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Abstract

This thesis examines the problem of person following. A person following

algorithm can be separated into two distinct parts: the detection and tracking of a

target and the actual following of a target. This thesis focuses mainly on the detection

and tracking of a target person. For the purposes of this thesis a simple robot control

architecture is used. The robot moves to follow the target in a straight line. No path

planning is considered when executing robot movement.

This thesis aims to accomplish three tasks. First, the system should be able

to track and follow a target when no occlusions occur. The non-occlusion scenar-

ios should consider the target in environments with no other people, environments

with other people present at different distances, and environments with other peo-

ple present at similar distances. The second goal will be to track the target person

through brief occlusions. The system should be able to detect when the target has

been occluded, register the occlusion, and reacquire the target upon completion of

the occlusion. The third and final goal of this thesis is to reacquire the target after

a long term occlusion. The system must recognize that the target person has disap-

peared from the scene, wait for the target to reappear, and reacquire the target upon

reappearance.

These goals will be accomplished using a generic person detector realized by

a HOG person detector, a specific appearance model based on color histograms, a
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particle filter that will serve as an integrating structure for the tracker, and a simplistic

robot control architecture.

In the following chapters I will discuss the motivation behind this work, pre-

vious research done in this area, the methods used in this thesis and the theory

behind them. Experimental results will then be analyzed and discussion concerning

the results and possible improvements to the system will be presented.
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Chapter 1

Introduction

In this section the motivation behind designing a robotic person follower will

be discussed as well as a general thesis outline given to guide the reader through this

thesis.

1.1 Motivation

Every day we see more and more robot/human interaction in society. Robotic

intelligence can be seen in many facets of life from car sensors that tell a person

when they are too close to an object to robotic vacuums. The intention behind the

study is to design a system that will enable a robot to reliably follow a person in

an indoor environment. The motivation behind designing this kind of system comes

from the desire to have a robot that will carry items for you. For example, in a

hospital setting, nurses and doctors must visit countless patients every day. To tend

to a patient a doctor need multiple items. Some of these items include medication,

charts, a computer to update patient history, and various other medical supplies. The

problems are every patient has a different medication and a different chart, there is
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not an accessible computer in every patient’s room, and the various types of medical

supplies such as bandages and shots can add up to be a heavy load. This means that

while making rounds a doctor will have to take multiple trips to a supply closets, a

computer, and file cabinets. If a system existed that was able to carry all of these

items and follow the doctor around, the doctor would be able to visit more patients

in a shorter amount of time. This is just one situation in which the proposed person

following system could be of use. One can imagine other situations in which it would

be beneficial to not have to make multiple trips from one destination to another simply

because a person can only carry so much. This is the motivation behind designing a

person following robot.

1.2 Thesis Outline

This thesis outlines the design of a system with the ability to detect, track,

and follow a specific human target through varied environments in order to serve as a

solution to the motivating example. The thesis will progress from pertinent previous

work through design, testing, and conclusions.

Chapter 2 will outline existing methods for both person following and person

detection. Chapter 3 will cover the theory behind the methods taken in the design

of this person following system. Chapter 4 will cover an in depth discussion of the

methods used in order to design the system. Chapter 5 will present, catalog, and

analyze how well the system performed on the different test scenarios that must be

taken into account when designing a person following robot. Finally, chapter 6 will

present conclusions about the system and postulate future improvements that can be

made to the system.
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Chapter 2

Related Work

Related work is broken into two subsections. The first subsection covers person

following. The person following subsection considers algorithms that include tracking

and following with a mobile robot. The second subsection considers person detection

and tracking without a mobile robot. A significant amount of research has also been

done in the area of crowd navigation and navigation planning [9],[10],[25]. However,

since crowd navigation is not in the scope of this thesis these methods will not be

discussed in depth.

2.1 Person Following

Person following deals with implementing detection and tracking algorithms

for use with a mobile robot. The detection and tracking portion of these algorithms

process incoming frames in order to detect and track a target person and then sub-

sequently pass the processed information to a robot control architecture which then

makes decisions about how to move the mobile robot in order to properly follow the

target person.
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Chen and Birchfield [4] devised a method based on matching sparse Lucas-

Kanade [20][24] features in a binocular stereo system. The algorithm, called Binocular

Sparse Feature Segmentation (BSFS), detects and matches feature points between a

pair of stereo images as well as between images in the video sequence. The BSFS

algorithm can be thought of as a two part algorithm. There is a detection mode and

a tracking mode.

In the detection mode, a pair of images is fetched from the stereo cameras.

Using the Lucas-Kanade approach, feature points are matched between the set of

images and the disparity between them is computed. A left-right consistency check

method is used. After matching features, a foreground segmentation is performed

to remove features that do not belong to the person being tracked. This is done

using the known disparity of the person in the previous frame, the estimated motion

of the background, and the computed motion of the person. The Viola-Jones [27]

face detector is also used in the detection step. It is used to initialize the person

being tracked as well as to increase robustness in detection mode. The results of the

matched and segmented features are combined with the results of the face detector

to determine if a person has been found.

Once a person has been found, the algorithm goes into tracking mode. The

person is tracked using Lucas-Kanade from frame to frame. As the features are lost

overtime, the algorithm determines whether or not the person has been lost and will

return to detection mode if the person has been determined to have been lost.

The BSFS algorithm performs well and does not require the person to wear a

different color from the background. It will also work in environments with clutter.

It can, however, be distracted by other objects or people with similar motion and

disparity to the person being tracked. The algorithm is not able to handle complete

occlusions nor can the algorithm handle a disappearance of the target person.
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As far as this thesis is concerned, a second valid method of person following was

postulated by Brookshire [3]. In his paper he proposes using Histogram of Oriented

Gradient (HOG) features combined with a particle filter to follow a target person.

The algorithm breaks down into two areas, detection and tracking.

The algorithm detection is performed using video from a single camera of

a stereo pair of cameras. The algorithm uses HOG features trained using linear

Support Vector Machines (SVMs). The linear SVMs are trained off-line on positive

and negative training images. To calculate the HOG features in an image a 64x128

pixel detection window is used. Scanning for HOG features is done at multiple scales.

However, to speed up the process of scanning at multiple scales three steps are taken.

The algorithm first calculates an internal histogram [27], [29], then scales the internal

histogram as opposed to the image, and finally calculates the HOG features. This

speeds up the calculation because the internal histogram is only calculated once and

then simply indexed to find values at multiple scales.

Once detection has been done, tracking is performed using a particle filter. The

particle filter is implemented to curb the effect of missed detections and false positives.

The filtering is performed using a particle filter where each particle is processed using

a simple Kalman filter. The state of each particle is

[
x y z ẋ ẏ ż

]T
where z

is determined from the stereo pair of images. A constant velocity model is assumed.

To simplify the platform motion the system uses readings from an IMU to allow for

updating of the pedestrians state relative to the robot.

