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ABSTRACT

This work proposes a piecewise linear network model to approximate structures observed in

an image. An energy function is used to capture the characteristics of the structure. The energy

function consists of two parts: the prior energy term and thedata energy term. The prior energy

term is calculated using prior information about the structures of interest. The data energy term

is calculated using observations made from the image. The energy function is minimized using

Reversible Jump Markov Chain Monte Carlo (RJMCMC) to get the approximate centerline of

the structure. The algorithm was tested on a database of150 images containing underground

roots taken by a minirhizotron camera. The results show the importance of a novel non-

Gaussian term introduced to handle roots with low intensitynear the centerline. It is possible

to use the proposed model to detect other structures such as roads as shown by the preliminary

results.

ii



DEDICATION

I will like to dedicate this work to everyone who has been there for me.

iii



ACKNOWLEDGMENTS

I would like to thank my Advisor Dr Stan Birchfield without whomit would not have been

possible for me to complete this work. His patience foresight and valuable guidance was the

main reason for the success that I have achieved. I would alsolike to thank my committee

members Dr Gowdy and Dr Woodard.

I would also like to thank all the people in my lab and researchgroup. All of them were of

great help time and time again.

Thanks to all the people who helped developBlepo— the computer vision library in our

department. It made all the code possible.

Last but not least I would like to thank my parents and my sister. It is due to there support

and encouragement that I am here today.

iv



TABLE OF CONTENTS

TITLE PAGE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Image Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Derivation of Energy Function . . . . . . . . . . . . . . . . . . . . . 7

2.2 Prior Energy Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Data Energy Terms . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Minimizing The Energy Function . . . . . . . . . . . . . . . . . . . . . . .23

3.1 Markov Chain Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Reversible Jump Markov Chain Monte Carlo . . . . . . . . . . . . . 27

3.3 Moves for RJMCMC . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5 Experiments And Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Results For Road Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

v



Table of Contents (Continued)

Page

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

i



L IST OF FIGURES

Figure Page

1.1 Description of a line segment and a linear network . . . . . .. . . . . . . . . 1

1.2 Example of structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 2

2.1 Histogram for orientation difference . . . . . . . . . . . . . . .. . . . . . . 9

2.2 Histogram for lengths . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10

2.3 Histogram for average intensity of network . . . . . . . . . . .. . . . . . . 13

2.4 Image showing seed points . . . . . . . . . . . . . . . . . . . . . . . . . .. 15

2.5 Histogram of seed points . . . . . . . . . . . . . . . . . . . . . . . . . . .. 16

2.6 Calculation of aspect ratio . . . . . . . . . . . . . . . . . . . . . . . . .. . 17

2.7 Histogram for aspect ratio . . . . . . . . . . . . . . . . . . . . . . . . .. . 18

2.8 Network doubling back on itself . . . . . . . . . . . . . . . . . . . . .. . . 19

2.9 Image of Non-Gaussian intensity profile of root . . . . . . . .. . . . . . . . 20

3.1 Image showing a generic Markov Chain . . . . . . . . . . . . . . . . . .. . 24

3.2 Figure showing the MCMC process . . . . . . . . . . . . . . . . . . . . . .25

3.3 Moves used in RJMCMC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 Flowchart showing the entire process of detection of roots. . . . . . . . . . . 36

5.1 Results of root detection using the proposed model . . . . . .. . . . . . . . 40

5.2 Results of root detection using the proposed model . . . . . .. . . . . . . . 41

5.3 Results of root detection using the proposed model . . . . . .. . . . . . . . 42

5.4 Results of root detection using the proposed model . . . . . .. . . . . . . . 43

5.5 Graphs showing the value of the energy function throughout the energy mini-
mization process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



5.6 Effect of number of iterations on results . . . . . . . . . . . . .. . . . . . . 45

5.7 Comparisons of the results of proposed model for root detection with the pre-
vious method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.8 Comparisons of the results of proposed model for root detection with the pre-
vious method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.9 Comparisons of the results of proposed model for root detection with the pre-
vious method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5.10 Energy difference between two crossing roots . . . . . . . .. . . . . . . . . 49

6.1 Results for road images . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52

viii



Chapter 1

Introduction

This thesis proposes a method to detect structures in an image as piecewise linear networks. A

linear network is a sequence of line segments that are connected to each other. A line segment

is defined as the shortest distance between two pixels in a given image. In this work a line

segment can be connected to at most two other line segments. The connections always take

place at the end points of the line segment.

Figure 1.1: Left image: A line segment, Right image: A sequentially connected linear network
with six segments.

Detecting structures in an image is an important first step for high level tasks in computer vi-

sion. A few examples of structures that can be approximated by piecewise linear networks are



roads, roots and blood vessels. Detecting these structuresallows researchers to draw further

inferences such as

• Calculating the length and width of the roots can allow researchers to measure the

growth of the plants.

• Detecting roads can help GIS researchers in mapping.

• Detecting blood vessels can help in determining if there areblockages in them.

Figure 1.2: Examples of structures in images that can be approximated with piecewise linear
networks.

An energy function is formulated using the appearance of these structures and then mini-

mized to find the centerline of the structures. Due to their similar appearance it is possible

to approximate all the above structures using a similar model. As seen from Figure 1 objects

like roads and roots have long, thin ribbon like structures.These objects are usually brighter

than the surrounding areas. They also do not have any sharp bends in their structure. All

these properties of the object are used to formulate an energy function. This energy function

is then minimized using Reversible Jump Markov Chain Monte Carlo (RJMCMC) to detect

the objects.
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1.1 Previous Work

The main work on detecting roots from minirhizotron images has been done by Zeng et al.

in [19],[20],[21]. They use a greedy algorithm for minimizing the energy function that they

have. The energy function is derived from seed points and theCandy model. The approach

proposed in this thesis has both a different energy functionand a different energy minimization

technique. The assumption made for the Gaussian profile of the root is not correct in all the

cases as discussed in the next chapters.

The RJMCMC algorithm used for energy minimization in this method was originally pro-

posed by Green in [7]. This algorithm has been used in computer vision for a variety of

applications. Khan et al. [8] use RJMCMC for multi object tracking, Smith et al. [14] also use

RJMCMC for multiple people tracking. RJMCMC is also used for segmentation of muscle

fibers in [6].

