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Abstract. We propose a minimalistic corridor representation consisting of the
orientation line (center) and the wall-floor boundaries (lateral limit). Tipeere
sentation is extracted from low-resolution images using a novel combinaition
information theoretic measures and gradient cues. Our study investtgatam-
pact of image resolution upon the accuracy of extracting such a gegstediw-
ing that accurate centerline and wall-floor boundaries can be estimatadrev
texture-poor environments with images as small@s< 12. In a database of 7
unique corridor sequences for orientation measurements, less thaddzfional
error was observed as the resolution of the image decreased by 3#%6f@e
advantages of working at such resolutions is that the algorithm opetates-a
dreds of frames per second, or equivalently requires only a smakpege of
the CPU.
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1 Introduction

Psychological studies have shown that while driving or wegkhuman beings tend to
focus their eye gaze on the direction of the goal and alsagaimmgent points in road-
ways/hallways to steer toward. Land and Tatler in theirsitapaper [5] speak of the
tendency of race car drivers to steer along the directioh@fgoal while allowing the
bend points (tangent points) to hold their gaze intermilyetio judge the future steer-
ing angle. In indoor environments, this phenomenon loosalyslates into pedestrians
having a tendency to look near wall-floor boundaries wheminga corner.

While working on visual sensing for robot navigation/expliion, the question of
what resolution is sufficient for basic navigation tasks nsigherent question. Psy-
chological studies have shown that the human visual systes dot require high-
resolution images to ascertain information about the enwirent for basic navigation.
The “selective degradation hypothesis”, developed by dwitr [7], states that some
visual abilities such as vehicle steering and speed corgnoain relatively easy despite
loss in visual acuity and color vision. Torralbgal. [13, 14] in their recent work have
presented convincing psychovisual evidence 82ak 24 bit images are sufficient for
humans to successfully performs basic scene classificailgjact segmentation, and
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identification. The work of Tovaet al. [15] and O’Kane and LaValle [11] focuses on
identifying simple and generic solutions to basic robotlesation/navigations tasks,

with emphasis on minimalistic representations.

320 x 240 160 x 120 64 x 48 32 x 24 16 x 12

Fig. 1. A typical corridor image at five different resolutions. Even3atx 24 resolution, it is
easy to see the structure of the corridor. For display purposes, thesdowpled images were
upsampled to ensure that they are all at the same size.

Motivated by this idea, we describe a system to develop amailistic structural
representation of an indoor corridor for basic navigatisks by a mobile robot. We
also show that the recovered critical steering informatioes not degrade significantly
with reduction in resolution. The corridor is representgdhree lines: the center of the
corridor, the left wall-floor boundary, and the right walbdr boundary. While in theory
the center line is redundant (it is simply the vertical liesging through the intersection
of the two wall-floor boundary lines), it is helpful to keepdistinct, particularly when
the robot is not looking straight down the corridor. To detids representation, we
combine and extend two previous approaches. In previouk, Wiurali and Birchfield
presented the use of ceiling lights for determining the eeat the corridor using low-
resolution techniques [10]. We extend this work by usingeothetrics like maximum
entropy and maximum symmetry to estimate the center of tinedco when ceiling
lights are not visible. Li and Birchfield [8] deveoped a meatlior extracting wall-floor
boundaries for indoor environments that is much more coatjurtally efficient than
previous approaches to perform geometric reasoning onamplj 6]. We extend this
work by detecting wall-floor boundaries of typical indoofioé environments using
low-resolution images. Fig. 1 shows a typical indoor carritinage varying from high
resolution to low resolution, from which it can be seen thatctural information in the
scene is visually discernible even at very low resolutions.

2 Orientation Line Estimation

We model the structure of a corridor by three lines in the ima@gvertical line indicates
the orientation line, or centerline, of the corridor, whighsses through the vanishing
point. The wall-floor boundary is then captured by two disgdimes that meet at the
same point on the orientation line. (As mentioned aboveyémtcal line is redundant
in theory but helps in the case when both diagonal lines atrgisible.) Our approach
consists of two steps: First we estimate the orientatiomilinthe image by combining
multiple cues, then we estimate the wall-floor boundary.