Results showed the algorithm to be robust to changes in pose, but no results

were shown for full or partial occlusions. It should be noted that since a pair of stereo

images were used to calculate depth, as opposed to IR sensors, the robot is able to

function in an outdoor environment.
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2.1.1 Appearance Based Person Following

A widely used method for person following is based on using appearances to

segment the target from the surrounding.

Kwon et al. [14] employ a three part following algorithm. The system first

establishes correspondences between pixel displacements and camera pan/tilt angles

by constructing a two dimensional lookup table that shows the degree of pan/tilt

angle needed to move an image pixel to the center of the camera. The system then

uses this look up table to estimate the distance from a single target person to the

bisecting point of the line connecting the rotating axes of two cameras while at the

same time determining the next pan/tilt angles for the cameras to track a target

person in the center of the image. The target tracking is done by making a color

histogram of the torso of the person. The system segments the blob of the torso in an

image using learned color distribution and calculates the center of mass of the blob.

This algorithm is subject to illumination changes that cause a shift in the center of

mass of the target. It also assumes that the color of the target torso is different from

the background and has no method in place for occlusion handling.

Tarokh and Ferrari [23] use color and shape of the persons clothes for target

identification. The system applies an iterative threshold method to automatically

select threshold values and remove all objects in the scene that have colors different

from the target shirt. The remaining pixels in the thresholded image are then seg-

mented using region growing. Then, shape measures are used to select the region

that has a shape closest to the shape of the target. Finally, the system uses the

image mass, its center, and their derivatives to control the mobile robot motion. This

algorithm runs into issues when people have similar colored clothing and there is no

method in place to handle occlusion.
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Schlegel et al. [18] propose a combination of a fast color-based with a ro-

bust contour-based approach. The color-based portion of the algorithm uses a color

histogram to provide regions of interest to the contour-based portion of the algo-

rithm. The contour-based portion then searches for the target by matching extracted

contours against an adaptive contour template. This algorithm is more robust to sit-

uations in which similarly clothed people are present, but does not discuss occlusion

handling.

Sidenbladh et al. [21] present an algorithm that looks for a persons head. The

system locates the head of a person by using skin color detection. Then a control

loop is used to keep the person centrally located. This is done by adjusting the pan

and tilt of the camera as well as controlling the wheels of the mobile robot that the

camera is mounted on. The algorithm has trouble when objects or background is

present that is similar to the target skin tone, neither does it present a method for

occlusion handling. The target must also be facing the camera.

2.1.2 Optical Flow Based Person Following

Another method that has been used to implement a person following algorithm

deals with using optical flow information. These algorithms are more robust to similar

colors between the target and other objects or backgrounds, but are sensitive to

camera vibration and subject to drift.

Piaggio et al. [16] propose one such optical flow based following method. The

algorithm first calculates the optical flow. The the optical flow image is thresholded

in order to segment the person from the background. The system applies a low-pass

filter to discard image pixels that don’t belong to a person. The width of the target

person is then extracted in order to calculate the persons distance from the robot and
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the mobile robot is moved accordingly.

Chivilo et al. [5] use the optical flow calculated in the center area of the image.

The optical flow in this algorithm is calculated using the Horn and Schunk algorithm

[11]. Then, the basic idea of the system is to measure the relative velocity of the

target person with respect to the mobile robot and keeping this relative velocity as

small as possible.

2.1.3 Stereo Based Person Following

As seen earlier in work by Chen and Birchfield stereo vision is also used in

person following algorithms.

Another example of a stereo based person follower comes from work done by

Beymer and Konolige [2]. The algorithm first creates an orthographic floor-plane

representation of the three dimensional stereo camera information. The system then

subtracts the background in one of two ways. (1) If the robot is not moving, average

background subtraction is used. (2) If the robot is moving, the system uses odometry

data to estimate background motion which is then subtracted. Once the background

has been subtracted, the system finds the target by modeling people as Gaussian

blobs. The target is then assigned a state vector and a Kalman filter is applied to

maintain the location of the person. No method of full occlusion handling is discussed

in this paper.

2.1.4 Other Person Following Methods

Other methods of person following that have been attempted include laser

based person following [13], video and RFID based person tracking [7], and tracking

based on active contours [26].
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2.2 Person Detection and Tracking

Person detection and tracking differs from person following in that the algo-

rithms are not designed for use with a mobile robot. Cameras used are typically

stationary which means the background scene is constant.

One successful method for person tracking in RGB-D data was proposed by

Luber et al. [15]. The algorithm combines a multi-cue person detector for RGB-D

data with an online detector that learns individual target models.

The person detector for RGB-D data is made up of a HOG detector [6] per-

formed on the color image and a HOD (Histogram of Oriented Depths) detector

[22] performed on the depth image. This approach is called Combined Histogram of

Oriented Depths and Gradients (Combo-HOD). The HOG and HOD descriptors are

computed at multiple scales. This calculation is sped up by using integral tensors

which is an extension of an integral image. The descriptors are combined using a

weighted mean of the probabilities obtained by a sigmoid that is fit to the SVM out-

puts. The output of the detector are the positions and size of all the targets in 3D

space.

The online detector builds upon the online-boosting method for object de-

tection proposed by Grabner et al. [8] who propose applying on-line boosting to

‘selectors’ rather than directly to weak classifiers, where the ‘selector’ selects the

weak classifier with the lowest error. Luber et al. [15] compute 3 types of features

that correspond to the weak classifiers. The three include Haar-like features in the

intensity and depth images and illumination agnostic features in the color image. The

features are computed in rectangular regions with random positions and sizes within

a targets bounding box. This is done once when the target is initially found and

then fixed for the duration of the target’s presence. On-line boosting is then used
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to continuously update the target model. To keep constant, the region for feature

detection is the same size as the bounding box of the previous detection. By sweeping

the bounding box around a local neighborhood, a confidence map is created yielding

the new tracking position at its maximum.

The on-line detector is then brought into a Kalman filter based on Multi-

hypothesis tracking framework [17] differing in that their on-line classifier adds an ap-

pearance likelihood that calculates how much the observed target appearance matches

the learned model.

Finally, at each iteration the tracker produces assignments of measurements

to tracks as well as interprets the measurements as being new tracks or false alarms.

It also decides if a track has been occluded or deleted.

The algorithm seems to perform quite well. The algorithm is designed for

detection and tracking of multiple targets as opposed to tracking one specific target

and occlusion is not handled. Once a target has been determined to be occluded the

tracking history of that target stops and if that target reappears it is then determined

to be a new target as opposed to a target reacquisition.

In another approach proposed by Bansal et al. [1], a method of pedestrian

detection based on structure and appearance classification is implemented.