Stoica et al. [17] use a method similar to the proposed one to detect roads. The energy model

that they used is called the candy model and is used by Zeng et al. as well. The candy model

however is very different from the model used in this method.They use RJMCMC to minimize

the energy function as well. However they consider the network as a set of connected segments

with interactions instead of a sequence of connected segments. The connections between the

connections are also weak connections as two segments are connected if there endpoints are

within a distance of some predefined pixels. In the followup work Stoica et al. [10] extend the

Candy model by using similar energy minimization techniques.

One application of the proposed method is road detection. The work previously done on

road detection in[2], [3],[10] and [17] does a much better job of road detection than the pro-

posed method. The number of roads in most of road detection methods is much larger than
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the number of roads detected using the proposed method. However the method in this thesis is

primarily for modeling roots. Detecting roads is possible only due to the similarity in nature

of these two structures.

1.2 Image Database

As mentioned in the abstract the main focus of the algorithm is to detect roots seen in an

image taken by a minirhizotron camera. Minirhizotrons are transparent plastic tubes buried

at an angle in the soil near the plants to be observed. A camerais then inserted in these

tubes. This camera captures the images of the roots and transfers them to a computer hard

drive. These images are then used by plant researchers to study the health of plants. The

image database consists of150 images taken by these minirhizotron camera. The database for

detecting roads are images taken from Google earth. So far a set of 30 road images has been

used.

1.3 Thesis Outline

In this work an attempt is made to develop an energy function that will capture the characteris-

tics of the roots seen in images captured by a minirhizotron camera. Each root is defined by a

sequence of connected segments. In order to detect the rootsthe distinguishing characteristics

of the roots are captured in the form of an energy function. This energy function is evaluated

for the pixels that are part of the series of the segments. Theenergy function is defined in such

a way that the series of segments will have minimum energy at the center of the root.

The energy of the network is obtained by taking the negative logarithm of the probability

distribution function. The details of the energy function are given in Chapter 2. In brief,
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Bayes’ rule is used to evaluate the probability distributionfunction and get the energy value

for a given state. The two parts of the Bayes’ equation (prior and likelihood) are calculated

using the state of the network used to capture the root and theactual data present at the pixels

of the linear network. The energy of the network is then minimized using Reversible Jump

Markov Chain Monte Carlo. The details of this are provided in Chapter 3. The algorithm

proposes various moves which govern the next state of the network. The next state is accepted

or rejected based on the acceptance ratio. The minimizationalgorithm is then run till the

chain converges to a stationary distribution. This stationary distribution is the final state of the

network that captures the shape of the root.

Chapter 4 provides the details of the actual working of the algorithm. This chapter describes

the preprocessing and the way the root network is initialized in the image. Chapter 5 shows

the results and experiments to show the effectiveness of thealgorithm and compare it with

the results of previous work. It is possible to use the model for roots to detect other similar

structures like roads and blood vessels. Chapter 6 describesthe modifications necessary for

other objects and the results for other objects.

5



Chapter 2

Problem Formulation

This chapter provides the description of the problem formulation for detecting the roots seen

in the images captured by a minirhizotron camera. Each root is described by a network of se-

quentially connected line segmentsS = 〈s1, s2, . . . , sn〉, where the numbern of line segments

is determined by the algorithm. Each line segmentsi of the network is described by a 3-tuple

(x̄i, θi, ℓi), wherex̄i = (xi, yi) contains the coordinates of the centroid of theith line segment

in the image,θi is the orientation of the segment (clockwise from the positive horizontal axis),

andℓi is its length (in pixels). Due to the fact that consecutive segments are connected, only

2n + 2 unique parameters are necessary to fully specify such a network. Therefore, since the

representation just given stores4n values, it is clearly redundant as the end point of one seg-

ment is the same as the start point of the next segment:xi+1 −
1
2
ℓi+1 cos θi+1 = xi+

1
2
ℓi cos θi,

and similarly for they coordinate. During the energy minimization the algorithm explores the

state space by changingn andS.



2.1 Derivation of Energy Function

Let Z = 〈z1, z2, ..zm〉 be the observations made about the network from the image. The

energyψ (S|Z) of the network is obtained by taking the negative logarithm of thea posteriori

probability.

ψ (S|Z) = − log
(

P (S|Z)
)

. (2.1)

By Bayes’ rule thea posterioriprobability can be written as

P (S|Z) ∝ P (Z|S)P (S) . (2.2)

HereP (Z|S) is the likelihood term to represent the data from the image andP (S) is the prior

term that gives information about the state of the network. Byusing(2.2) we can write(2.1)

as

ψ (S|Z) ∝ − log
(

P (Z|S)P (S)
)

= − log
(

P (Z|S)
)

− log
(

P (S)
)

= ψd (Z|S) + ψp (S).

(2.3)

Hereψd (Z|S) is the energy term for the data obtained about the network from the image and

ψp (S) is the prior energy of the network.

The data energy term from the above equation is calculated using multiple observations

made from the image. Assuming that all the observations are independent of each other yields

ψd (Z|S) =
m

∑

i=1

ψd (zi|S) , (2.4)

wherem is the number of observations.
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2.2 Prior Energy Terms

The state of a segment in the network is given by the 3-tuple(x̄i, θi, ℓi). Out of the three the

location vectorx̄i does not contribute anything to the state energy term. Therefore the prior

energy is determined by the length and the orientation. However it is not that the orientation of

each segment is important, but rather the difference in orientation of two connected segments.

The prior energy term can be written as

ψp (S) = ψℓ (S) + ψθ (S) (2.5)

whereψℓ (S) is the length energy term andψθ (S) is the orientation differnce energy term.

To decide energy function for each of the prior we make use of manually generated ground

truth. The ground truth is generated using a set of50 images. The ground truth consists of

linear networks at the center of each root in an image. This ground truth is used to analyze the

properties of segments that form the network.

