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ABSTRACT

This work proposes a piecewise linear network model to apprate structures observed in
animage. An energy function is used to capture the charsiitsrof the structure. The energy
function consists of two parts: the prior energy term anditita@ energy term. The prior energy
term is calculated using prior information about the suues of interest. The data energy term
is calculated using observations made from the image. Tégghfunction is minimized using
Reversible Jump Markov Chain Monte Carlo (RIMCMC) to get the apprate centerline of
the structure. The algorithm was tested on a databas&)amages containing underground
roots taken by a minirhizotron camera. The results show ri@ortance of a novel non-
Gaussian term introduced to handle roots with low intenségr the centerline. It is possible

to use the proposed model to detect other structures suchads as shown by the preliminary

results.
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Chapter 1

| ntroduction

This thesis proposes a method to detect structures in areiaggiecewise linear networks. A
linear network is a sequence of line segments that are ctethexeach other. A line segment
is defined as the shortest distance between two pixels inemgmage. In this work a line

segment can be connected to at most two other line segmemésconnections always take

place at the end points of the line segment.

Figure 1.1: Leftimage: A line segment, Right image: A seqiadigtconnected linear network
with six segments.

Detecting structures in an image is an important first stepifgh level tasks in computer vi-

sion. A few examples of structures that can be approximagqadzewise linear networks are



roads, roots and blood vessels. Detecting these struciliosss researchers to draw further

inferences such as

e Calculating the length and width of the roots can allow redezns to measure the

growth of the plants.

e Detecting roads can help GIS researchers in mapping.

e Detecting blood vessels can help in determining if therebboekages in them.

Figure 1.2: Examples of structures in images that can beoappated with piecewise linear
networks.

An energy function is formulated using the appearance dfelstructures and then mini-
mized to find the centerline of the structures. Due to thenilar appearance it is possible
to approximate all the above structures using a similar dseseen from Figure 1 objects
like roads and roots have long, thin ribbon like structurBisese objects are usually brighter
than the surrounding areas. They also do not have any shadgs e their structure. All
these properties of the object are used to formulate an gf@engtion. This energy function
is then minimized using Reversible Jump Markov Chain Monte CERUMCMC) to detect

the objects.



1.1 Previous Work

The main work on detecting roots from minirhizotron images been done by Zeng et al.
in [19],[20],[21]. They use a greedy algorithm for mininmgi the energy function that they
have. The energy function is derived from seed points andCarely model. The approach
proposed in this thesis has both a different energy funetmha different energy minimization
technique. The assumption made for the Gaussian profileeafoibt is not correct in all the

cases as discussed in the next chapters.

The RIMCMC algorithm used for energy minimization in this noetkivas originally pro-
posed by Green in [7]. This algorithm has been used in compuigen for a variety of
applications. Khan et al. [8] use RIMCMC for multi object trimgk Smith et al. [14] also use
RJIMCMC for multiple people tracking. RIMCMC is also used for segtation of muscle
fibers in [6].

Stoica et al. [17] use a method similar to the proposed onetextiroads. The energy model
that they used is called the candy model and is used by Zergas well. The candy model
however is very different from the model used in this methdeky use RIMCMC to minimize
the energy function as well. However they consider the ngtas a set of connected segments
with interactions instead of a sequence of connected segméhe connections between the
connections are also weak connections as two segmentsrareated if there endpoints are
within a distance of some predefined pixels. In the followupk\Stoica et al. [10] extend the

Candy model by using similar energy minimization techniques

One application of the proposed method is road detectiore Wdrk previously done on
road detection in[2], [3],[10] and [17] does a much bettdr ¢ road detection than the pro-

posed method. The number of roads in most of road detectidhaue is much larger than



the number of roads detected using the proposed method.udote method in this thesis is
primarily for modeling roots. Detecting roads is possibidyadue to the similarity in nature

of these two structures.

1.2 Image Database

As mentioned in the abstract the main focus of the algoritertoidetect roots seen in an
image taken by a minirhizotron camera. Minirhizotrons aemsparent plastic tubes buried
at an angle in the soil near the plants to be observed. A caisdlen inserted in these
tubes. This camera captures the images of the roots anddrarisem to a computer hard
drive. These images are then used by plant researchersdy tstel health of plants. The
image database consistsiaf) images taken by these minirhizotron camera. The database fo
detecting roads are images taken from Google earth. So ftraf 30 road images has been

used.

1.3 ThesisOutline

In this work an attempt is made to develop an energy funchahwill capture the characteris-
tics of the roots seen in images captured by a minirhizotesnara. Each root is defined by a
sequence of connected segments. In order to detect thetheadsstinguishing characteristics
of the roots are captured in the form of an energy functions €hergy function is evaluated
for the pixels that are part of the series of the segmentsefbegy function is defined in such

a way that the series of segments will have minimum enerdyeaténter of the root.

The energy of the network is obtained by taking the negatgarithm of the probability

distribution function. The details of the energy functiom given in Chapter 2. In brief,



Bayes’ rule is used to evaluate the probability distributionction and get the energy value
for a given state. The two parts of the Bayes’ equation (pnmat likelihood) are calculated
using the state of the network used to capture the root analdio@l data present at the pixels
of the linear network. The energy of the network is then mined using Reversible Jump
Markov Chain Monte Carlo. The details of this are provided in @8a3. The algorithm
proposes various moves which govern the next state of tieonlet The next state is accepted
or rejected based on the acceptance ratio. The minimizafgorithm is then run till the
chain converges to a stationary distribution. This statigmistribution is the final state of the

network that captures the shape of the root.

Chapter 4 provides the details of the actual working of therdlgm. This chapter describes
the preprocessing and the way the root network is initidlimethe image. Chapter 5 shows
the results and experiments to show the effectiveness adltaithm and compare it with
the results of previous work. It is possible to use the modeldots to detect other similar
structures like roads and blood vessels. Chapter 6 des¢hbanodifications necessary for

other objects and the results for other objects.