First, a depth map of a given scene is produced by a set of stereo cameras. Pre-

computed templates at three separate depth intervals are used at runtime to search for

prospective candidates. Using template matching based on the depth interval that is

being searched, a correlation score map is produced. Using non-maximal suppression,

the peaks or the correlation score map are selected and initial regions of interest for

prospective candidates are the result. This initial set is reduced by first considering

overlapping regions of interest. If a region of interest overlaps an existing detection

by more than 70 percent it is discarded. Next, Canny edges are found for each region
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of interest and a vertical projection of the binary mask of the edges gives them a one

dimensional histogram. Peaks of this histogram are then detected using mean-shift

with each peak corresponding to a possible pedestrian. A new region of interest is

then set at each peak with overlapping regions once again being tossed out. At the

same time, the algorithm is labeling pixels, based on height, as belonging to either

the ground plane, tall vertical structures, overhangs, or pedestrian candidates.

An image based classifier further evaluates the candidates. A HOG feature de-

tector is combined with contour segments of body parts in this classifier. To combine

the two methods, the algorithm uses chamfer matched templates on the regions of

interest to create a foreground mask. The foreground mask is then used globally on

the image to suppress the background giving enhanced gradient values on pedestrian

contours during the HOG calculation while suppressing others that are potentially

from the background.

This algorithm also performs quite well but once again is most well suited for

pure pedestrian detection in a moving car and does not employ any long time person

specific descriptors that would be needed to track the same target for long periods of

time.

A widely used method in person detection algorithms is Dalal and Triggs’

Histogram of Oriented Gradients for Human Detection method [6] which will be

discussed in detail later in this thesis. A multitude of algorithms exist that have

implemented some variation of HOG or expounded upon it [28], [19], [22] are just a

few examples of such algorithms.
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Chapter 3

Background Theory

3.1 RGB-D Sensor

First, we need to look at how the RGB-D sensor works in order to validate

it as a useful tool for the purposes of tracking. The sensor used is the Xbox Kinect

camera. It is made up of two main parts. It has a projector and an IR VGA camera.

The projector bounces a laser across the entire field of view of the camera. The

camera then picks up the projected laser in order to segment objects into a depth

field. The reason this works is because the sensor gets all the pixels back as IR noise

measurements that vary in color depending on how close that pixel position is to the

camera. This is how the depth image is created and obtained. The RGB image is

obtained as it would be in any other camera. So essentially the RGB-D sensor is

providing us with a color image and a depth image that can be accessed as often as

they need to be. It works at 30 fps.
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3.2 Homographies

In order to determine the speed at which our person of interest is walking

toward or away from the mobile robot, we must first be able to relate the distance

between pixels in the image to that same distance in the real world. In order to do

this image coordinates will have to be transformed into real world coordinates. To

accomplish this task a homography will be used.

To understand the homography transform, we must first discuss pin-hole cam-

era geometry. The pin-hole camera, Figure 3.1, is defined by its optical center C and

the image plane I. The distance from C to the image plane is the focal length and

the line from the camera center perpendicular to the image plane is called the optical

axis of the camera. The relationship between the 3D world coordinates of a scene

point and the coordinates of its projection onto the image plane is described by the

perspective projection. A 3D point is projected onto the image plane with the line

containing the point and the optical center.

Figure 3.1: Pin-hole camera geometry

Letting the center of projection be the origin of a Euclidean coordinate system,

where the z-axis is the principal axis; by similar triangles, Figure 3.2, it is easily seen

that a 3D point (x, y, z) is mapped to the point (fx
z
, fy
z

) on the image plane.

If the world and image points are represented by homogeneous vectors, then
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Figure 3.2: 3D mapping to image plane

perspective projection can be expressed in terms of matrix multiplication as seen in

the equation below.


fx

fy

z

 =


f 0 0 0

0 f 0 0

0 0 1 0





x

y

z

1


The matrix describing the mapping is called the camera projection matrix P .

This equation can be written more simply as:

zm = PM

where M = (x, y, z, 1)T are the homogeneous coordinates of the 3D point and m =

(fx
z
, fy
z
, 1)T are the homogeneous coordinates of the image point. Since it only con-

tains information about the focal distance f , the projection matrix P represents the

simplest possible case.

This formulation assumes a special choice of the world coordinate system

and the image coordinate system. This can, however, be generalized by introduc-

ing changes of the coordinate systems. Changing coordinates in space can be done by

multiplying the projection matrix P by a 4x4 matrix composed of a rotation matrix
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R and a translation vector t. It describes the position and orientation of the camera

with respect to the world coordinate system.

G =

 R t

0 1


The rows of the rotation matrix R are unit vectors that, together with the

optical center, define the camera reference frame, expressed in world coordinates.

Changing the coordinates in the image plane is equivalent to multiplying the matrix

P on the left by a 3x3 camera calibration matrix K.

K =


fx −fxcotθ u0

0 fy
sinθ

v0

0 0 1


In this calibration matrix, fx is the horizontal focal length, fy is the vertical

focal length, θ is the angle between the horizontal and vertical axes, and (u0, v0)

represents the intersection of the optical axis with the image plane. Thus, the camera

matrix in general is the product of three matrices:

P = K[I|0]G = K[R|t]

Given a world plane and the camera matrix we are now able to formulate

our homography matrix. Referring to Figure 3.3, the formulation of the homography

matrix is as follows:
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Figure 3.3: Mapping world coordinates to image coordinates
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In this equation, K

[
r1 r2 t

]
represents the 3x3 homography matrix, H3x3,

that will be used in order to map real world coordinates to image coordinates which

will be used in our robotic follower to measure the targets movement distance between

frames.

16



3.3 Histogram of Oriented Gradients

Person detection using Histogram of Oriented Gradients (HOG) was first pro-

posed by Dalal and Triggs [6]. It has become the standard for person detection in

RGB and grayscale images. The underlying assumption in HOG is that gradient in-

formation is discriminative enough to detect people in an image. We will now describe

the OpenCV implementation of Dalal and Trigs’ HOG person detector.

The first step in computing HOG features involves computing the gradient

of the image. The gradients used are computed using simple

[
−1 0 1

]
and[

−1 0 1

]T
kernels. For color images, separate gradients are calculated for each

color channel and the one with the largest norm as the pixel’s gradient vector is the

one chosen.

Once the gradient has been calculated, a binning procedure takes place. In

this step we are calculating a cell histogram. A cell is comprised of an 8x8 pixel area.

Each pixel within a cell contributes a weighted vote towards an edge orientation.

Orientations are separated into 9 separate bins between 0 degrees and 360 degrees

based on the angle of the gradient at the current pixel as seen below in Table 3.1

degrees bin
0 - 39 1
40 - 79 2
80 - 119 3
120 - 159 4
160 - 199 5
200 - 239 6
240 - 279 7
280 - 319 8
320 - 359 9

Table 3.1: Cell histogram binning procedure
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The weighted vote that goes into the bin is based on the magnitude of the

gradient at the current pixel. The votes of all the pixels contained within a cell make

up the cell histogram.

Once cell histograms have been computed, the cells are combined to form

blocks. A block is a 16x16 pixel space, and the blocks overlap each other by 8 pixels

as seen below in Figure 3.4. Hence, most cells will contribute to four blocks.