By using the ground truth a histogram for the orientation difference is calculated. The

histogram for the ground truth is given in Figure 2.1 by the solid (red) line. As mentioned

previously the orientation difference between two segments is of importance. The histogram

plot is for the orientation difference termθi,i+1 and not for orientation of each segment. The

histogram shows that many segments have orientation difference of0− 10 degrees. There are

hardly any segments with orientation difference over50 degrees. If the images of roots are

observed it is seen that most of the roots have thin ribbon like long structures. These structures

do not have any sharp bends in them. It is therefore not surprising that the orientation differ-

ence between two segments is very small. If the histogram is observed then the distribution

resembles an exponential distribution. The energy function should reward a pair of segments

with small orientation difference and penalize a pair of segments with large orientation dif-
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Figure 2.1: The solid (red) line shows the normalized histogram for the orientation differ-
ence between segments, the dashed (blue) line shows the shape of e−ψ(θ) for that orientation
difference value.

ference. The penalty should increase exponentially to mirror the histogram of the orientation

difference. The dashed (blue) line represents the shape of the negative exponent of the en-

ergy function for the orientation difference. If the negative logarithm of the energy function is

plotted, then orientation differences near0 degrees have minimum value. This value increases

exponentially afterwards

ψθ (S) = λ1θ̄i,i+1, (2.6)
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where the term̄θi,i+1, the average angle difference of the network is defined as:

θ̄i,i+1 =
1

n− 1

n−1
∑

i=1

θi,i+1 (2.7)

The termλ1 is a scaling constant that gives the distribution function which is of proper shape.

To calculate this term the average orientation difference is calculated which is substituted in

equation (2.6).
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Figure 2.2: The solid line shows the normalized histogram for the length of segments and the
dashed line shows the shape ofe−ψ(L) for that length value.

The histogram for the length is also calculated using the ground truth for calculating his-

togram of orientation difference. The histogram for average segment length for each network

is shown in Figure 2.2 by the solid (red) line. The histogram for the average segment length
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has an odd shape. It looks like a Gaussian curve with mean at50. The curve, however is

skewed towards the left side. Most of the network have segments with average lengths in the

region of30− 50 pixels. The assumption made about the roots is that they havea long ribbon

like structure. This leads to a conclusion that the longer a segment the better it is. But from the

histogram it is seen that long segments are not as likely. Because the image size is640× 480,

this limits the maximum size that a segment can have. Howevermost of the roots occupy at

least one third of the image height or width. Most of the segments should have lengths close

to 70 − 80 pixels. On closer look it is observed that roots have subtle bends in them. In order

to maintain the segments at the center of the root it becomes necessary to break the segment

at the point of bend and start a new segment. This results in segment that are shorter than

the expected value. The distribution of the lengths is approximated by a distribution given by

λxe−λx, wherex shall beℓ andλ shall beλ2. Taking the negative logarithm yields the dashed

line in Figure 2.2.

ψℓ (S) = − log (λ2) − log ℓ̄+ λ2ℓ̄, (2.8)

whereℓ, the average length of the network is defined as:

ℓ̄ =
1

n

n
∑

i=1

ℓi. (2.9)

The constantλ2 is used to adjust the shape of the function. This function rewards segments

that have length between30 − 50 pixels. The roll of this function is similar to the distribu-

tion observed from the ground truth. To calculate the lengthterm the average length of the

segments in the network is calculated and then substituted in equation (2.8).
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By using equations(2.6, 2.8) the equation for the state energy becomes

ψp (S) = λ1θ̄i,i+1 − log (λ2) − log ℓ̄+ λ2ℓ̄ (2.10)

For detecting roots the value ofλ1 is 0.00001 andλ2 is 0.015.

2.3 Data Energy Terms

The second term in the equation for the network energy is the data or observation energy term.

As mentioned previously this term is calculated using multiple observations based on the state

of the network. For detecting there are five observations that are used to calculate the data

energy term:

1. Average pixel intensity of the network.

2. The number of seed points close to each segment.

3. Aspect ratio of the root with respect to the segment.

4. The sum of absolute difference of angle between the segments.

5. Correction for non-Gaussian profile of the root.

Each of the above terms and their significance is discussed inthis section of the chapter.

The first data energy term is the average intensity of the network. The intensity of the

network provides important information about the brightness of the network. The roots are

usually brighter than the background. The ground truth thatwas plotted previously is used to

find the histogram of the average intensity of the network. Average intensity is the average of

12
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Figure 2.3: The solid (red) line shows the normalized histogram for the average intensity of
the network and the dashed (blue) line shows the shape ofeψ(z1|S) for that intensity value.

the intensities of the segment forming one network. LetIi be the intensity of theith segment

in the network. The average intensity of the networkIavg is given by

Iavg =

∑n

i=1 Ii

n
(2.11)

The graph showing the histogram of average intensity of the network is show in Figure 2.3

by the red curve. The histogram of the average intensity of the network follows a Gaussian

distribution with mean of200 and variance of55. The initial assumption made about the

intensity is the same as Zeng et al. [21]. The roots of the network have a Gaussian profile

with the center of the root having the brightest pixels. The intensity of the pixels reduces with

a Gaussian shape. By this assumption the number of pixels withintensity close to255 should

13



be the largest. However from the graph it is seen that this is not the case. The reason for this

is discussed in the subsequent part of the chapter. If the distribution obtained from the ground

truth is used then pixels that are brighter than the mean value which is200 in this case will

be considered as bad pixels instead of good ones. This is not desirable as this would give the

center of the root more energy than the surrounding areas. Inorder to avoid this the energy or

reward function is changed. Instead of giving the maximum reward for networks with average

intensity of200, the mean of the reward or energy function is shifted to255. The shape of

the average intensity energy function is given by the negative logarithm of the dashed curve.

The energy function has the lowest value for networks with mean intensity closer to255. The

energy increase with the shape of a Gaussian curve with the variance of105. The number110

is the sum of the variance of the Gaussian curve from the histogram and the shift in the center

of the histogram.

ψd (z1|S) =
1

2
log

(

2πσ2
1

)

+
(Iavg − µi)

2

2σ2
1

(2.12)

HereIavg is the mean intensity of the network,µi is the mean of the Gaussian curve, which in

this case is255 andσ1 is the variance of the curve with value of110.

The second term is called the seedpoint term. In order to calculate this term the image is

divided into boxes each of size11 × 11. The maximum pixel value in each of the boxes is

calculated. The maximum value is considered only if it is above 160. This approach is based

on the approach used by [19] to compute the local maximum. An example of the detected

seed points is shown in Figure 2.4. Based on the assumption that the center of the root is the

brightest part, it is expected that most of the seed points will appear in the center of the root.