Chapter 2

Problem Formulation

This chapter provides the description of the problem foatiah for detecting the roots seen
in the images captured by a minirhizotron camera. Each sodé¢scribed by a network of se-
quentially connected line segmersts= (sq, ss, . . ., s,), where the numbert of line segments
is determined by the algorithm. Each line segmenmtf the network is described by a 3-tuple
(z;,0;,0;), wherez; = (z;,y;) contains the coordinates of the centroid of ttieline segment
in the imagey; is the orientation of the segment (clockwise from the pesitiorizontal axis),
and/; is its length (in pixels). Due to the fact that consecutivgnsents are connected, only
2n + 2 unique parameters are necessary to fully specify such sonetWherefore, since the
representation just given storés values, it is clearly redundant as the end point of one seg-
ment is the same as the start point of the next segment— %&-H cosbi1 = x; + %Ei cos b;,
and similarly for they coordinate. During the energy minimization the algorithpleres the

state space by changimgands.



2.1 Derivation of Energy Function

Let Z7 = (z1,29,..2,n) be the observations made about the network from the image Th
energyy (S|Z) of the network is obtained by taking the negative logaritHrihe a posteriori
probability.

b (S)2) = — log(P(S|Z)>. 2.1)

By Bayes' rule thea posterioriprobability can be written as
P(S|Z) x P(Z|S)P(S). (2.2)

HereP(Z|S) is the likelihood term to represent the data from the imageZb) is the prior
term that gives information about the state of the networkuBing(2.2) we can write(2.1)

as
0(812) o« —1og(P(2]5) P(5))

— —1og(P(2]9)) ~log(P(5)) (2.3)
= Ya(Z]5) +¢p (9).
Herevy, (Z|9S) is the energy term for the data obtained about the network the image and
Y, (S) is the prior energy of the network.
The data energy term from the above equation is calculatied) usultiple observations

made from the image. Assuming that all the observationsaependent of each other yields

Ya(Z]8) = val]9), (2.4)

wherem is the number of observations.



2.2 Prior Energy Terms

The state of a segment in the network is given by the 3-tuple;, ¢;). Out of the three the
location vectorz; does not contribute anything to the state energy term. Tdwer¢he prior
energy is determined by the length and the orientation. Kewieis not that the orientation of
each segment is important, but rather the difference imtaten of two connected segments.

The prior energy term can be written as

Yy (S) = e (S) + 9o (5) (2.5)

wherei, (S) is the length energy term ang (.5) is the orientation differnce energy term.

To decide energy function for each of the prior we make useasfually generated ground
truth. The ground truth is generated using a seilbimages. The ground truth consists of
linear networks at the center of each root in an image. Thuiampt truth is used to analyze the

properties of segments that form the network.

By using the ground truth a histogram for the orientationedéhce is calculated. The
histogram for the ground truth is given in Figure 2.1 by thids¢red) line. As mentioned
previously the orientation difference between two segsenof importance. The histogram
plot is for the orientation difference terf,., and not for orientation of each segment. The
histogram shows that many segments have orientation eifterof0 — 10 degrees. There are
hardly any segments with orientation difference overdegrees. If the images of roots are
observed it is seen that most of the roots have thin ribb@ndikg structures. These structures
do not have any sharp bends in them. It is therefore not sumgrthat the orientation differ-
ence between two segments is very small. If the histograrbssmwed then the distribution
resembles an exponential distribution. The energy funalmuld reward a pair of segments

with small orientation difference and penalize a pair ofrsegts with large orientation dif-
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Figure 2.1: The solid (red) line shows the normalized histogfor the orientation differ-
ence between segments, the dashed (blue) line shows the shap'®) for that orientation
difference value.

ference. The penalty should increase exponentially toamtlre histogram of the orientation
difference. The dashed (blue) line represents the shageeafdgative exponent of the en-
ergy function for the orientation difference. If the negatiogarithm of the energy function is

plotted, then orientation differences n@ategrees have minimum value. This value increases

exponentially afterwards

P (S) = Mbiita, (2.6)



where the ternd; ;, 1, the average angle difference of the network is defined as:

n—1

- 1
Oiit1 = > i 2.7)

n—14%
=1

The term)\; is a scaling constant that gives the distribution functidmoh is of proper shape.
To calculate this term the average orientation differesceaiculated which is substituted in

equation (2.6).

12 T T T T T T T

0.8

0.6

Percentage of segments

20 40 60 80 100 120 140
Average length of network

Figure 2.2: The solid line shows the normalized histogranite length of segments and the
dashed line shows the shapecof'(™) for that length value.

The histogram for the length is also calculated using thempidruth for calculating his-
togram of orientation difference. The histogram for averaggment length for each network

is shown in Figure 2.2 by the solid (red) line. The histogramthe average segment length

10



has an odd shape. It looks like a Gaussian curve with meéf.atThe curve, however is
skewed towards the left side. Most of the network have setgneith average lengths in the
region of30 — 50 pixels. The assumption made about the roots is that theydborgg ribbon
like structure. This leads to a conclusion that the longegarent the better itis. But from the
histogram it is seen that long segments are not as likely. igectie image size &0 x 480,
this limits the maximum size that a segment can have. Howawst of the roots occupy at
least one third of the image height or width. Most of the segtsishould have lengths close
to 70 — 80 pixels. On closer look it is observed that roots have sulglels in them. In order
to maintain the segments at the center of the root it becomesssary to break the segment
at the point of bend and start a new segment. This resultsgimeset that are shorter than
the expected value. The distribution of the lengths is axprated by a distribution given by
Aze~** wherex shall be/ and ) shall be),. Taking the negative logarithm yields the dashed

line in Figure 2.2,

Ui (S) = —log (Ag) — log £ + Ao, (2.8)

where/, the average length of the network is defined as:

(= %Z&. (2.9)

The constani, is used to adjust the shape of the function. This functiorard& segments
that have length betweelt — 50 pixels. The roll of this function is similar to the distribu-
tion observed from the ground truth. To calculate the lertgtm the average length of the

segments in the network is calculated and then substitateduation (2.8).