Figure 3.4: Block merging

The reason for merging the cells into blocks is to reduce the effects of illumina-

tion variation as well as to reduce the effects of foreground-background contrast. Once

the cells are grouped into a block the block is normalized using the L2-Hys norm.

The L2-Hys norm is simply the L2 norm followed by clipping, limiting the maximum

values of the non-normalized block descriptor vector, v, to 0.2 and re-normalizing.

The equation for the L2 norm is as follows:
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f = v√
‖v‖22+e2

where v is the non-normalized descriptor vector of a block.

The overall descriptor from a 64x128 pixel detection window is a concatenated

vector of all the normalized block descriptors. It should, however, be noted that a 16

pixel margin is included around the 64x128 detection window.

The last step is to send the HOG descriptors into a Support Vector Machine

classifier. This is a binary classifier that looks for an optimal hyperplane as a decision

function. The classifier is trained on thousands of test images. It is given both positive

(person present) and negative (person not present) images before the classifier is ready

to be tested. Dalal and Triggs use a soft linear SVM trained with SFMLight [12].

3.4 Particle Filter

The particle filter is a method of approximating difficult (non-Gaussian) prob-

ability distribution functions. The particle filter belongs to the family of sequential

Monte Carlo methods. Based on Bayes’ rule, tracking involves computing the poste-

rior:

p(xt|Φ0:t) ∝ p(Φt|xt)
∫
p(xt|xt−1)p(xt−1|Φ0:t−1)dxt−1 (3.1)

where xt is the state at time t , and Φt is the measurement obtained at time t . The

motion model is given by p(xt|xt−1), and the observation model is given by p(Φt|xt).

The factor p(xt−1|Φ0:t−1) is the posterior from the previous time step. The Particle

filter assumes that the process is Markov, i.e., p(Φ0:t|x0:t) =
∏t

i=0 p(Φi|xi).

Then the maximum a posteriori estimate (MAP) is found:

x∗t = arg max
x
(i)
t

p(x
(i)
t |Φ0:t−1),
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for i = 1, . . . ,M, where M is the number of particles.

To implement the particle filter, two initialization steps must first take place.

1. Declare the number of particles to be used, M.

2. Initialize all the particles with equal weights.

χ = {xm, wm}Mm=1 = {0, 1

M
}Mm=1

Once this has been done, the following algorithm is run repeatedly until the entire

program has finished.

1. Transition each particle with a different random dynamic noise.

{xmt }Mm=1 = {f(xmt−1, µ
m
t )}Mm=1

2. Using the new observation, update each particle weight.

wmt = wmt−1p(Φt|xmt )

3. Normalize all the new weights so they sum to 1.

{
wm =

wm∑M
m=1w

m

}M

m=1

4. Compute the expected value.

E[x] =
M∑
m=1

xm · wm
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5. If necessary re-sample.

The need for re-sampling arises due to the fact that particles will wander as they

are iteratively propagated by the motion model.. As the algorithm progresses, some

particles will drift away from the target observation sending their weights closer and

closer to zero. As more particles drift, we are left with only a small amount of particles

that carry any weight with them and, hence, are the only particles contributing to

the calculation of the expected state. This creates a problem of reliability. Therefore

a re-sampling criteria is set such that:

CV =
V AR(wm)

E2[wm]
=

1
M

∑M
m=1

(
wm − 1

M

∑M
m=1w

m
)2

(
1
M

∑M
m=1w

m
)2 =

1

M

M∑
m=1

(M · wm − 1)2

where CV is known as the coefficient of variation and is used to calculate the effective

sample size:

ESS =
M

1 + CV

which lets us know how many particles still have valid weights. If the ESS is less than

some predetermined ratio of M then it is determined that a re-sample is necessary.

In this thesis the method of select with replacement is used to re-sample.

Select with replacement works by taking all the values of the normalized

weights, which are valued from 0 to 1, and indexing them by particle number. The

weight can be thought of as the y-axis of a graph and the indices of the particles

from 1 to M can be thought of as the x-axis of a graph. Next, we want to create

a cumulative weight graph. This means that particle 2 on the graph is equal to the

weight of particle 1 plus particle 2. This is done all the way through particle M and

particle M’s weight is guaranteed to be a value of 1. Finally, for M number of parti-

cles, a value between 0 and 1 is chosen at random and the index of the old particle

21



that holds that value is the index that is assigned to the new particle, meaning the

old particle state now the state of the new particle. This ensures that particles with

lower weights are less likely to be copied into the new particle list and particles with

higher weights will most likely be copied multiple times into the new particle list.

The reason that particles with higher weights will be copied more often stems from

the cumulative distribution that was set up. It is more likely that the number chosen

at random will fall within the range of a particle with a large weight range than it

will a particle with a small weight range. A graphical representation of this process

can be seen below in Figure 3.5.

Figure 3.5: Graphical representation of re-sampling
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3.5 Color Histogram

A color histogram is a representation of a distribution of colors in an image.

It is a way of categorizing the number of pixels in a given image by the RGB char-

acteristics that they display. This is normally done by dividing each color channel

into a certain number of ranged bins and then defining the color histogram values to

be all the different possible combinations of these ranged bins. For example, dividing

each channel into two bins would result in the color histogram seen in Table 3.2.

Red Green Blue Pixel Count
bin 1 bin 1 bin 1 pixels
bin 1 bin 1 bin 2 pixels
bin 1 bin 2 bin 1 pixels
bin 1 bin 2 bin 2 pixels
bin 2 bin 1 bin 1 pixels
bin 2 bin 1 bin 2 pixels
bin 2 bin 2 bin 1 pixels
bin 2 bin 2 bin2 pixels

Table 3.2: Example of a simple color histogram

where bin 1 means that a pixel as a value between 0 and 127 on that channel and bin

2 means it has a value between 128 and 255. It can be seen here that when dealing

with a three channel color histogram the number of entries in the color histogram is

proportional to the number of bins that are uses to separate the ranges. The number

of entry elements in a color histogram can be calculated by:

(number of bins)3

Comparing the color histograms of two separate images provides a way of

giving a measure of the appearance likeness between the two images.
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Chapter 4

Methods

4.1 Overall Procedure

The algorithm is initialized by the user clicking on the person to be followed

during the duration of the experiment. Once this click has been received, the M

particle filter particles are initialized and the initial appearance model is constructed.

In this implementation 1000 particles were used, M = 1000. Then, the algorithm

consisting of generic person detections, the specific appearance model, and the in-

tegrating particle filter begin to run in order to detect, track and follow the target

person through a cluttered environment. The initialization procedure can be seen

below in Figure 4.1

Figure 4.1: Initialization
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Color data from the sensor is used to run a generic person detector. The

generic person detector used in this thesis is Dalal and Triggs’ HOG person detector.

It generates gradient images and uses them to define the HOG descriptors which are

classified using a linear SVM classifier to provide generic person detections.