The histogram showing the distribution of seed point density is shown in Figure 2.5 by the red

curve. This term rewards segments based on the number of seedpoints that are close to the

14



Figure 2.4: This image shows the seed points detected by dividing the image into blocks of
11 × 11.

root. The energy function used is the negative logarithm of the sigmoid function. It is given

mathematically as

ψd (z2|S) = − log (2) + log
(

1 + e−r̄
)

, (2.13)

wherer is the average number of seed points near the segment. The right hand side of equation

(2.13) is the negative logarithm of 1
1+e−r − 1

2
. The sigmoid function has a value of1

2
whenr

is 0. If the function is used directly, it would say that even if there is not a single point in the

neighborhood of the segment there is a50% chance that that segment lies near the centerline

of the root. To avoid this1
2

is subtracted from the signum function. If there are no seed points

near a segment it has the highest energy. The energy of the segment decreases as the number

15
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Figure 2.5: The solid (red)line shows the normalized histogram for the average number of
seed points near a each segment of the network and the dashed (blue) line shows the shape of
eψ(z2|S) for that intensity value.

of seed points near the segment increases. The energy saturates after the number of seed points

becomes more than six. From Figure 2.5 it is seen that there are very few or no segments that

have more than10 seed points near them. This is due to the length of the segments which

are comparatively short as compared to the root. If however asegment has10 or more seed

points near it then there is a high probability that the segment is near the centerline of the root.

Due to this such segments have lower energy. The curve saturates because the histogram of

the ground truth shows that it is highly likely that a segmentwill have up to10 seed points

near it. So the energy values after this remain same. The seedpoint term is calculated by

first calculating the average number of seed points close to each segment of the network. This

average is then used to calculate the term given in equation(2.13).
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Figure 2.6: This image show how the aspect ratio is calculated. The aspect ratio is the length
(in pixels) of green line to the length (in pixels) of blue line.

The third likelihood term is the aspect ratio term, which ensures that the segment has a

proper aspect ratio. As shown in Figure 2.6 for a segment thatis in the right place the number

of root pixels in a perpendicular direction to the root should be less than the number of root

pixels in the direction of the segment. The number of pixels on the green segment is the

term in direction of the root and the number of pixels in the blue segment is the term for

perpendicular direction of the root. In order to compute this term the number of root pixels in

a perpendicular direction and the number of pixels in the direction of the root from the center

pixel of the segment is calculated. To make a decision whether or not a pixel belongs to a

root the intensity of the pixel is used. It is already known that the root pixels are the brightest

17
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Figure 2.7: The solid (red) line shows the normalized histogram for the aspect ratio for each
segment and the dashed (blue) line shows the value ofeψ(z3|S) for that intensity value

ones in the image. The maximum intensity value that a pixel can have is255. A pixel is

considered as a root pixel if it has an intensity value that isgreater than or equal to the60%

of the maximum value. The distance of the first pixel with intensity less than the threshold is

calculated from the center of the image. In order to reduce the computation only100 pixels are

scanned at the interval of five pixels. After the computations are done two terms are obtained.

One term gives the root length in the direction of the segmentand the other term gives the root

length in the direction perpendicular to the segment. The ratio of these two terms is taken as

the aspect ratio. From the ground truth it was found that thisratio has to be at least one in

the worst case. Ideally the ratio should be as high as possible. The function that is used for

this term rewards a segment more if it has a higher aspect ratio. The energy function used is

similar to the function used for the seed point term. If the histograms for the seed point from
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Figure 2.5 and aspect ratio from Figure 2.7 are compared, it is seen that they are similar. This

is the reason for using similar energy functions for both terms.

ψd (z3|S) = − log (2) + log
(

1 + e−t
)

, (2.14)

wheret is the aspect ratio. The average aspect of the given network is calculated and used in

equation (2.14) to get the aspect ratio term.

Figure 2.8: This image show the network doubling back on itself if the energy function does
not have a term to prevent the line segments from doubling back on network.

The next term in the equation is the sum of the absolute difference of the angle between

the segments. This term is considered in order to prevent theline segments to double back

on itself. An example of this is shown in Figure 2.8 where the line segments double back on
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the network. The result shown in Figure 2.8 is obtained by running the complete algorithm

without the term to prevent the root from doubling back on itself. Some of the angles between

the segments are calculated as negative angles. This causesa problem with the angle energy

term as the sum of positive and negative values will result isa smaller angle than the actual

angle. To avoid this we calculate the sum of all the absolute values of angles difference of the

segments. This sum for a valid linear network should be less than90 degrees. If the sum goes

more than90 degrees a hard penalty of infinity is added to the energy function. There is no

penalty when the sum of the angles is less than90 degrees.

ψd (z4|S) =















0 if angle difference≤ 90,

∞ otherwise

(2.15)
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Figure 2.9: Left image: the place at which section of the rootis taken, Right image: the graphs
showing the intensity profile along the selected line.
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In most of the work done on minirhizotron root images, it is assumed that the root profile

is Gaussian in nature. The root center has the highest intensity value and the value of the

intensity decreases as we move away from the root. While working on developing the energy

function it was observed that not all the roots have the aboveGaussian intensity profile. In the

case of some roots, instead of having a peak at the center theyhave a local intensity minimum

at the center of the root. This is the reason why the intensityhistogram from Figure 2.3 has

the maximum value at200 and not near255 as expected. Although some of the roots have this

non Gaussian profile most of the roots still follow the Gaussian intensity assumption made by

Zeng et al [19].

In the energy model this term is called Non Gaussian Compensation (NGC). Since the

network needs to stay at the center of the root this term is added. Note that it is not possible

to completely discard the Gaussian profile assumption as most of the roots still have Gaussian

intensity profile. For a root with Gaussian profile this term does not play a major part and can

be ignored. For roots with Non Gaussian profile as shown in Figure 2.9, this term makes sure

that the network remains at the center of the root. This term is calculated at the two endpoints

of the segment. At each of the end points the width of the root on each side of the point in

direction perpendicular to the segment is calculated. For the segment to be in the center of

the root the width on each side of the point will be equal. The segment receives a penalty if

both the widths are not equal. This penalty increases as the difference between the two widths

increases. A Gaussian function is used as the shape for the negative exponent of the energy

function. As stated this term is calculated at both the ends of the segment. The final output is

the mean of both the terms. Since absolute value is used in calculation of the width difference

the two differences do not cancel each other out. This term ismathematically given as

ψd (z5|S) =
1

2
log

(

2πσ2
2

)

+
(Wd)

2

2σ2
2

, (2.16)
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whereWd is the width difference on the two sides of segment. The varianceσ2 is the hypoth-

esized width for the current segment. The hypothesized width on each side is calculated by

taking the mean of the widths on both sides. A segment at the center of the root will have

minimum value for the energy function. The energy value willincrease as the difference in

the widths increases. This term is important to keep the linear network at the center of the

roots with non-Gaussian profile. This term is not very important for segments with Gaussian

intensity profile.