11



By using equation§2.6, 2.8) the equation for the state energy becomes
T/}p (S) = )\10_1‘72‘4_1 - 10g ()\2) — logg—f— )\Ql7 (210)

For detecting roots the value af is 0.00001 and\, is 0.015.

2.3 DataEnergy Terms

The second term in the equation for the network energy isakteear observation energy term.
As mentioned previously this term is calculated using rplétobservations based on the state
of the network. For detecting there are five observationsdh@aused to calculate the data

energy term:
1. Average pixel intensity of the network.
2. The number of seed points close to each segment.
3. Aspect ratio of the root with respect to the segment.
4. The sum of absolute difference of angle between the segmen
5. Correction for non-Gaussian profile of the root.

Each of the above terms and their significance is discussidsisection of the chapter.
The first data energy term is the average intensity of the erdtwThe intensity of the
network provides important information about the briglsthef the network. The roots are

usually brighter than the background. The ground truth e plotted previously is used to

find the histogram of the average intensity of the networkerAge intensity is the average of

12
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Figure 2.3: The solid (red) line shows the normalized histogfor the average intensity of
the network and the dashed (blue) line shows the shapé-f) for that intensity value.
the intensities of the segment forming one network. L dte the intensity of the/” segment

in the network. The average intensity of the netwayk is given by

2o li (2.11)

Iav =
g n

The graph showing the histogram of average intensity of gte/ork is show in Figure 2.3
by the red curve. The histogram of the average intensity eftwork follows a Gaussian
distribution with mean o200 and variance ob5. The initial assumption made about the
intensity is the same as Zeng et al. [21]. The roots of the otwave a Gaussian profile
with the center of the root having the brightest pixels. Titensity of the pixels reduces with

a Gaussian shape. By this assumption the number of pixelsntghsity close t@55 should

13



be the largest. However from the graph it is seen that thistshe case. The reason for this
is discussed in the subsequent part of the chapter. If tiébdison obtained from the ground
truth is used then pixels that are brighter than the mearevahich is200 in this case will
be considered as bad pixels instead of good ones. This isesotble as this would give the
center of the root more energy than the surrounding areasder to avoid this the energy or
reward function is changed. Instead of giving the maximuwwerd for networks with average
intensity of200, the mean of the reward or energy function is shifte@36. The shape of
the average intensity energy function is given by the negatigarithm of the dashed curve.
The energy function has the lowest value for networks witlimiatensity closer t@55. The
energy increase with the shape of a Gaussian curve with tienea of105. The numbed 10

is the sum of the variance of the Gaussian curve from thedniato and the shift in the center

of the histogram.

1 oy Lavg = 1i)”
Y (z1]8) = = log (2m07) + 2L~ (2.12)
2 2071

Herel,,, is the mean intensity of the network; is the mean of the Gaussian curve, which in

this case i255 ando; is the variance of the curve with value bff0.

The second term is called the seedpoint term. In order tailzd& this term the image is
divided into boxes each of siZd x 11. The maximum pixel value in each of the boxes is
calculated. The maximum value is considered only if it is\ai®0. This approach is based
on the approach used by [19] to compute the local maximum. ¥am@le of the detected
seed points is shown in Figure 2.4. Based on the assumptibththaenter of the root is the
brightest part, it is expected that most of the seed pointsappear in the center of the root.
The histogram showing the distribution of seed point dgnsishown in Figure 2.5 by the red

curve. This term rewards segments based on the number opsédd that are close to the

14
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Figure 2.4: This image shows the seed points detected bginigihe image into blocks of
11 x 11.
root. The energy function used is the negative logarithnhefdigmoid function. It is given

mathematically as

Vg (22]S) = —log (2) + log (1 +¢77), (2.13)

wherer is the average number of seed points near the segment. Théaigd side of equation
(2.13) is the negative logarithm gf-— — ;. The sigmoid function has a value gfwhenr

is 0. If the function is used directly, it would say that even iéth is not a single point in the
neighborhood of the segment there 808 chance that that segment lies near the centerline
of the root. To avoid thi:% is subtracted from the signum function. If there are no sextp

near a segment it has the highest energy. The energy of thees¢glecreases as the number

15
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Figure 2.5: The solid (red)line shows the normalized histogfor the average number of
seed points near a each segment of the network and the désheplife shows the shape of
e¥(=219) for that intensity value.

of seed points near the segmentincreases. The energytsataitar the number of seed points
becomes more than six. From Figure 2.5 it is seen that thereealy few or no segments that
have more thari0 seed points near them. This is due to the length of the segmrith
are comparatively short as compared to the root. If howewsgment has0 or more seed
points near it then there is a high probability that the segrnsenear the centerline of the root.
Due to this such segments have lower energy. The curve szduyacause the histogram of
the ground truth shows that it is highly likely that a segmwiit have up to10 seed points
near it. So the energy values after this remain same. Thes@atiterm is calculated by
first calculating the average number of seed points closadb segment of the network. This

average is then used to calculate the term given in equélioB).
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Figure 2.6: This image show how the aspect ratio is calcdlal@e aspect ratio is the length
(in pixels) of green line to the length (in pixels) of bluedin

The third likelihood term is the aspect ratio term, whichwees that the segment has a
proper aspect ratio. As shown in Figure 2.6 for a segmenighathe right place the number
of root pixels in a perpendicular direction to the root shiolé less than the number of root
pixels in the direction of the segment. The number of pixeistlte green segment is the
term in direction of the root and the number of pixels in theebkegment is the term for
perpendicular direction of the root. In order to computs term the number of root pixels in
a perpendicular direction and the number of pixels in theation of the root from the center
pixel of the segment is calculated. To make a decision wietheaot a pixel belongs to a

root the intensity of the pixel is used. It is already knowatttihe root pixels are the brightest