In this section we describe the orientation line estimat{dar approach is adapted
from the work done by Murali and Birchfield [10], which use® timedian of bright
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pixels (ceiling lights), maximum entropy, and maximum syetry measures in the

corridor image to determine its center and therefore thentation. This approach has
several advantages over existing techniques: It is siaplaputationally efficient, and

yields good results even for low-resolution images.

2.1 Median of bright pixels

The ceiling lights, which are usually symmetric with regpiecthe main corridor axis,
provide an important cue. When lights are not in the centen®tbrridor, we can use
the k-means algorithm to overcome this difficulty, whére= 2. The median horizon-
tal position of the brighter of the two regions is calculatgiélding an estimate of the
center position. In order to overcome specular reflectidiseowalls, we use Ullman’s
formula for local contrast [16]. The horizontal coordingetrransformed to an angle
by applying the same scalar factor using the equafiof) = ¢(med(z : (z,y) €
Ruright }), Wherel is the imageRy,qn: is the set of bright pixels, med is the median,
andy = ax converts from pixels to degrees, where the factas determined em-
pirically. Sample results of orientation line estimatiasing bright pixels are shown in
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Fig. 2. Variation of bright pixels and corresponding orientation estimate in cariidages with
resolution of32 x 24.

2.2 Maximum Entropy

Empirically, entropy is maximum when the camera is pointilogvn the corridor [10].
The reason for this perhaps surprising result is that sucbri@ntation causes scene
surfaces from a variety of depths to be visible, yieldingramméase of image information
at this orientation. A similar observation has been notedther researchers in the
context of using omnidirectional images [2, 3]. We divide image into overlapping
vertical slices and computing the graylevel entropy of thagde pixels in each slice.
The maximum entropy along the horizontal axis is then usedtinate the orientation.
Sample results of orientation line estimation using entrae shown in Fig. 3.

2.3 Symmetry by mutual information

Another important feature of corridors is symmetry. Oneyeaay to find symmetry is
to compare the two regions using mutual information by dating entropy. As with
entropy, for each horizontal coordinatea column of pixel<C(z) is considered. The
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Fig. 3. Variation of entropy and corresponding orientation estimate in corridogé@siavith reso-
lution of 32 x 24.

column is divided in half along its vertical center into twolemnsCr (z) andCr(x).
The normalized graylevel histograms of these two regioasuaed as the two proba-
bility mass functions (PMFs), and the mutual informatiotween the two functions is
computed:
p(v,w)
MI(z) = p(v,w)log ————"—, @
22 e )

wherep(v, w) is the joint PMF of the intensities, and, (v) andpg(w) are the PMFs
computed separately of the intensities of the two sides. &erb, the orientation es-
timate is given byf,(I) = v (argmax, MI(z)). Sample results of orientation line
estimation using mutual information are shown in Fig. 4.
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Fig. 4. Variation of symmetry and corresponding orientation estimate in corridagés with a
resolution of32 x 24.

2.4 Combining the metrics

We combine the estimates as a weighted avera@®: = o, (1) fi(I) + an(I) fr(I) +
as(I) fs(I). Because of the reliability of the bright pixels, we agt= 0.8, aj, = a5 =
0.1. An example result obtained for different resolutions isvh in Fig. 5.

320 x 240 160 x 120 64 x 48 32x24 16 x 12

Fig. 5. The orientation line estimate (vertical green line) for the images shown inlFighe
results remain essentially unchanged from the original resolution dowresmaution of16 x 12.
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3 Wall-floor boundary

We use the idea of the floor segmentation method introducdd agpd Birchfield [8]
which has been shown to be fairly robust to reflections on tha.flFor the seven dif-
ferent resolutions, we compute the minimum acceptanceHhenigthe horizontal line
segmentsy, asly, = lognd, whered = vw? + h? is the length of the diagonal of the
image,w andh are the width and height of the image, respectively; 5 is a scaling
factor, and log is the natural logarithm.