The equation for the data energy term is given as:

ψd (Z|S) =
∑m

i=1 ψd (zi|S)

=
[

1
2
log (2πσ2

1) + (Iavg−µi)
2

2σ2

1

]

+
[

− log (2) + log (1 + e−r)
]

+
[

− log (2) + log (1 + e−t)
]

+ ψd (z4|S)

+
[

1
2
log (2πσ2

2) + (Wd)2

2σ2

2

]

(2.17)

Using the equations for prior energy and data energy the equation for the energy of the network

is given as:

ψ(S|Z) ∝ ψd(Z|S) + ψp(S)

=
[

1
2
log (2πσ2

1) + (Iavg−µi)
2

2σ2

1

]

+
[

− log (2) + log (1 + e−r)
]

+
[

− log (2) + log (1 + e−t)
]

+ ψd (z4|S)

+
[

1
2
log (2πσ2

2) + (Wd)2

2σ2

2

]

+
[

λ1θ̄i,i+1

]

+
[

− log (λ2) − log ℓ̄+ λ2ℓ̄
]

(2.18)
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Chapter 3

Minimizing The Energy Function

The energy function obtained in the previous chapter is minimized using Reversible Jump

Markov Chain Monte Carlo (RJMCMC). This approach has been used to simulate a finite point

process and reduce the energy in [17]. RJMCMC has also been usedfor tracking [8] multiple

objects. RJMCMC is a generalized form of Markov chain Monte Carlo (MCMC). Although

this algorithm takes longer than greedy algorithms used by Zeng et al.[21] it has a higher

probability of finding the global energy minimum without getting stuck in local minimum.

3.1 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a general purpose technique used to generate sam-

ples from a high dimensional probability distribution function. MCMC consists of two terms

Markov chains and Monte Carlo approximation. Markov chains are a way of modeling statis-

tical processes with discrete or continuous state governedby transitional probability. Markov

chains follow the Markovian property of localization in time. In every Markov chain the next

state of the system depends only on the current state of the system. A Markov chain is usually

denoted as(ω, η, κ) for state space, initial state, and transition probabilityrespectively.



Figure 3.1: A Markov Chain with State{S1, S2, . . . , Sn} with state transition probabilities of
{P1, P2, . . . , Pn}.

Monte Carlo approximations is a statistical technique used for sampling. It is often neces-

sary to approximate integrals in high dimensional space. Consider the following integral.

C =

∫

ω

π (x) f (x) dx (3.1)

It is very difficult to solve integral equations like this in high dimensional state space. However

the integral can be approximated by using Monte Carlo approximations. This approximation

drawsN samples from the distributionπ (x) and use those samples to approximate the value

of C by calculating the sample mean.

C =
1

N

N
∑

i=1

f (xi) (3.2)

In Markov Chain Monte Carlo a Markov chain is designed to simulateΠ (x) as its stationary

distribution. Stationary distribution for a Markov Chain isthe distribution that the chain is try-
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Figure 3.2: A Markov Chain Monte Carlo algorithm used to simulate a distribution. The
stationary distribution is the distribution the chain is trying to approximate.{S1, S2, . . . , Sn}
are the states of the network. The data is collected from the image.

ing to approximate. The distributionΠ (x) usually exists in a high dimensional space and it is

complicated to simulate it. The distribution is approximated as a Markov Chain by extracting

N samples from the posterior distribution, hence the name Markov Chain Monte Carlo. One

of the popular techniques for sampling is Random Walk. In Random Walk a random point is

selected in the solution space and the chain is evaluated at that point. An acceptance ratio is

then calculated to decide whether to keep the current state or not. The probability of accepting

the next states′ from the current states is given by

αi (s→ s′) = min
[

1,
f (s) γi

(

s→ ds
′
)

f (s′) γi (s
′ → ds)

]

(3.3)

Hereγi
(

s→ ds
′
)

is the probability with whichs transforms tos
′

andγi (s′ → ds) is the

probability of the reverse move,f(s) andf(s′) are the values of the energy of the system in

states ands
′

respectively. The algorithm accepts some transitions thatwill increase the energy

of the system. This allows the algorithm to get out of local minima and find the global energy
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minimum. Before the actual MCMC algorithm is implemented there are a few parameters that

need to be arbitrarily decided.

1. The Chain Length : The chain length is the length of chain that is needed before it

converges to the desired distribution. There is no way to actually decide the length of

the chain and most of the time it is empirically decided.

2. The Burning In Period : The second parameter is the burn in period. Some of the initial

samples in the chain tend to bias the stationary distribution towards them. In order to

avoid this the chain is allowed to run for some time and these samples are discarded.

Like in the previous case there is really no way to decide the burn in period and it is

arbitrarily decided.

Some of the well known MCMC methods include the Metropolis algorithm and the Metropo-

lis Hastings algorithm. It is possible to simulate distribution in very high dimensional spaces

using these algorithms. These methods, however, have one drawback that they are able to sim-

ulate distributions having fix dimensions. The classical Metropolis-Hastings algorithm goes

as follows

Initialize the Metropolis-Hastings sampler by choosing a random starting state for Markov

chain and set the network according to the variables.

• Begin with the starting stateX∗ of the Markov Chain.

• Propose a new configuration forX∗ by sampling a new configuration for the network

m∗ from the proposal distribution (state evolution).

• Compute the acceptance ratioαi.
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• Add the nth sample to the Markov chain. Ifαi ≥ 1, add the proposed configuration

X∗ → Xn. If not, add the proposed configuration with probabilityαi. If the proposed

configuration is rejected, add the previous configurationXn−1 → Xn.

3.2 Reversible Jump Markov Chain Monte Carlo

The Reversible Jump Markov chain Monte Carlo algorithm introduced by Green [7] provides

a way to sample a state space with varying dimensions. Both RJMCMC and other MCMC

methods perform random walk through the state space. The main difference between RJM-

CMC and other MCMC methods is that RJMCMC allows for moves that change the dimension

of the space. There is however one restriction in RJMCMC: for every move that is proposed

which changes the dimension of the problem there must a move that restores the original di-

mensions. The dimension changing moves always occur in complementary pairs. If one move

increases the dimension then its compliment decreases the dimensions. The acceptance ratio

for RJMCMC is given by

αi

(

s→ s
′

)

= min
[

1,
f (s) γi

(

s→ ds
′
)

f (s′) γi (s
′ → ds)

∣

∣

∣

∣

δϕ

δ (s, u)

∣

∣

∣

∣

]

(3.4)

The acceptance ratio for RJMCMC has an additional Jacobian term absent in normal MCMC.