17
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Figure 2.7: The solid (red) line shows the normalized histogfor the aspect ratio for each
segment and the dashed (blue) line shows the vala&sf%) for that intensity value

ones in the image. The maximum intensity value that a pixel ltave is255. A pixel is
considered as a root pixel if it has an intensity value thatréater than or equal to th®%

of the maximum value. The distance of the first pixel with msi¢y less than the threshold is
calculated from the center of the image. In order to redueetmputation only 00 pixels are
scanned at the interval of five pixels. After the computadiare done two terms are obtained.
One term gives the root length in the direction of the segrardithe other term gives the root
length in the direction perpendicular to the segment. Thie td these two terms is taken as
the aspect ratio. From the ground truth it was found thatrii® has to be at least one in
the worst case. ldeally the ratio should be as high as pessiliie function that is used for
this term rewards a segment more if it has a higher aspeot ratie energy function used is

similar to the function used for the seed point term. If th&dgrams for the seed point from

18



Figure 2.5 and aspect ratio from Figure 2.7 are comparesisggen that they are similar. This

is the reason for using similar energy functions for botimter

Ya (23]S) = —log (2) +log (1 +€e7), (2.14)

wheret is the aspect ratio. The average aspect of the given netwa&culated and used in

equation (2.14) to get the aspect ratio term.

Figure 2.8: This image show the network doubling back orifitsthe energy function does
not have a term to prevent the line segments from doubling bacmetwork.

The next term in the equation is the sum of the absolute éifieg of the angle between
the segments. This term is considered in order to prevenirtbesegments to double back

on itself. An example of this is shown in Figure 2.8 where ihe kegments double back on

19



the network. The result shown in Figure 2.8 is obtained by the complete algorithm

without the term to prevent the root from doubling back oalftsSome of the angles between
the segments are calculated as negative angles. This aapselslem with the angle energy
term as the sum of positive and negative values will resudt $snaller angle than the actual
angle. To avoid this we calculate the sum of all the absolatees of angles difference of the
segments. This sum for a valid linear network should be lemsd0 degrees. If the sum goes
more thar0 degrees a hard penalty of infinity is added to the energy fmmctThere is no

penalty when the sum of the angles is less thadegrees.

0 if angle difference< 90,
Vq (24]S) = (2.15)
oo otherwise

220
200
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£ 160
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240
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Figure 2.9: Leftimage: the place at which section of the tdaken, Right image: the graphs
showing the intensity profile along the selected line.
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In most of the work done on minirhizotron root images, it iswased that the root profile
is Gaussian in nature. The root center has the highest ityersdue and the value of the
intensity decreases as we move away from the root. While wgrih developing the energy
function it was observed that not all the roots have the ak&agssian intensity profile. In the
case of some roots, instead of having a peak at the centeh#iveya local intensity minimum
at the center of the root. This is the reason why the inters#ogram from Figure 2.3 has
the maximum value at00 and not nea255 as expected. Although some of the roots have this
non Gaussian profile most of the roots still follow the Gaaissntensity assumption made by

Zeng et al [19].

In the energy model this term is called Non Gaussian Compens@tiGC). Since the
network needs to stay at the center of the root this term isddbote that it is not possible
to completely discard the Gaussian profile assumption as ohtise roots still have Gaussian
intensity profile. For a root with Gaussian profile this teraed not play a major part and can
be ignored. For roots with Non Gaussian profile as shown inr€ig.9, this term makes sure
that the network remains at the center of the root. This teraaiculated at the two endpoints
of the segment. At each of the end points the width of the rootach side of the point in
direction perpendicular to the segment is calculated. Rersegment to be in the center of
the root the width on each side of the point will be equal. Tégnsent receives a penalty if
both the widths are not equal. This penalty increases agffeesthce between the two widths
increases. A Gaussian function is used as the shape for ¢faiveeexponent of the energy
function. As stated this term is calculated at both the efidseosegment. The final output is
the mean of both the terms. Since absolute value is useddunlatibn of the width difference

the two differences do not cancel each other out. This temmahematically given as

2
Va (z5]9) = %log (2m03) + W) (2.16)



wherelV, is the width difference on the two sides of segment. The maga, is the hypoth-
esized width for the current segment. The hypothesizedhwadteach side is calculated by
taking the mean of the widths on both sides. A segment at theercef the root will have
minimum value for the energy function. The energy value widrease as the difference in
the widths increases. This term is important to keep theafimetwork at the center of the

roots with non-Gaussian profile. This term is not very imaottfor segments with Gaussian

intensity profile.

The equation for the data energy term is given as:

Va(Z18) = L va(xil9)
— [% log (270%) + —(I““go__%”")z} + [— log (2) + log (1 + e*’”)]
+|=log (2) +1og (14| + ¢ (24]9)
+ [% log (2mo2) + M}

2
205

(2.17)

Using the equations for prior energy and data energy thetiegufar the energy of the network

is given as:

(S12) o Ya(Z]5) + ¥p(5)
— [% log (2m0?) + —(I“”Q";%“i)z} + [— log (2) + log (1 + e"')]
[~ log (2) +1og (1 + )] + tha (2419) (2.18)
+ [% log (2m03) + %} + |:)\19_i,i+1i|

+ [— log (\2) — log  + /\22]
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Chapter 3

Minimizing The Energy Function

The energy function obtained in the previous chapter is mized using Reversible Jump
Markov Chain Monte Carlo (RIMCMC). This approach has been usechtdate a finite point
process and reduce the energy in [17]. RIMCMC has also beeriardeaicking [8] multiple
objects. RIMCMC is a generalized form of Markov chain Monte €@MCMC). Although
this algorithm takes longer than greedy algorithms used éygZet al.[21] it has a higher

probability of finding the global energy minimum without geg stuck in local minimum.