The person specific appearance model uses the color data in order to create

an appearance model. The purpose of the appearance model is to make it possible

to detect occlusions of the target person. If the target person is occluded by another

non-target detected person, the generic HOG detector and particle filter alone would

not detect the occlusion and would assume that the occluding party is the target

person. This more often than not will shift the system into thinking that it is now

following the occluding party, thereby deviating from following the actual target. By

employing a person specific appearance model, we can avoid this confusion. The

person specific appearance model must be robust to minor changes in the appearance

of the target due to pose change, but at the same time sensitive to major changes

that will set off an occlusion indicator regardless of whether or not a person has been

detected in the same area.

Scaled image coordinates and depth information create a hybrid state space

for the particle filter which is used for tracking. The person detections generated

for the generic HOG detector are compared to the propagated particle locations in

the hybrid state space. The weight of the particle is then updated using both the

indication of any person in that area and the specific appearance model to determine

the likelihood that this is the target person.

The appearance model is then used once again on the tail end of the algorithm

to conduct a final check on the target person. If the particle filter expected position

matches the specific appearance model within a given threshold then the system logs

the expected position as a positive detection. If the particle filter expected position
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does not match the specific appearance model within the given threshold then it is

determined that an occlusion has occurred and the target position is not updated.

Finally, all the detection and tracking information is sent to the robot control

architecture which will determine, based on distance to the target and target position

within the frame, how to move in order to follow the target. The overall algorithm

procedure can be seen below in Figure 4.2.

Figure 4.2: Algorithm flow
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4.1.1 Overall Methods Pseudocode

1. Initialize

2. Loop:

(a) Find generic detections (Section 4.3)

(b) Execute particle filter tracking (Section 4.2)

(c) Check for occlusion using appearance model (Section 4.4.2)

(d) Commence robot control (Section 4.5)

4.2 Particle Filter Tracking

4.2.1 System state

The system state consists of three spatial coordinates x, y and z.

[
x y z

]T

The incoming data gives both an RGB image and a depth image so the coordinates are

in a hybrid state space with x and y in image coordinates and z in depth coordinates.

These are the state values that will be propagated for each particle and will identify

the location of the target person.

The depth coordinate z comes directly from the depth data obtained from the

RGB-D sensor. The coordinates x and y are scaled according to the depth coordinate

z. The purpose for this is to equalize the weight contribution from each state element.

27



4.2.2 Motion model

The motion model operates in one of two ways. If the target has been consis-

tently found then the motion model operates in its normal mode. In this mode, the

particles are propagated in random directions according to a ray architecture that is

set up. At each iteration, 12 separate ray directions are defined in the x and z plane

and then using a random number generator, one of the ray directions is chosen for

each particle. If you imagine the ray spread in Figure 4.3 as being top down in the

world plane then this is how the particle states x and z are propagated.

Figure 4.3: Propagation rays

Once a ray direction has been chosen, the propagation of each particle in x

and z is then determined by adding the corresponding ray coordinate to the previous

x or z state and then adding random Gaussian noise. The y value of each particle

is simply propagated by adding a random Gaussian noise to the previous state. The
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equations governing this propagation can be seen below in equation 4.1.

xt = xt−1 + rx +N(0, σ2
x)

zt = zt−1 + rz +N(0, σ2
z)

yt = yt−1 +N(0, σy)

(4.1)

where rx is the x ray coordinate and rz is the z ray coordinate. The reason for not

including y in this ray scheme is due to the fact that the target will move very little

in the y direction throughout a test sequence. The target will mostly be moving in

the x, z plane.

One deviation from the simple motion model that has been made comes from

evaluating a particles location in x image coordinates. When a particle moves close

to image bound, the propagation direction is influenced such that the rays will be

directed away from the image boundary and will propagate with a larger magnitude

than it generally would if it were located more centrally in the image. This is done for

three reasons. First, it is known that the particle must stay within the image bounds

and a particle state that lies outside the image bounds does not make sense. Second,

the robot control architecture is making sure that, for the most part, the target stays

centrally located in the image. Finally, since the tracking is being done indoors in

hallways, image bounds are most likely going to belong to walls or the ceiling. Setting

these conditions on particle motion simply helps to avoid re-sampling too often.

The second mode of operation for the motion model occurs when the target

has not been located for 3 frames. If this is the case, the magnitude of the particle

propagation is increased in order to spread the particles across the image more. This

was implemented to solve cases in which the particles may drift off the target person

and can not reacquire the target because the propagation of each particle is too small

to get back to the target location.
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4.2.3 Observation model

In order to update the particle weights, each particle state is evaluated against

each generic HOG detection in the

[
x y z

]T
state space. This on its own is not

sufficient enough to bias particle weights toward the target person due to the fact that

a weight evaluated in state space will be high as long as it is near any person. Thus, the

individual weight contributions are scaled by an appearance dependent scale factor.

To perform this comparison an appearance model around each particle is constructed.

The appearance model of each particle is then compared to the appearance model of

the target taken in the initial frame. The comparison is calculated in equation 4.2.

∆ds = e
−(‖dms −d

orig
s ‖)

2σ2 (4.2)

Where dms is the particle appearance model, dorigs is the initial appearance model

and ∆ds represents their comparison. Therefore, a large difference in the appearance

models results in a small scaling factor ∆ds . The observations for each value in the

state space are then compared against all generic HOG detections. The equations for

these calculations can be seen below in equation 4.3

Om
tx =

P∑
p=1

e
−(φ

p
tx
−φmtx )2

2σ2

Om
ty =

P∑
p=1

e
−(φ

p
ty
−φmty )2

2σ2

Om
tz =

P∑
p=1

e
−(φ

p
tz
−φmtz )

2

2σ2

(4.3)

where P is the number of generic detections and Om
tx is the summed observation

resulting from comparing the x state variable φmtx of the mth particle to each of the

x values φtx
p of P generic person detections. Here, the generic term Ot is taking the
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place of p(Φt|xt) from section 3.4 meaning that Om
tx would represent p(φmtx|x

m
tx). For

each particle these observation equations are a calculated sum that takes all generic

detections into consideration. This is done for all M particles.

Once the summed observations for a particle have been calculated, each par-

ticle weight is updated by multiplying the previous weight value by the sum of the

observations scaled by the appearance difference ∆ds . Mathematically:

wmt = wmt−1 ·∆ds · (Om
tx +Om

ty +Om
tz ) (4.4)

From equation 4.4 it can be seen that if a particle state is not close to a

generic detection location or the particle appearance model is not similar to the

initial appearance model its weight will not be high. After all particle weights have

been updated, they are normalized to a value of 1:

W =
M∑
m=1

wm

wm =
wm

W
for m = 1 . . .M

(4.5)

The normalized weights are then used in order to calculated the expected

state which is used for the current target expected position. The expected state is
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calculated as in equation 4.6

Ex =
M∑
m=1

xm · wm

Ey =
M∑
m=1

ym · wm

Ez =
M∑
m=1

zm · wm

(4.6)

These expected state values are the values returned from the particle filter

and indicate the particle filters expected location of the target person. This location

will be checked for occlusion by the specific appearance model to determine whether

or not an occlusion has occurred. After the occlusion check, regardless of whether

or not the target is detected, a check is performed on the particles to determine if a

resample is necessary. The equation for determining the necessity of a resample can

be seen in section 3.4. If a resample is necessary then it is done using the select with

replacement method.