According to the floor segmentation method [8], there aredhtifferent scores
(structure score, homogeneous score, and bottom scoitefdhaibute to the final
wall-floor boundary detection. When applying the method ftedént resolutions, we
noticed the structure score always shows the best accuradg, the bottom score al-
ways fails when decreasing the resolution. Therefore, apitie weights for the three
scores according to the resolution so tal..;(¢) is relatively high for line segments
near the wall-floor boundary. At the same time, when comiginiith the orientation
line, we compute the intersection of the orientation lind &me wall-floor boundary,
which is considered as the vanishing point. Then we applyitieefitting algorithm to
both half wall-floor boundaries separated by the vanishwwigtpUsing the slopes and
the computed vanishing point, it is easy to find the two teahpoints on the image
border. Finally, we connect the vanishing point, two temhjmoints, as well as the ori-
entation line and obtain the structure of the corridor. Tamgle results are shown in
Fig. 10 and the second row of Fig. 6.

320 x 240 160 x 120 32 x 24 16 x 12

Fig. 6. Tor: The wall-floor boundary found by the algorithm described in [8] for diféerent
resolution images of Fig. 1. The accuracy degrades slightly until théutesoof 32 x 24, after
which the errors become more pronouncedTBom: The three-line model estimate of the cor-
ridor found by combining the orientation line with the wall-floor boundaryttensame images.
As before, the structure of the corridor remains intact even in the fasolf 32 x 24, with only
slight errors visible in6 x 12.

4 Experimental Results

For orientation, we collected data for 4 different buildsng unique corridors (1 training
+ 7 for testing). For every unique corridor, at equally sgkio¢ervals along the corridor
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(4.5m), we rotated the robot from20° to +20° and collected corresponding odometry
(heading), laser readings (span-e$0° to +90°) and images. We ran the entropy de-
tector, light detector, and symmetry detector on the imagelscompared with ground
truth (odometry and/or laser). Since a linear relationghists between the detected
pixel location corresponding to the center of the corridad ¢he robot orientation as
explained in previous sections, we use either the estithate(f;, + f5)/2.
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Fig. 7. Corridor structure reconstruction from the wall-floor boundary, digadaas a top-down
view. The first column in blue shows the ground truth location of the wallstéSi&n conversion
of polar laser readings), and the next 5 columns in red show the regotisn results from the
wall-floor boundaries on different resolution images. Each row seprs a different run of the
robot in the same corridor, with the robot placed at a different lateysitipn in the corridor for
each run.

For wall-floor boundary and corridor reconstruction, weledkd data for 11 dis-
tinct corridors in 6 different buildings. We drove the rolibtee times (middle, left,
right separated by 0.5 m) along each corridor and colleatebés along with their
corresponding laser readingsq0° to +90° sweep). The position of the orientation
line with respect to the wall-floor boundaries gives thertposition in the corridor.
The distance between the two end-points in the wall-floomblany yields the width
of the corridor (in pixels). We use a homography obtainedndua calibration process
to transform to world coordinates. Several examples oféeevered corridor structure
are shown in Fig. 7. The robot’s position was determinedgiaimimage to top-down
view calibration procedure utilizing a homography betwaenuare pattern on the floor
of the corridor and the image of its four corners. Groundhtrrais provided by laser
readings, which were converted from polar to Cartesiandionates to yield a top-down
measurement of the corridor for every image in the sequésgiag the detected wall-
floor boundary and applying a homography to get the top-ddmactsire of the corridor
and the lateral position, we achieved the reconstructiomehn Fig. 7. The Normal-
ized Root Mean Square Error (NRMSE) between ground trutke(jaand predicted
values of estimated corridor width and lateral position wasulated for each of the 7
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resolutions considere@Z0 x 240, 160 x 120, 80 x 60, 64 x 48, 32 x 24, 16 x 12 and
8 x 6), for three trials in a corridor. The results are shown in Big
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Fig. 8. LEFT: NRMSE for estimating the lateral position of the robot for three runs in glsin
corridor. The structure was accurately captured in all three casesiTRMean NRMSE for the
estimation of the corridor width. There is not much difference in estimatiar eates across the
different resolutions, and in fact the error drops in some caseRfar24 and16 x 12 sizes due
to the removal of noise and artifacts by downsampling.