3.1 Markov Chain MonteCarlo

Markov chain Monte Carlo (MCMC) is a general purpose technigeeriito generate sam-
ples from a high dimensional probability distribution faiec. MCMC consists of two terms
Markov chains and Monte Carlo approximation. Markov chamessaway of modeling statis-
tical processes with discrete or continuous state govesgerhnsitional probability. Markov
chains follow the Markovian property of localization in #min every Markov chain the next
state of the system depends only on the current state of ghersy A Markov chain is usually

denoted asw, n, k) for state space, initial state, and transition probabitigpectively.



Figure 3.1: A Markov Chain with StatgS;, Ss, . . ., S,,} with state transition probabilities of
{P,Py,...,P,}.

Monte Carlo approximations is a statistical technique usedgdmpling. It is often neces-

sary to approximate integrals in high dimensional spacesidenthe following integral.

C = / 7 (z) f(z) dx (3.1)

Itis very difficult to solve integral equations like this irgh dimensional state space. However
the integral can be approximated by using Monte Carlo appratons. This approximation
draws N samples from the distribution (x) and use those samples to approximate the value

of C' by calculating the sample mean.

1
C=52 /@) (3:2)

In Markov Chain Monte Carlo a Markov chain is designed to sirtellB(z) as its stationary

distribution. Stationary distribution for a Markov Chairtlie distribution that the chain is try-
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Stationary

Figure 3.2: A Markov Chain Monte Carlo algorithm used to sinila distribution. The
stationary distribution is the distribution the chain igiig to approximate{S;, Ss,...,S,}

are the states of the network. The data is collected fronmtiage.

ing to approximate. The distributid (=) usually exists in a high dimensional space and it is
complicated to simulate it. The distribution is approxiethis a Markov Chain by extracting
N samples from the posterior distribution, hence the name&MaChain Monte Carlo. One
of the popular techniques for sampling is Random Walk. In Remtdalk a random point is
selected in the solution space and the chain is evaluatégigpoint. An acceptance ratio is
then calculated to decide whether to keep the current staietoThe probability of accepting

the next state’ from the current state is given by

J(5) 3 (s = ds) ] (3.3)

f ()i (s" — ds)

Herev; (s — ds’) is the probability with whichs transforms tos’ and~; (s’ — ds) is the

a; (s — §') = min [1,

probability of the reverse mové,(s) and f(s’) are the values of the energy of the system in
states ands’ respectively. The algorithm accepts some transitionsafidincrease the energy

of the system. This allows the algorithm to get out of locahimia and find the global energy
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minimum. Before the actual MCMC algorithm is implemented ¢hare a few parameters that

need to be arbitrarily decided.

1. The Chain Length : The chain length is the length of chain ihaeeded before it
converges to the desired distribution. There is no way toadlgt decide the length of

the chain and most of the time it is empirically decided.

2. The Burning In Period : The second parameter is the burnringheSome of the initial
samples in the chain tend to bias the stationary distributiovards them. In order to
avoid this the chain is allowed to run for some time and thesepdes are discarded.
Like in the previous case there is really no way to decide tma In period and it is

arbitrarily decided.

Some of the well known MCMC methods include the Metropoli®altym and the Metropo-
lis Hastings algorithm. It is possible to simulate disttiba in very high dimensional spaces
using these algorithms. These methods, however, have anddck that they are able to sim-
ulate distributions having fix dimensions. The classicalrgigolis-Hastings algorithm goes

as follows

Initialize the Metropolis-Hastings sampler by choosingadom starting state for Markov

chain and set the network according to the variables.
e Begin with the starting stat& * of the Markov Chain.

e Propose a new configuration fof* by sampling a new configuration for the network

m* from the proposal distribution (state evolution).

e Compute the acceptance ratig
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e Add the nth sample to the Markov chain. df > 1, add the proposed configuration
X* — X", If not, add the proposed configuration with probabitity If the proposed

configuration is rejected, add the previous configurafion' — X,,.

3.2 Reversible Jump Markov Chain Monte Carlo

The Reversible Jump Markov chain Monte Carlo algorithm intietl by Green [7] provides
a way to sample a state space with varying dimensions. Both RJM@ml other MCMC
methods perform random walk through the state space. The diféérence between RIM-
CMC and other MCMC methods is that RIMCMC allows for moves thatghahe dimension
of the space. There is however one restriction in RIMCMC: foryeneove that is proposed
which changes the dimension of the problem there must a nmatedstores the original di-
mensions. The dimension changing moves always occur in leongntary pairs. If one move
increases the dimension then its compliment decreasesriensions. The acceptance ratio

for RIMCMC is given by

f(s)vi (s —ds)
f(s) i (s — ds)

The acceptance ratio for RIMCMC has an additional Jacobiamabsent in normal MCMC.

0y
d(s,u)

Q; (s — s,> = min[l, } (3.4)

This term is due to change in dimensions of the state space.Jd¢obian term evaluates to
unity as dimension changing moves are always invertibletrdpelis-Hasting algorithm is
a special case of RIMCMC, where all the moves have same dimensityie algorithm for

RIJMCMC goes as follows.

Initialize the RIMCMC sampler by choosing a random state feiMlarkov chain.

e Begin with the starting stat& * of the Markov Chain.
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Choose a move type from the set of possible move types.

Apply the chosen move. This involves proposing a new conditgom X ,,.

Compute the acceptance ratig keeping in mind it is defined differently for the various

move types.

Add the nth sample to the Markov chain. df = 1, add the proposed configuration

X* — X,. If not, add the proposed configuration with probabitity If the proposed

configuration is rejected, add the previous configurafign, — X,,.