This term is due to change in dimensions of the state space. The Jacobian term evaluates to

unity as dimension changing moves are always invertible. Metropolis-Hasting algorithm is

a special case of RJMCMC, where all the moves have same dimensions. The algorithm for

RJMCMC goes as follows.

Initialize the RJMCMC sampler by choosing a random state for the Markov chain.

• Begin with the starting stateX∗ of the Markov Chain.
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• Choose a move type from the set of possible move types.

• Apply the chosen move. This involves proposing a new configurationXn.

• Compute the acceptance ratioαi, keeping in mind it is defined differently for the various

move types.

• Add the nth sample to the Markov chain. Ifαi = 1, add the proposed configuration

X∗ → Xn. If not, add the proposed configuration with probabilityαi. If the proposed

configuration is rejected, add the previous configurationXn−1 → Xn.

The algorithm starts with a single point as the first state of the linear network. The way that

the single point is determined is explained in Chapter 4. The algorithm then selects a move

randomly for state evolution. The new state for the network is determined with the help of the

proposal densityQ(Xn, X
∗). This proposal density is defined differently for each move.As

every move needs to have a reversible move there is also a reversible proposal density given

byQ
′

(X∗, Xn). Any move that changes the dimensions of the problem is called a ’jump’. The

proposal densities for each move are discussed in the next section. After getting the next state

of the network, the acceptance ratioαi is calculated as

αi = min
[

1,
f

(

s
′
)

pmQ (X∗, Xn)

f (s) p′

mQ (Xn, X∗)

]

, (3.5)

wherep
′

m is the probability that a given move is selected andpm is the probability of the corre-

sponding reverse move. In this algorithm each of the moves isselected with equal probability.

The termsp
′

m andpm are constants throughout and can be ignored.

The above explanation of both MCMC and RJMCMC is written with help from [13].
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3.3 Moves for RJMCMC

Figure 3.3: This figure shows the three moves that are used in RJMCMC and the effect of
these moves on the linear network.

As stated in the RJMCMC algorithm it is necessary to have a set ofmoves that will change

the state of the network. For every move that changes the dimension of the problem there must

be a move that changes it back. In this work three moves are used as shown in Figure (3.3).

For proposing moves the network is considered as a collection of connected points instead of

collection of lines. The size of the network is defined as the total number of end points of

the segments. As defined previously the number of line segments isn, so the number of end

points isn+ 1. This allows the moves proposed to be simpler than the moves for a collection

of lines. The moves that change the dimension of the state space are birth of a node and death

of a node. Move a node does not change the dimensions of the state space. These moves allow
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the network to grow, shrink and change its shape. These movesallow the network to start as

a single point and detect the entire root. Letk be the next iteration. The details of the moves

are as follows

1. Birth of a node : In this move we add a node to the network. Thisis equivalent to adding

a segment with single connection. Right now our aim is to tracethe main part of the

root and not the branches so the nodes are added only at the ends of the network. In this

move a new point is added to either end of the segment. The proposal is used to select

the node to which the newly added point has to be connected. Asthere are only two

nodes the probability that any one node is selected is1
2
. If only one node is present then

that is the only node that can be selected.

Q (Xk, X
∗) =































1
2

node 1 is selected

1
2

node n+1 is selected

1 if only 1 node present

(3.6)

In order to speed up the process it is necessary to propose thenew state in such a way

that majority of the proposed moves will be accepted. To propose such points the prior

information about the appearance of the roots is used. It is known from the shape of

the root that there will not be a sharp bend in the root and alsothe distribution for the

length of the segment. The orientation and the length of the new segment are randomly

sampled from distributions that are similar to but not exactly the same as the histograms

obtained in chapter 2. The value of the energy function is evaluated for this new state

and the acceptance ratio is calculated.

Let nb(S) be the number of points in the network after the birth move andnd(S)

be the number of points after death move.Pb andPd are the probabilities of birth and

30



death respectively.ψ(S) andψ(S ′) are the energy functions for the current move and

proposed move respectively. The acceptance ratio is then given by:

αi = min
[

1,
ψ(S)PbQ (X∗, Xk)

ψ(S ′)PdQ (Xk, X∗)

]

. (3.7)

2. Death of a node : The second move that is proposed is the death of a node. This is

the reverse move for the birth of a node. As birth increases the dimension of the space

this decreases the dimension of the state space. A node is randomly selected from the

existing network and deleted. The proposal for this move canbe written as

Q (Xk, X
∗) =















1
n+1

if size of the network≥ 2

0 otherwise.

(3.8)

The energy of the new network is then evaluated for the new state and the acceptance

ratio is calculated. By using the notation used above the acceptance ratio for this move

is given as

αi = min
[

1,
ψ(S)PdQ (X∗, Xk)

ψ(S ′)PbQ (Xk, X∗)

]

. (3.9)

3. Move a node : The third move is move a node. In this move a nodefrom the network is

randomly selected and moved randomly. The proposal for moving this move is

Q (Xk, X
∗) =















1
n+1

if size of the network≥ 2

0 otherwise

(3.10)

The restriction on moving the node is that it can only move thenode in a circle of25

pixels around it. This move does not change the dimensions ofthe network hence no
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reverse move is needed for it. The acceptance ratio for this move is

αi = min
[

1,
ψ(S)Q (X∗, Xk)

ψ(S ′)Q (Xk, X∗)

]

(3.11)

The calculation of the acceptance ratio for this move is the same as normal MCMC.

This move does not change the dimension of the state space this reduces RJMCMC to

MCMC.

At every iteration of the algorithm one of the above move is used to determine the next

state of the network. This algorithm requires just three moves. The reason that the moves

are simple because the network is considered as a collectionof points and not as lines. If the

network is considered as a collection of lines as done in [17]then it will add extra moves like

add a singly connected segment and add a doubly connected segment. However since only the

main stem of the roots is detected these moves are unnecessary.
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Chapter 4

Algorithm

Previous chapters describe how to calculate the energy of the network and how to minimize.