After the resample check, the tracking algorithm is finished and sends its

finding to the robot control architecture which responds accordingly.

4.2.4 Particle Filter Tracking Pseudocode

1. Propagate particles

2. For all M

(a) Find appearance model at particle state (Equation 4.1)

(b) Compare with initial histogram (Equation 4.2)
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(c) Compare particle state to generic detections (Equation 4.3)

(d) Update particle weights (Equation 4.4)

3. Normalize weights (Equation 4.5)

4. Calculate expected state (Equation 4.6)

5. Check for re-sample

4.3 Generic Detector

In this algorithm, the generic detector is used to find all the possible person

detections in a given frame. The generic detector used in this algorithm is the HOG

person detector. The OpenCV implementation was used. It is a multi-scale detection.

In this implementation block sizes are 16x16 pixels, cell sizes are 8x8 pixels and the

size of the detection window is 64x128. This means that there are 105 overlapping

blocks per detection window. Since the purpose of the generic detector is not to locate

one single person, but instead to present multiple detections to the particle filter and

specific appearance model, the detection rate for the HOG detector is set high. This

means that after the generic person detection portion of the algorithm runs there are

many false positive detections. This, however, is not a problem for the purposes of

this algorithm, because the false positives will simply be thrown out by the particle

filter and/or appearance model. It is not the job of the generic detector to be precise

in its classification of people. We simply want to make ensure that there are no false

negatives detected. The false positives are dealt with during the consideration as to

which target is the actual target. Snapshots of the output from the generic detector

can be seen below in Figure 4.4.
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Figure 4.4: Generic HOG detections

4.4 Specific Appearance Model

The specific appearance model is the working piece of the algorithm that makes

distinctions between people possible. It helps create distinction between the generic

detections and provides a method for detecting occlusions.

It is used in the particle filter weight update to scale the state observations.

If the algorithm were to rely solely on the hybrid state locations of each particle for

specific target detection, we would find that the particles would often drift to other

non-target detections. If the particle filter was not scaled by this appearance factor

and relied solely on the spatial information, particles would gain weight when they

became close in position to any person detection and eventually attach themselves

to that detection regardless of their appearance similarity to the target person. This

would result in the eventual loss of the target person. The algorithm would then

assume the new person it is tracking is the target person.

It is also used as a final check on the expected target position to determine if an

occlusion has occurred. The particle filter implementation, regardless of the scaling

effect influence the specific appearance model has on the expected state of the target,

still gives an expected target position at every iteration. This means that there will
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always be an expected target state coming from the particle filter and we have no

way of knowing for sure if the expected target state is the correct person or not. It

is possible that this is just another non-target person occluding our target person.

Therefore, the specific appearance model is used as a check against the expected

target state to make a final decision as to whether or not this is the correct target.

The specific appearance model is created with a color histogram. The color

histogram used in this algorithm employs 10 bins on each color channel. Each color

channel ranges in value from 0 to 255. This means that on each color channel a bin

has approximately 25.6 values assigned to it. This is of course not exact because a

color channel value is not a float. With 10 bins per color channel, the entire color

histogram has 1000 possible entries. Refer to section 3.5 for color histogram theory.

The purpose of this color histogram is to make a model of some window area for the

purpose of later comparison.

The initial color histogram is the color histogram that is used for the remainder

of the test period when considering possible person detections as the target detection.

It used essentially as a template. To create the initial color histogram the depth

information from the RGB-D sensor is first used. When the user initially clicks

the image to signify the target person, an average depth is calculated around this

clicked area. Then pixels inside the initial selection window that lie outside a given

threshold of this average depth are not considered while creating the color histogram.

The threshold used for this determining whether or not a pixel is close enough to

the average is 0.3 meters. In Figure 4.5 you can see examples of the pixels used

to construct the color histogram. Notice that the black areas correspond to pixels

that lie outside of the average depth area. Once the initial color histogram has been

constructed, no additional models are constructed.
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Figure 4.5: Determining pixels to be used in color histogram

4.4.1 Appearance Model Influence on Weight Updates

During the particle weight update, the initial specific appearance model (or

color histogram) is used to scale the spatial informations influence on the weight.

This is done by taking the particle state of the particle currently being updated and

creating a color histogram for the bounding box that will represent this particle.

The same method is used as was in creating the initial appearance model. Meaning,

the average depth is found and any pixels that lie outside the average depth value

plus the threshold are not considered when making the color histogram. The color
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histogram of the particle state under consideration is then compared with the initial

color histogram using the L2 norm. This then gives the the value ∆ds from equation

4.2 which is used as the scaling factor on the weight update of the current particle in

equation 4.4.

4.4.2 Appearance Model for Occlusion Detection

As a final system check, the specific appearance model is used to determine

whether or not the expected target state is the correct target or if an occlusion has

occurred. Remember that the output from the particle filter is an expected state

and this expected state is taken to be the expected position of the target. However,

as was stated before, the particle filter will always give us an expected target state

and there is no way of knowing if it is the correct target or if the target has been

occluded. To remedy this problem, we use the specific appearance model as the final

check. The expected target state is taken to this stage of the algorithm. Below in

Figure 4.6 you can see the template for the initial histogram of a scene and in Figure

4.7 the templates for the color histograms that will be compared against the initial

color histogram can be seen.

There is an additional element that comes into play at this point in the algo-

rithm. Since the expected position has no bounding box associated with it and there

is no way for the algorithm to currently know the actual size of the bounding box

that would surround the real target, so an average of all detection bounding boxes

is used as the theoretical bounding box. This is the bounding box that is used to

create the color histogram centered around the expected target position. This color

histogram once again is created as before. The average depth is found and any pixels

lying outside the average depth within the threshold are not considered when making
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Figure 4.6: Initial template for the color histogram

Figure 4.7: Expected position color histogram templates from frames in the sequence

the color histogram. Once the color histogram has been created for the expected

target position, it is compared against the initial specific appearance model (color

histogram) using the L2 norm. If the resulting difference is below the threshold, ta,

then the expected target person is assumed to be the correct target person. If the

resulting difference is not below the threshold, ta, then an occlusion is declared. The

threshold value ta is varied between 0.15 and 0.35 in execution of this algorithm. The

condition that must be satisfied can be seen below in Equation 4.7. It should be

noted here that if an occlusion is declared, then a missed detection is added to the
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counter that is used by the motion model.