The algorithm starts with a single point as the first statéeflinear network. The way that
the single point is determined is explained in Chapter 4. Tyerdhm then selects a move
randomly for state evolution. The new state for the netwsiitatermined with the help of the
proposal density)(X,,, X*). This proposal density is defined differently for each mo#s.
every move needs to have a reversible move there is also isitdeeproposal density given
by Q" (X*, X,,). Any move that changes the dimensions of the problem isctallgimp’. The
proposal densities for each move are discussed in the netidiseAfter getting the next state

of the network, the acceptance ratipis calculated as

(3.5)

f(5) pm@Q (X*,Xn)]
F(8) P @ (X, X*) 1

a; = min [1,

wherep, . is the probability that a given move is selected apds the probability of the corre-
sponding reverse move. In this algorithm each of the moveslected with equal probability.

The terms, andp,, are constants throughout and can be ignored.

The above explanation of both MCMC and RIMCMC is written withphebm [13].
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3.3 Movesfor RIMCMC

" ¥
Birth of a Original network
segment —

After birth move

Death of a ~————

segment Original network
M
After death move
\

Move a node .

Original network

\ —

After moving a node

Figure 3.3: This figure shows the three moves that are usedMCRIC and the effect of
these moves on the linear network.

As stated in the RIMCMC algorithm it is necessary to have a sewks that will change
the state of the network. For every move that changes thendiimre of the problem there must
be a move that changes it back. In this work three moves akasshown in Figure (3.3).
For proposing moves the network is considered as a colleoficonnected points instead of
collection of lines. The size of the network is defined as titaltnumber of end points of
the segments. As defined previously the number of line setgien, so the number of end
points isn + 1. This allows the moves proposed to be simpler than the maresdollection
of lines. The moves that change the dimension of the stateespe birth of a node and death

of a node. Move a node does not change the dimensions of teesptece. These moves allow
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the network to grow, shrink and change its shape. These nabhs the network to start as
a single point and detect the entire root. kdie the next iteration. The details of the moves

are as follows

1. Birth of a node : In this move we add a node to the network. iBlegjuivalent to adding
a segment with single connection. Right now our aim is to ttheemain part of the
root and not the branches so the nodes are added only at thefthé network. In this
move a new point is added to either end of the segment. Thegabs used to select
the node to which the newly added point has to be connectedheéks are only two
nodes the probability that any one node is selectéd iBonly one node is present then

that is the only node that can be selected.

node 1 is selected

N[

Q(Xy, X¥) = node n+1 is selected (3.6)

N |#—=

—_

if only 1 node present
\

In order to speed up the process it is necessary to proposethstate in such a way
that majority of the proposed moves will be accepted. To psesuch points the prior
information about the appearance of the roots is used. Ihdsvk from the shape of
the root that there will not be a sharp bend in the root and thlsdaistribution for the
length of the segment. The orientation and the length of gdvesegment are randomly
sampled from distributions that are similar to but not elyeitte same as the histograms
obtained in chapter 2. The value of the energy function isuatad for this new state

and the acceptance ratio is calculated.

Let n,(S) be the number of points in the network after the birth move and)

be the number of points after death mové.and P,; are the probabilities of birth and
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death respectivelyy(S) andi(S’) are the energy functions for the current move and

proposed move respectively. The acceptance ratio is tivem giy:

V(S)PQ (X, Xy)
Y(S") PaQ ( Xy, X*) 1

a; = min |1, (3.7)

. Death of a node : The second move that is proposed is thb déatnode. This is

the reverse move for the birth of a node. As birth increasesltimension of the space
this decreases the dimension of the state space. A nodedsméyselected from the

existing network and deleted. The proposal for this movebsawritten as

—L  if size of the network> 2

Q (X, X*) = (3.8)
0 otherwise.
The energy of the new network is then evaluated for the nete stad the acceptance
ratio is calculated. By using the notation used above thepaaoee ratio for this move

is given as
P(S) PaQ (X*, Xy)
V(S PQ (X, X*) 10

o; = min [1,

(3.9)

. Move a node : The third move is move a node. In this move a frodethe network is

randomly selected and moved randomly. The proposal for ngowiis move is

—L  if size of the network> 2

Q (X, X7) = (3.10)
0 otherwise

The restriction on moving the node is that it can only movertbde in a circle oR5

pixels around it. This move does not change the dimensiotiseohetwork hence no
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reverse move is needed for it. The acceptance ratio for thisens

P(9)Q (X*, Xi)
(5)Q (X, X*)

(3.11)

a; = min [1,

The calculation of the acceptance ratio for this move is #maesas normal MCMC.
This move does not change the dimension of the state spaceethices RIMCMC to

MCMC.

At every iteration of the algorithm one of the above move isdut determine the next
state of the network. This algorithm requires just three @sovThe reason that the moves
are simple because the network is considered as a collagtiooints and not as lines. If the
network is considered as a collection of lines as done infi&1 it will add extra moves like
add a singly connected segment and add a doubly connectegseddowever since only the

main stem of the roots is detected these moves are unnegessar
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Chapter 4

Algorithm

Previous chapters describe how to calculate the energyeaidtwork and how to minimize.
In order to calculate the energy it is necessary to init@atize network in the image. The
energy function and the minimization algorithm can detesingle root. Most of the images
contain multiple roots. An initialization algorithm is reed to initialize the network on the
root and detect if there are multiple roots in the image. éf¢hare multiple roots in the image
then the network need to be initialized multiple times . Eimdtialization of the network will

detect one root in the image.