In order to calculate the energy it is necessary to initialize the network in the image. The

energy function and the minimization algorithm can detect asingle root. Most of the images

contain multiple roots. An initialization algorithm is needed to initialize the network on the

root and detect if there are multiple roots in the image. If there are multiple roots in the image

then the network need to be initialized multiple times . Eachinitialization of the network will

detect one root in the image.

To propose possible locations for the roots the idea of localmaxima is used again. Since the

roots are brighter than the background most of the maxima will be on or near the roots in the

image. To find the local maxima the image is divided into21×21 blocks. The local maximum

is calculated for each of the blocks. The local maximum is notconsidered if its intensity is

less than60% of 255. This process is similar to the one for calculating the seed points. The

major difference is the size of block in which the image is divided. This step is performed only

once while the calculations for the seed point terms are madein every iteration. A list of only

these maximums is created. Doing this throws more than85% of the data and makes furthur



calculations faster. However just finding the local maxima and initializing them on one of them

does not work. In some of the images there are bright blobs on the background that are not

part of any root. If the network is initialized on these blobsthen it will give false positives. In

order to make sure that the network is not initialized at a background maximum an additional

test is run. The pixels on the root are surrounded by bright pixels. The neighborhood of these

pixels will have brighter intensity than background seed points. A point is randomly selected

from the list of maxima and the neighborhood of100 pixels around that pixel is scanned in

0, 90, 180 and270 degrees. The reference that is0 degrees is the positive x axis of the image

coordinate system. The average intensity of in each direction is calculated. If the minimum

average intensity is greater than127 (half of 255), the pixel is selected as the seed point. If

the first selected pixel does not meet the criteria then it is deleted from the list of maxima and

another point is selected. This process is repeated till allthe maxima are eliminated.

The network is initialized at the point that meets the criteria. The energy of the network

is initialized to∞. During the initial stages of the network there are constraints on which

moves can or cannot be used. Till the network has at least two points it is not possible to

use death and move a node mode. So the only move allowed is birth of a node. It is also

possible to initialize the network as a line instead of a point. In this case it is necessary for the

initialization algorithm to determine a line instead of a point. This will add more computations

unnecessarily. The energy minimization algorithm takes care of finding the optimal second

point. The RJMCMC algorithm is then used to minimized the energy of the network. The

network changes its state as described by the moves for the RJMCMC. The number of states

in the Markov Chain in which the stationary distribution is reached is empirically determined.

It was observed that a single root is detected within3000 iterations. After the minimization

algorithm completes, the network is stored. The energy of the network at each step is also

stored. After a network is completed, any local maximums that are within a30 pixel range are

34



removed from the list of maxima. This ensures that the network is not initialized at the same

place.
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Figure 4.1: Flowchart showing the entire process of detection of roots.
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Chapter 5

Experiments And Results

In order to show the effectiveness of the algorithm it was runon a data set of150 images of

Peach tree roots. Some of the results of the algorithm are shown in Figure 5.1, 5.2, 5.3 and

5.4. Most of the roots shown in the results have a Gaussian intensity profile. Some images

in Figure 5.3 have a non-Gaussian profile. The results show that the algorithm is effective for

roots having a non-Gaussian intensity profile. The results show that the algorithm is able to

detect multiple roots, roots that cross each other, and roots that are close to each other. The

algorithm is also able to detect roots that are comparatively darker than other roots and roots

that have mud blobs on them.

Some of the images have structures near the image boundariesthat have the characteristics

of roots, but are not roots. The initialization algorithm initializes the network at these struc-

tures and the energy minimization algorithm fits a piecewiselinear network at the centerline

of these structures. Most of the false positives detected bythe algorithm are due to these

structures at the end of the images. Results shown in Figure 5.2 and 5.4 have structures which

produce false positives. Some of the results shown in Figure5.4 also have false negatives.

In these cases the contrast between the roots and the background is low. The initialization



algorithm is not able to initialize the networks for such an image. If the network is manually

initialized on the root then the algorithm is able to detect the centerline of these roots. A pos-

sible solution for this problem will be to do some preprocessing using contrast stretching. The

last result in Figure 5.4 shows an image which has both false positive and false negative. The

graphs showing the minimization of the energy function as the algorithm progress are shown

in Figure 5.5.

In the Chapter 3, we state that the chain length or the number ofiterations for which the

algorithm runs is empirically decided. Usually of the timesthe algorithm is able to detect the

roots in3000 iterations. For most of the roots the energy function reaches its minimum value

well before3000 iterations as seen from the graphs in Figure 5.5. There are some cases as

shown in Figure 5.6 when the number of iterations selected isnot enough to detect the entire

root.

Figures 5.7,5.8 and 5.9 show the comparison of the proposed algorithm with the algorithm

implemented by Zeng et al. Figure 5.7 shows cases in which theproposed algorithm detects

roots that the method proposed by Zeng et al. fails. Figure 5.8 shows images in which the

proposed algorithm detects some of the roots missed by Zeng et al. Figure 5.9 shows that the

proposed algorithm does a better job at keeping the linear network near the center of the root.

The last output in Figure 5.8 shows an interesting case. Thisimage has5 roots in it. The

Zeng et al. method is able to detect two roots and the proposedalgorithm is able to detect

three roots. There is one root detected by Zeng et al. that is missed by the proposed algorithm.

This image has roots that cross each other. The horizontal root at the center of the image has

the value of energy function that is lower than the value of the third vertical root. The energy

values of each root are given in Figure 5.10. The values of thenumbers is not important but

rather the difference between the two value is important. The difference between the energy
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values of both the roots shown in Figure 5.10 is such that, even if the network is initialized

on the vertical root it still detects the horizontal root. This is an interesting case in which the

characteristics of the image are a cause for the failure of both the energy function and the

minimization algorithm.
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Figure 5.1: Left image: the original images. Right image: thedetected roots.
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Figure 5.2: Left image: the original images. Right image: thedetected roots.
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Figure 5.3: Left image: the original images. Right image: thedetected roots.
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Figure 5.4: Left image: the original images. Right image: thedetected roots.
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Figure 5.5: Left image: the roots detected by the algorithm,Right image: the graph of energy
value over3000 iterations .
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Figure 5.6: Left image: root detected in3000 iterations, Right image: root detected in5000
iterations .
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Figure 5.7: Right image: the original image. Center image: results of Zeng et al. Right image:
results of proposed algorithm.
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Figure 5.8: Right image: the original image. Center image: results of Zeng et al. Right image:
results of proposed algorithm.
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Figure 5.9: Right image: the original image. Center image: results of Zeng et al. Right image:
results of proposed algorithm.
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Figure 5.10: Left image: Original image. Right image: Two crossing roots. The algorithm
detects the horizontal (blue) root but fails to detect the vertical (red) root. Horizontal root has
energy of 11.732 and vertical root has energy value of 23.589.
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Chapter 6

Results For Road Detection

The algorithm proposed in this work has been developed usingthe characteristics of roots

from a minirhizotron camera image. Road images obtained froma satellite have similar char-

acteristics. It is possible to modify the energy function bya small amount to detect roads.

