four corners. Ground truth was provided by laser
readings, which were converted from polar to Cartesian coordinates to yield a top-down
measurement of the corridor for every image in the sequence.Using the detected wall-
floor boundary and applying a homography to get the top-down structure of the corridor
and the lateral position, we achieved the reconstruction shown in Fig. 7. The Normal-
ized Root Mean Square Error (NRMSE) between ground truth (laser) and predicted
values of estimated corridor width and lateral position wascalculated for each of the 7
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resolutions considered (320× 240, 160× 120, 80× 60, 64× 48, 32× 24, 16× 12 and
8× 6), for three trials in a corridor. The results are shown in Fig. 8.
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Fig. 8. LEFT: NRMSE for estimating the lateral position of the robot for three runs in a single
corridor. The structure was accurately captured in all three cases. RIGHT: Mean NRMSE for the
estimation of the corridor width. There is not much difference in estimation error rates across the
different resolutions, and in fact the error drops in some cases for32× 24 and16× 12 sizes due
to the removal of noise and artifacts by downsampling.

The parameters for a linear fit between the location of the orientation line and pre-
dicted orientation were estimated by using one of the corridors as a training set. Using
the trained parameters, the orientations for all the other data for the remaining 7 test
corridors (θ) were predicted from the mean pixel locations using the above equations.
The Normalized Root Mean Square Error between ground truth (laser) and predicted
values of heading was calculated for each of the 7 resolutions considered. The results
are shown in Fig. 9.
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Fig. 9. Minimalistic geometric information is obtained by the algorithm at very low image res-
olutions. LEFT: NRMSE for all 7 test corridors. RIGHT: Mean NRMSE for the corridors. The
orientation estimation error remains relatively stable across different image resolutions. In fact,
the error drops for a few corridors at32 × 24 and16 × 12, primarily due to the fact that down-
sampling removes artifacts such as reflections and other noise on the wallsand floor.
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320× 240 80× 60 32× 24

Fig. 10.Additional results for other corridors, including one without ceiling lights.

In Fig. 10 we show a variety of corridors in which our results are successful, includ-
ing one without ceiling lights, where the result is based only on maximum symmetry
and maximum entropy.1 In addition, empirically we found that when approaching the
end of a corridor, the angle between the two wall-floor boundary lines increases to-
ward 180◦, thus providing some indication of the distance to the end ofthe corridor.
Fig. 11 shows normalized error in continuous frames with resolutions of320× 240 and
32 × 24. We also found that entropy decreases sharply when the robotreaches the end
of the corridor [10]. Therefore, these could be used to detect the end of a corridor.

0 100 200 300 400 500 600
0

0.02

0.04

0.06

0.08

0.1

0.12

Frame Number

N
or

m
al

iz
ed

 E
rr

or

 

 

320x240 VP
32x24 VP
320x240 TP
32x24 TP

Fig. 11.Normalized error of vanishing point (VP) and terminal points (TP) in Sirrine Hall video
sequence compared with ground truth. Results do not change significantly when 99% of the pixels
are discarded.

Estimating the pose of the robot or the orientation of the robot in a typical indoor
corridor is one of the necessary tasks for robot exploration/navigation. While many
authors have approached this problem by estimating vanishing points in a corridor [1, 9,

1 See http://www.ces.clemson.edu/˜stb/research/minimalisticcorridor for videos of the results.



Extracting Minimalistic Corridor Geometry from Low-Resolution Images 9

12], we have discovered that the approach of clustering detected lines performs poorly
in low-resolution and textureless images because lines arenot easily detected in such
images. A more recent approach by Konget al. [4] approaches the problem similarly
but uses texture orientation rather than explicit line detection. In their approach, Gabor
filters yield texture estimates, and an adaptive voting scheme allows pixels to decide the
confidence of an orientation. Not only is their approach muchmore computationally
intensive than ours, but with indoor low-resolution imagesthe results are significantly
less accurate. See Fig. 12 for some examples.

320× 240 320× 240 32× 24 32× 24

Fig. 12.Comparison between our results (three yellow lines) and those of Konget al. [4] (pink
region). Our algorithm achieves more accurate estimation of both the orientation line and the
wall-floor boundary in indoor scenes, particularly at low resolutions.

5 Conclusion

We have proposed an algorithm to extract a minimalistic geometric representation of
a typical indoor corridor environment using low resolutionimages. Motivated by the
“selective degradation hypothesis”, our approach exploits the redundancy of image in-
formation in order to extract useful information for mobilerobotic tasks with minimal
processing. Our algorithm combines two ideas: extracting the wall-floor boundary by
combining intensity edges and specular reflection removal,and centerline estimation
using a combination of information theoretic cues and bright pixel estimation. Previous
approaches for these problems have been extended and modified to facilitate low reso-
lution processing. The proposed algorithm was tested on images from several different
corridors, showing that the accuracy of the estimation of the orientation line or corri-
dor geometry changed very little even when more than 99% of the original information
was discarded by downsampling the image to an extremely low resolution. Our ap-
proach can be seen as an exploration into identifying how much information is needed
for basic mobile robot tasks such as corridor exploration and navigation. By reducing
the resolution required for these basic tasks, the CPU time is freed for other tasks that
potentially require higher resolutions and more involved processing.
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