To propose possible locations for the roots the idea of lo@adima is used again. Since the
roots are brighter than the background most of the maximlebeibn or near the roots in the
image. To find the local maxima the image is divided itito< 21 blocks. The local maximum
is calculated for each of the blocks. The local maximum isawutsidered if its intensity is
less thar60% of 255. This process is similar to the one for calculating the semdtp. The
major difference is the size of block in which the image iddidd. This step is performed only
once while the calculations for the seed point terms are rmaeleery iteration. A list of only

these maximums is created. Doing this throws more #ié6 of the data and makes furthur



calculations faster. However just finding the local maximd iitializing them on one of them
does not work. In some of the images there are bright blob&@mackground that are not
part of any root. If the network is initialized on these bldben it will give false positives. In
order to make sure that the network is not initialized at &ksmund maximum an additional
test is run. The pixels on the root are surrounded by brigtelpi The neighborhood of these
pixels will have brighter intensity than background seemh{so A point is randomly selected
from the list of maxima and the neighborhoodl0f pixels around that pixel is scanned in
0,90, 180 and270 degrees. The reference thabisegrees is the positive x axis of the image
coordinate system. The average intensity of in each daecs calculated. If the minimum
average intensity is greater than7 (half of 255), the pixel is selected as the seed point. If
the first selected pixel does not meet the criteria then ielstdd from the list of maxima and

another point is selected. This process is repeated tihalmaxima are eliminated.

The network is initialized at the point that meets the ci@eThe energy of the network
is initialized tooo. During the initial stages of the network there are constsaon which
moves can or cannot be used. Till the network has at least oadsit is not possible to
use death and move a node mode. So the only move allowed hsdbigt node. It is also
possible to initialize the network as a line instead of a pdmthis case it is necessary for the
initialization algorithm to determine a line instead of argoThis will add more computations
unnecessarily. The energy minimization algorithm takee cd finding the optimal second
point. The RIMCMC algorithm is then used to minimized the epeigthe network. The
network changes its state as described by the moves for th&€RIM The number of states
in the Markov Chain in which the stationary distribution iaceed is empirically determined.
It was observed that a single root is detected wittifi0 iterations. After the minimization
algorithm completes, the network is stored. The energy efristwork at each step is also

stored. After a network is completed, any local maximumsaina within a30 pixel range are
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removed from the list of maxima. This ensures that the ndtwsonot initialized at the same

place.
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Figure 4.1: Flowchart showing the entire process of dedaatf roots.
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Chapter 5

Experiments And Results

In order to show the effectiveness of the algorithm it waseuora data set of 50 images of
Peach tree roots. Some of the results of the algorithm anershoFigure 5.1, 5.2, 5.3 and
5.4. Most of the roots shown in the results have a Gaussiansity profile. Some images
in Figure 5.3 have a non-Gaussian profile. The results shatthle algorithm is effective for
roots having a non-Gaussian intensity profile. The reshitsvshat the algorithm is able to
detect multiple roots, roots that cross each other, and bat are close to each other. The
algorithm is also able to detect roots that are compargtaiatker than other roots and roots

that have mud blobs on them.

Some of the images have structures near the image bountlaatdsave the characteristics
of roots, but are not roots. The initialization algorithnitislizes the network at these struc-
tures and the energy minimization algorithm fits a piecewissar network at the centerline
of these structures. Most of the false positives detectethbyalgorithm are due to these
structures at the end of the images. Results shown in FigRransl 5.4 have structures which
produce false positives. Some of the results shown in Fi§utealso have false negatives.

In these cases the contrast between the roots and the baokgiolow. The initialization



algorithm is not able to initialize the networks for such arage. If the network is manually
initialized on the root then the algorithm is able to detéet ¢enterline of these roots. A pos-
sible solution for this problem will be to do some preproaagsising contrast stretching. The
last result in Figure 5.4 shows an image which has both falséipe and false negative. The
graphs showing the minimization of the energy function asalgorithm progress are shown

in Figure 5.5.

In the Chapter 3, we state that the chain length or the numbgerations for which the
algorithm runs is empirically decided. Usually of the tintke algorithm is able to detect the
roots in3000 iterations. For most of the roots the energy function readiseminimum value
well before3000 iterations as seen from the graphs in Figure 5.5. There ane sases as
shown in Figure 5.6 when the number of iterations selectedti®nough to detect the entire

root.

Figures 5.7,5.8 and 5.9 show the comparison of the propdgedtam with the algorithm
implemented by Zeng et al. Figure 5.7 shows cases in whicpritygosed algorithm detects
roots that the method proposed by Zeng et al. fails. FigBesbows images in which the
proposed algorithm detects some of the roots missed by ZeaigEigure 5.9 shows that the

proposed algorithm does a better job at keeping the lingarank near the center of the root.

The last output in Figure 5.8 shows an interesting case. iffiage has roots in it. The
Zeng et al. method is able to detect two roots and the propalggdithm is able to detect
three roots. There is one root detected by Zeng et al. thassea by the proposed algorithm.
This image has roots that cross each other. The horizordgabhtdhe center of the image has
the value of energy function that is lower than the value eftthird vertical root. The energy
values of each root are given in Figure 5.10. The values ohtlmbers is not important but

rather the difference between the two value is importane difference between the energy
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values of both the roots shown in Figure 5.10 is such that) éve network is initialized
on the vertical root it still detects the horizontal root.ig ts an interesting case in which the
characteristics of the image are a cause for the failure tf thee energy function and the

minimization algorithm.

39



Figure 5.1: Left image: the original images. Right image:db&cted roots.
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Figure 5.2: Left image: the original images. Right image:db&cted roots.
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Figure 5.3: Left image: the original images. Right image:db&cted roots.
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Figure 5.4: Left image: the original images. Right image:db&cted roots.
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Figure 5.5: Left image: the roots detected by the algoritRight image: the graph of energy
value over3000 iterations .
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Figure 5.6: Left image: root detected 3000 iterations, Right image: root detectedif00
iterations .
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Figure 5.7: Rightimage: the original image. Center imagailtesf Zeng et al. Right image:
results of proposed algorithm.
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Figure 5.8: Rightimage: the original image. Center imagailtesf Zeng et al. Right image:
results of proposed algorithm.
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Figure 5.9: Rightimage: the original image. Center imagailtesf Zeng et al. Right image:
results of proposed algorithm.
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Figure 5.10: Left image: Original image. Right image: Twossiog roots. The algorithm
detects the horizontal (blue) root but fails to detect theie@ (red) root. Horizontal root has
energy of 11.732 and vertical root has energy value of 23.589
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Chapter 6