‖dexpecteds − dorigs ‖ < ta (4.7)

4.4.3 Appearance Model Occlusion Check Pseudocode

1. Create color histogram at the expected state

2. Compare this to the initial color histogram (Equation 4.7)

3. If the result is less than ta

• Target found

4. else

• Target occluded

4.5 Robot Control Architecture

The input to the robot control architecture is the targets last position, the

targets current position, and an occlusion flag. The overall procedure of the control

architecture can be seen below in Figure 4.8.

Once the control architecture has the previous and current target positions,

there are two parameters that will instruct the robot to take no movement action

and stop. The first parameter is the occlusion flag. If it has been set, then the robot

executes a stop command. The robot does not update the last position and returns

to the tracking algorithm. However, if the the occlusion flag has not been set then the

second parameter considered is the magnitude of the movement. Since it is unlikely

that from frame to frame the target will move a very large distance, a check is set
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Figure 4.8: Robot control architecture

in place to identify a large distance movement. The purpose for this check is to be

careful in the event that the tracker somehow misidentifies the target. We do not

want the robot to try to make a large movement that will set it off course for further

tracking. Therefore, if it is determined that the distance traveled from the previous

target detection is too great the robot will execute a stop command. Once again it

will not update the last position and will return to the tracking algorithm.

If neither of these flags have been set then the robot control architecture will

first determine if a turn is necessary. The need to turn is checked first for three

reasons. First, since testing is being done in a hallway, it is very rare that the robot

will ever have to turn. Second, we want to keep the target centrally located in the

image in order for the particle filter motion model to function properly. And third, if

a rotation is required, we do not want to set a rotate and forward movement command

at the same time because whichever command is given first will not be executed. The

check for a turn command is fairly simple. The control architecture checks to make

sure the center of the target is within the middle three fifths of the image. If the

target is outside of the middle three fifths then depending on whether the target is
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in the right third or the left third the robot executes a rotate right or rotate left

command. Once this command has been set, the robot control architecture sets the

current target position to the previous target position and returns to the tracking

algorithm.

If a turn is not necessary then the robot evaluates the velocity at which it

needs to move forward or backward. This is done in a few steps. First the control

architecture maps the current position to the ground plane. Then, depending on

which section of the ground plane this mapped point is in the control architecture

chooses a homography. The ground plane is divided into three separate sections. The

reason for this is because the pixel distance between two pixels further off in the

ground plane correlate to a larger real world distance than the real world distance

that correlates to the pixel distance between two pixels that are closer in the ground

plane.

Three separate transformation homographies were calculated off-line. This

off-line calculation was done by taking pictures (at the same height as the camera

is on the robot) of a piece of cardboard with known lengths. Then the images were

brought into a program that allows the user to click on the corners of the piece of

cardboard. Corresponding the distances between the clicked points and the known

real world lengths allows for the construction of a homography, as discussed in section

3.2, that will allow us to transform points from image space to real world space.

Once the correct homography has been selected, the real world distance be-

tween the previous position and the current position is calculated and the robot

forward velocity is set such that it will move this distance. After the set forward

velocity command has been set, the robot control architecture sets the current tar-

get position to the previous target position and returns control over to the tracking

algorithm.
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4.5.1 Robot Control Pseudocode

1. Input: last position, current position, occlusion flag

2. If occlusion flag set (Section 4.4.2)

(a) Stop robot

(b) Exit robot control

3. Else if movement from last position to current position is too large

(a) Stop robot

(b) Exit robot control

4. Else if robot needs to turn

(a) Turn robot in appropriate direction

(b) Set last position to current position

(c) Exit robot control

5. Else

(a) Map current position to ground plane

(b) Choose homography based on which third of the ground plane the current

position is in

(c) Calculate the real world distance between the current position and last

position

(d) Set robot forward velocity

(e) Set last position to current position

(f) Exit robot control
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Chapter 5

Experiments and Results

The algorithm was run on multiple test sets to determine how well it would

perform in different situations. The there were two test environments both of which

were located indoors in areas of minimal traffic. The setup used is the Microsoft

Kinect camera, the Pioneer P3-AT robot, on a Dell Studio 18 laptop with an i7 core

processor. The operating system being used is Ubuntu 11.04. ROS is used to connect

to and retrieve information from the camera and the ARIA library is used to control

the mobile robot.

We want to evaluate the algorithm performance in three main areas. The first

is scenes with no occlusion of the target, the second is scenes with minimal occlusion

and the third is scenes with large occlusions. The purpose for the three separate test

areas is to test the needs of person following algorithm which is threefold. (1) It needs

to be established that the baseline system works, (2) it needs to be established that

the algorithm can handle brief occlusions, and finally (3) the system should be able

to recover the target after a long term occlusion.
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5.1 Types of Images

There are several different types of images that will be seen in the following

sections. To avoid the need to explain what it is the images actually represent, this

section will serve to show one type of each image for a single frame. The six image

types can be seen below in Figure 5.1

Figure 5.1: Types of images

Each image is explained in order from top left to bottom right. The first
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image is the depth image. It is a representation of the data that is provided from

the depth sensor. The second image shows every HOG person detection provided

from the generic person detector. The third image is the image with the final target

detection bounding box and the particle positions overlayed on top of it. The fourth

image shows the particle filter expected position bounding box. The fifth image is a

representation of the template that will be used to create a color histogram. And the

sixth image is simply the current image with the positive target detection bounding

box lain over it.

5.2 No Occlusion

The test sets for non-occlusion cases will consist of simple test cases in which

the target person is walking down the hallway in a straight path. There will be no full

or partial occlusions. There will however be other people present in the scenes. The

purpose of these tests is to evaluate the system response to baseline test cases. In this

section we want to determine the system response to different cases of non-occluding

robot/target interaction. To begin, in Figure 5.2 the initial progression of a single

target down the hall can be seen with the corresponding depth images.

Figure 5.2: No occlusion and different depths

In this initial run, the target individual is walking down the hall with only
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one additional person present. The additional person is at a different depth. The

system performs as expected in this case and is easily able to follow the target. Next,

we want to test the system when another person appears at approximately the same

depth and relative location as the target. This case can be seen below in Figure 5.3.

Figure 5.3: No occlusion and similar depths

It can be seen from the segment in Figure 5.3 that when an additional person

within proximity of the target appears in the scene with a similar depth, the tracker

stays with the target person and is not influenced by the sudden appearance of an-

other person. This is due to the relatively small particle propagation that is allowed

whenever a positive target identification has occurred.

For the final non-occlusion test, the system is tested for a target change in

appearance. Only the initial template is used to create the color histogram, thus, the

integrity of this method must be tested for cases in which the target changes pose.

Below in Figure 5.4 the initial template for the image sequence can be seen and in

figure 5.5 the detection images for later frames of the sequence are displayed.