The energy function that was used to detect roots has a weightof 1 for all the terms. To detect

roads it is necessary to tweak the energy function by changing the values of the weights. These

weights were empirically determined. The energy function to detect roads is

ψ(S|Z) ∝ w1λ1θ − w2 log (λ2) − w2 log l + w2λ2l +
w3

2
log (2πσ2

1)

+w3(I−µi)
2

2σ2

1

− (w4) log (2) + (w4) log (1 + e−r)

− (w5) log (2) + (w5) log (1 + e−t) + w6

2
log (2πσ2

2) + w6(Wd)2

2σ2

2

(6.1)

In the above equationw1 = 1, w2 = 1, w3 = 3, w4 = 1, w5 = 1, w6 = 1. This energy

function is minimized using the same algorithm used for roots. The initialization algorithm

that was used for roots fails in most of the cases for roads. The background for the road

images is different than roots. In case of roads there are spots in the background that satisfy



the conditions that are used to determine the points of initialization. The results shown in this

section are obtained by manually initializing the network on the roads.

The images used for this part were taken using Google Earth.
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Figure 6.1: Left image: the original image. Right image: the detected roads.
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Chapter 7

Conclusion

The algorithm proposed in this work is able to detect the roots present in an image taken by

a minirhizotron camera. Previous work done on this topic assumed that the intensity profile

of the roots is Gaussian in nature with the brightest pixels at the center of the root. Moving

outwards from the center of the root the intensity decreaseswith a Gaussian profile. This

work shows that the above assumption is not valid in all cases. There are roots that have a

Non-Gaussian profile. This work takes the non-Gaussian profile of the root into consideration

while formulating the energy function.

The difficult part of the proposed method is coming up with theenergy function. The energy

minimization framework used is a standard one used that has been used for a large number

of applications. The energy function needs to be able to capture the exact characteristics of

the centerline of the root. This proves to be a challenge as there are roots that are different

than the standard roots which are used to determine with the energy function. The energy

function has to be robust so that even though the root is very different it should still be able to

detect the centerline. An example of this is roots with non-Gaussian intensity profile. If the

energy function does not take into account these roots then it fails to detect the centerline of



the roots. The non-Gaussian compensation term used in the energy function is used for roots

with non-Gaussian profile. It does not play a significant partfor roots with a Gaussian profile.

The greedy algorithm used by Zeng et al. is much faster than RJMCMC used in this work. It

is possible to speed up the minimization by using methods like Data Driven MCMC. It is also

possible to get a rough approximation of the root with the help of the initialization algorithm

and then use RJMCMC to make fine adjustments to the network. The RJMCMC algorithm has

an advantage over greedy algorithm in spite of its slow speed. RJMCMC is will find the global

energy minimum without getting stuck in local minimum with higher probability than greedy

algorithm. The results obtained using RJMCMC are better in terms are quality of detected

roots as well as the number of roots detected.

Due to the similarity in the characteristics of roads with roots, it is possible to use the same

method to detect both of them. Roads and roots do not have the exact same characteristics. In

order to detect roads it is necessary to change the energy function by weighting the terms in

the energy function. The initialization algorithm used forroots fails for some cases in case of

roads due to different background. An initialization algorithm that will work for both can be

developed as part of future work.

There are other structures like blood veins, rivers and cracks in cement blocks that can be

detected using the proposed method due to their similarity with roots. In each case the energy

function will have to be modified to capture the exact characteristics of the structure. The same

energy minimization frame work can be used to detect these structures if the energy function

is good enough to capture the distinguishing characteristics of the structures.
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APPENDIX

Bayes’ Rule

Bayes rule or Bayes theorem is an expression of conditional probabilities. Conditional prob-

abilities represent the probability of an event occurring given some evidence. Bayes theorem

provides a mathematical rule for changing existing beliefsin light of new evidence. Mathe-

matical Bayes rule is written as

posterior =
likelihood ∗ prior

marginal likelihood
(A-1)

In terms of mathematical symbols it can be stated as

P (R = r|e) =
P (e|R = r)P (R = r)

P (e)
(A-2)

whereP (R = r|e) denotes the probability that random variableR has valuer given evidence

e. The denominator is just a normalizing constant that ensures the posterior adds up to1. It is

computed by summing up the numerator over all possible values ofR, i.e.

P (e) = P (R = 0, e) + P (R = 1, e) + . . .

=
∑

r

P (e|R = r)P (R = r)
(A-3)



This is called the marginal likelihood and gives the prior probability of the evidence. In

most cases the denominator term is ignored as it remains constant for all the observations.

Here a simple example of Bayes rule. Suppose a person X has tested positive for a disease,

what is the probability of the person actually has the disease given that the test has some false

positive rate?

Let P (Test = +ve | Disease = true) = 0.95, so the false negative rate,

P (Test = -ve | Disease = true) = 5%. Let P (Test = +ve| Disease = false) = 0.05, so the

false positive rate is also5%. Suppose the disease is rare:P (Disease = true) = 0.01. Let D

denote Disease (R in the above equation) and ”T = 1” denote thepositive Test (e in the above

equation). In case of disease D1 represents that the person has disease and0 represents that

the preson does not have the disease.

P (D = 1|T = 1) =
P (T = 1|D = 1) ∗ P (D = 1)

P (T = 1|D = 1) ∗ P (D = 1) + P (T = 1|D = 0) ∗ P (D = 0)

=
0.95 ∗ 0.01

0.95 ∗ 0.01 + 0.05 ∗ 0.99

=
0.0095

0.0590

= 0.161

(A-4)

So the probability of person X having the disease given that he tested positive is just16%.
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