Results For Road Detection

The algorithm proposed in this work has been developed usi@agharacteristics of roots
from a minirhizotron camera image. Road images obtained &@atellite have similar char-
acteristics. It is possible to modify the energy functionebgmall amount to detect roads.
The energy function that was used to detect roots has a wefigtfor all the terms. To detect
roads itis necessary to tweak the energy function by chgrtgmvalues of the weights. These

weights were empirically determined. The energy functmdetect roads is

U(S|Z) o< wihl —walog (N2) — walogl 4 wedsl + % log (2m07)
s (wy) log (2) + (wq) log (14 77) (6.1)

207

~ (w5) 105 (2) + (1w5) log (1 + ™) + % log (2r03) + “(%0"

In the above equation; = 1,wy, = 1,w3 = 3,wy = 1,ws = 1,wg = 1. This energy
function is minimized using the same algorithm used for sodthe initialization algorithm
that was used for roots fails in most of the cases for roadse Bdckground for the road

images is different than roots. In case of roads there ares gpdhe background that satisfy



the conditions that are used to determine the points o&iiatition. The results shown in this
section are obtained by manually initializing the netwonktioe roads.

The images used for this part were taken using Google Earth.
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Figure 6.1: Left image: the original image. Right image: teédted roads.



Chapter 7

Conclusion

The algorithm proposed in this work is able to detect theg@oesent in an image taken by
a minirhizotron camera. Previous work done on this topitees] that the intensity profile
of the roots is Gaussian in nature with the brightest pixetha center of the root. Moving
outwards from the center of the root the intensity decreasttsa Gaussian profile. This
work shows that the above assumption is not valid in all ca3é®re are roots that have a
Non-Gaussian profile. This work takes the non-Gaussianl@mifthe root into consideration

while formulating the energy function.

The difficult part of the proposed method is coming up withghergy function. The energy
minimization framework used is a standard one used that éas bsed for a large number
of applications. The energy function needs to be able toucapghe exact characteristics of
the centerline of the root. This proves to be a challenge e tare roots that are different
than the standard roots which are used to determine withrieegg function. The energy
function has to be robust so that even though the root is vifgrent it should still be able to
detect the centerline. An example of this is roots with na@ussian intensity profile. If the

energy function does not take into account these roots tifails to detect the centerline of



the roots. The non-Gaussian compensation term used in grgyefunction is used for roots

with non-Gaussian profile. It does not play a significant f@rtoots with a Gaussian profile.

The greedy algorithm used by Zeng et al. is much faster thanG®lused in this work. It
is possible to speed up the minimization by using methoasi&ta Driven MCMC. It is also
possible to get a rough approximation of the root with theuglthe initialization algorithm
and then use RIMCMC to make fine adjustments to the network. TMERIL algorithm has
an advantage over greedy algorithm in spite of its slow speeMCMC is will find the global
energy minimum without getting stuck in local minimum wittyher probability than greedy
algorithm. The results obtained using RIMCMC are better im$eare quality of detected

roots as well as the number of roots detected.

Due to the similarity in the characteristics of roads witbts) it is possible to use the same
method to detect both of them. Roads and roots do not have #ut me characteristics. In
order to detect roads it is necessary to change the energtidarby weighting the terms in
the energy function. The initialization algorithm used rfoots fails for some cases in case of
roads due to different background. An initialization aigan that will work for both can be

developed as part of future work.

There are other structures like blood veins, rivers andksrat cement blocks that can be
detected using the proposed method due to their similaitty wwots. In each case the energy
function will have to be modified to capture the exact chamastics of the structure. The same
energy minimization frame work can be used to detect thegetates if the energy function

is good enough to capture the distinguishing charactesisti the structures.
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APPENDI X

Bayes Rule

Bayes rule or Bayes theorem is an expression of conditionaligtibties. Conditional prob-
abilities represent the probability of an event occurringgg some evidence. Bayes theorem
provides a mathematical rule for changing existing beliefsght of new evidence. Mathe-

matical Bayes rule is written as

, likelihood * prior
t = A-1
postertor marginal likelthood (A1)

In terms of mathematical symbols it can be stated as
P(e|lR=r)P(R=r)

=r
P (o) (A-2)

whereP (R = r|e) denotes the probability that random variabldas value- given evidence
e. The denominator is just a normalizing constant that erssiine posterior adds up 1o It is

computed by summing up the numerator over all possible sat&, i.e.

Pe)=P(R=0,e)+P(R=1¢e)+...

(A-3)
=> P(e|lR=r)P(R=r)



This is called the marginal likelihood and gives the prioolpability of the evidence. In

most cases the denominator term is ignored as it remainsasdrisr all the observations.

Here a simple example of Bayes rule. Suppose a person X hed tEsditive for a disease,
what is the probability of the person actually has the disggagen that the test has some false

positive rate?

Let P (Test = +ve| Disease = trug= 0.95, so the false negative rate,
P (Test = -ve| Disease = trup= 5%. Let P (Test = +ve| Disease = false= 0.05, so the
false positive rate is als@. Suppose the disease is rafe(Disease = true= 0.01. Let D
denote Disease (R in the above equation) and "T = 1” denotpdhitive Test (e in the above
equation). In case of diseaselDepresents that the person has diseasd)argresents that

the preson does not have the disease.

P(T=1D=1)+P(D=1)
P(T=1D=1)«P(D=1)+P(T=1/D=0)xP(D=0)
0.95 % 0.01

T 0.95%0.01 +0.05%0.99
~0.0095

~0.0590
=0.161

P(D=1T=1)=

(A-4)

So the probability of person X having the disease given thdehted positive is juditc%.
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