It can be seen that the system is indeed robust to appearance changes in the

target. Regardless of the initial color histogram template that results from the target

facing away from the camera, a side or forward pose of the target is not enough of an

appearance change to set off an occlusion flag in the appearance comparison stage of

the algorithm. It should also be noted that the appearance model is unaffected by
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Figure 5.4: Initial color histogram template

Figure 5.5: No occlusion with different poses

the illumination from the ceiling lights. The illumination changes the color histogram

template by creating streaks across the image, however, the appearance model is still

robust enough to not consider this change as an occlusion.

5.3 Brief Occlusions

The previous section tested the systems robustness to the point that the target

was able to be tracked in three situations. The first being a scene with multiple people

in the image at different depths, the second being multiple people in the scene at
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similar depths and the third being appearance changes of the target. Now we would

like to test the system against brief occlusions.

In order to test the system against brief occlusions a scenario is set up such

that the target person is fully occluded for a brief period of time while walking down

the hall. To show the effectiveness of the occlusion detection, the detection images

are compared against the particle filter expected position images, depth images, and

the color histogram templates. Below in Figure 5.6 and 5.7 two separate occlusion

instances, and the systems response to these instances, can be seen. The first occlusion

instance in Figure 5.6 compares the detections against the particle filter expected

positions and the second occlusion instance in Figure 5.7 compares the detections

against the depth images and the color histogram templates (where the first image is

the initial template used to create the color histogram).

Figure 5.6: Brief occlusion instance one: particle filter expected positions
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Figure 5.7: Brief occlusion instance two: depth images and color histogram templates

From these two instances, it can be seen that the system is able to handle brief

occlusions. The particle filter expected state exists in the area where the occluding

person is, however, the appearance model on the tail end of the system registers an

appearance change signifying the detected person is an occluding person and should

not be confirmed as the target person. The threshold value ta used for this image

sequence is a value of 0.15. The appearance difference is above the threshold, so

the system declares that an occlusion has occurred and overrides the particle filter
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expected position. Were the appearance model not present, the occluding party would

be chosen as the target person and quite possibly end up being the new target person.

5.4 Long Occlusions

Since the testing for brief occlusions was successful, the final system test is

the response to a long term occlusion. It needs to be established that the system can

reacquire the target after it has lost the target for more than three frames (which is

the standard in the brief occlusion). To conduct this test, the algorithm is run on

a sequence in which the target is occluded for ten frames before reappearing. The

detection results of this test can be seen in Figure 5.8.

Figure 5.8: Long time occlusion: 10 frame occlusion

This sequence shows that the system is able to recover from a long term

occlusion. The reason that this is possible is due to the fact that the appearance model

does not change after the initial frame. The low magnitude of particle propagation

also makes this possible. The systems ability to recover from a long term occlusion

is a positive aspect, however, a trade-off is made in order for the system to obtain

this quality. The trade-off comes in tracking target lateral motion and will be further
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discussed in the next chapter.

5.5 Overall Performance

As a means of determining the systems overall performance, the intersection

over union of the detected target position versus the true target position was plotted

for the sequence during which brief occlusions occurred. The occluded frames were

not included in this graph. The intersection over union is calculated by dividing the

area in which the detected position and true position intersect by the total area of

the two. The graphed sequence can be seen below in Figure 5.9.

Figure 5.9: Overall performance

The graphed data shows us that the system performs quite well overall. It

maintains about a 75 percent intersection over union throughout the sequence. It

should be noted that not every frame from the sequence is graphed. For a total frame

breakdown refer to Table 5.1.
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True positives 79
True negatives 9
False positives 0
False negatives 12

Table 5.1: Frame breakdown

From this table it can be inferred that the system, though detecting every

occlusion, does make a detection trade off. There were 12 frames during which the

target was not found even though visible in the scene. The reasons for this will be

discussed in the conclusion section.
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Chapter 6

Conclusions

This project involved developing an algorithm to track and follow a person

through a variety of situations. Overall, the algorithm performed well. It has been

demonstrated that the system is able to track a target person in the three situations

that were initially proposed. The algorithm can track an individual that is not being

occluded when environmental clutter and other people are present, the algorithm can

track an individual through brief occlusions, and it can reacquire a target individual

after a long time occlusion.

That being said, the trade offs to achieve this performance must be discussed.

The biggest trade off comes in the particle motion. In order to reacquire the target

after a long time occlusion the system must be set up such that the particles do not

scatter too much at each iteration. If the particles stay centrally located and only

slightly drift at each iteration then a central location can be maintained. Maintaining

a central location is key in reacquiring the target individual after a long time occlusion.

Since the particles do not make drastic propagations at each iteration, the bulk of

them will stay in a reasonably close proximity to the last target detection. Thus,

when the target disappears for a long time and then reappears the particles have not
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scattered about the image making it impossible to reacquire the target. This method

has been shown to work, but it does make the system susceptible to false negatives.

These false negatives occur when the target moves rapidly from one side of the image

to the other. Since the magnitude of the particle propagation is small, the particles

will not be able to keep up with the rapid movement. The target expected state

is then in a location in which no person, or the wrong person, is present and the

appearance model classifies the expected position as an occluded target.

The algorithm is also susceptible to large changes in scale of the target. If the

target starts off large and through the sequence progression is reduced significantly

in size, the system will no longer be able to detect the target. This stems from the

fact that the window size being used to estimate the size of the expected position is

an average of all windows. Though the generic HOG detector does search at multiple

scales, there is a limit to the scale size that is most likely forced upon the detector by

the training images that were used. This means humans that are off in the distance

do not get detected. For this algorithm that translates to the actual target bounding

box size not being considered in the average of all detection boxes. This means the

expected position bounding box will be much larger than it should be and will not

provide a good template for the color histogram. The appearance model will then

classify the expected position as an occlusion and a false negative will occur.

Other than these two issues, the system performed well. It is a real time

system which is a necessity for the following portion of the algorithm. In the next

section some possible system improvements will be discussed.
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6.1 Future Work

Areas of future work should aim to improve on the two major deficiencies of the

algorithm. These two deficiencies are the particle motion model and scale issues. The

latter could most likely be solved by training a HOG detector that considers smaller

sized targets as positive human detections, while the former would entail creating a

more complicated motion model for the particle filter. It is possible that the motion

problem could be solved by allowing the magnitude of particle propagation to increase

but add more particles, however this will slow the system down considerably. Since

it is necessary for the algorithm to run in real time, increased processing time at each

frame is undesirable.

One other possible improvement that could be made to the system would be

incorporate a target motion history. This could be implemented by keeping a history

of target positions in a top down coordinate system. This target history could then be

used to calculate the target trajectory which could be used as another occlusion check.

In this theoretical implementation, both the appearance model and the trajectory

could be taken into consideration when making a decision about a possible occlusion.

One final addition that could be contributed to the algorithm is the concept of

creating an adaptive appearance model. To implement this, we would not only keep

the initial appearance model around for comparison but also keep a the previous 4 or

5 appearance models around. It is possible that this could help with the scale issue.

If the target is getting smaller it would be also be smaller in the updated appearance

models giving the algorithm more of a chance to classify the smaller target as non-

occluded.
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