The parameters for a linear fit between the location of thentation line and pre-
dicted orientation were estimated by using one of the corsi@s a training set. Using
the trained parameters, the orientations for all the otla¢a tbr the remaining 7 test
corridors @) were predicted from the mean pixel locations using the alsmuations.
The Normalized Root Mean Square Error between ground ttatfer) and predicted
values of heading was calculated for each of the 7 resokitonsidered. The results
are shown in Fig. 9.
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Fig. 9. Minimalistic geometric information is obtained by the algorithm at very low imagge r
olutions. LEFT: NRMSE for all 7 test corridors. BHT: Mean NRMSE for the corridors. The
orientation estimation error remains relatively stable across differemgamesolutions. In fact,
the error drops for a few corridors 32 x 24 and16 x 12, primarily due to the fact that down-
sampling removes artifacts such as reflections and other noise on thandfsor.

7



8 Y. Li, V. N. Murali, and S. T. Birchfield

320 x 240 80 x 60 32 x 24

Fig. 10. Additional results for other corridors, including one without ceiling lights.

In Fig. 10 we show a variety of corridors in which our resulis successful, includ-
ing one without ceiling lights, where the result is based/ami maximum symmetry
and maximum entropy.In addition, empirically we found that when approaching the
end of a corridor, the angle between the two wall-floor boupdiaes increases to-
ward 180°, thus providing some indication of the distance to the enthefcorridor.
Fig. 11 shows normalized error in continuous frames witblggns of320 x 240 and
32 x 24. We also found that entropy decreases sharply when the reaches the end
of the corridor [10]. Therefore, these could be used to detecend of a corridor.

012 T

—©— 320x240 VP
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—0— 320x240 TP

Normalized Error

Fig. 11.Normalized error of vanishing point (VP) and terminal points (TP) ini&érHall video
sequence compared with ground truth. Results do not change sigthyfiwaien 99% of the pixels
are discarded.

Estimating the pose of the robot or the orientation of theotab a typical indoor
corridor is one of the necessary tasks for robot exploratemrigation. While many
authors have approached this problem by estimating vanggiints in a corridor [1, 9,

! See http://www.ces.clemson.edu/ stb/research/minimatstiddor for videos of the results.
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12], we have discovered that the approach of clusteringctitdines performs poorly

in low-resolution and textureless images because lines@treasily detected in such
images. A more recent approach by Koaigal. [4] approaches the problem similarly
but uses texture orientation rather than explicit line diéa. In their approach, Gabor
filters yield texture estimates, and an adaptive voting mehallows pixels to decide the
confidence of an orientation. Not only is their approach momdre computationally

intensive than ours, but with indoor low-resolution imagfes results are significantly
less accurate. See Fig. 12 for some examples.

320 x 240 320 x 240 32 x 24 32 x 24

Fig. 12. Comparison between our results (three yellow lines) and those of Eoalg[4] (pink
region). Our algorithm achieves more accurate estimation of both thetati@nline and the
wall-floor boundary in indoor scenes, particularly at low resolutions.

5 Conclusion

We have proposed an algorithm to extract a minimalistic ggtdmrepresentation of
a typical indoor corridor environment using low resolutiomages. Motivated by the
“selective degradation hypothesis”, our approach explbié redundancy of image in-
formation in order to extract useful information for mobitshotic tasks with minimal
processing. Our algorithm combines two ideas: extractigvtall-floor boundary by
combining intensity edges and specular reflection remarad, centerline estimation
using a combination of information theoretic cues and lingkel estimation. Previous
approaches for these problems have been extended and madifaeilitate low reso-
lution processing. The proposed algorithm was tested ogesf&rom several different
corridors, showing that the accuracy of the estimation efdtientation line or corri-
dor geometry changed very little even when more than 99%eobtiginal information
was discarded by downsampling the image to an extremely é&sslution. Our ap-
proach can be seen as an exploration into identifying howhnimformation is needed
for basic mobile robot tasks such as corridor exploration @Bavigation. By reducing
the resolution required for these basic tasks, the CPU snfie@éed for other tasks that
potentially require higher resolutions and more involveacgssing.
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